
1-Mar-00 1UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Instruction level parallelism

• Potential overlap among instructions is called ILP
⇒ Implies a lack of dependence between instructions.

– All of the techniques in this chapter exploit parallelism among
instruction sequences

• ILP techniques include
– Static techniques (done by compiler)

– Basic dynamic scheduling (done by hardware)

– Additional “hidden” registers (done by hardware)

– Branch prediction

– Superscalar execution

1-Mar-00 2UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

How much can ILP help?

• Goal: execute as many instructions as possible in as little
time as possible
– Keep functional units busy with useful work

• Execute instructions out of order

• Use other techniques to do as much as possible at one time

– Allow more functional units to be useful

• Limits to ILP
– Processor: ILP limited by number and type of functional units

– Program: interdependence of instructions can limit the instructions
that can be done in parallel

1-Mar-00 3UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

ILP and CPI

• How is CPI calculated?
CPI = ideal CPI + structural stalls + RAW stalls +
WAW stalls + WAR stalls + control stalls

• Previous chapter: reduce RAW & control stalls

• This chapter: reduce all components of the CPI equation
– Additional reductions in RAW & control stalls

– Reduce ideal CPI

– Use more hardware to reduce or eliminate structural stalls

1-Mar-00 4UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Techniques for reducing CPI via ILP

• Loop unrolling (reduces control stalls)

• Basic pipeline scheduling (reduces RAW stalls)

• Scoreboarding (reduces RAW stalls)

• Register renaming (reduces both WAR and WAW stalls)

• Dynamic branch prediction (reduces control stalls)

• Issuing multiple instructions per cycle (reduces ideal CPI)

• Compiler dependence analysis (reduces ideal CPI and data stalls)

• Software pipelining and trace scheduling (reduces ideal CPI and
data stalls)

• Speculation (execute “possible” instructions, reducing data &
control stalls)

• Dynamic memory disambiguation (reduce RAW memory stalls)

1-Mar-00 5UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Where does ILP come from?

• ILP comes from basic blocks
– Block of code with no branches into the code except at the start and

no branches out of the code except at the end

• Code inside the average basic block is quite small
– Average dynamic branch frequency in integer programs ≈ 15%

– About 6 to 7 instructions are executed between a pair of branches

• Average = usual case?

• Instructions in basic block depend on one another because they
tend to operate on the same data in sequence

⇒ Exploit ILP across multiple basic blocks!

1-Mar-00 6UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Loop-level parallelism
• Exploit parallelism among iterations of a loop

– Iterations of a loop are often independent

– Each iteration can overlap with any other iteration even though individual
iterations have few (if any) overlappable instructions

• Techniques exist for exploiting the ILP in loops
– Done statically by the compiler (loop unrolling)

– Done dynamically by the CPU

– Vector processors can run very quickly on simple loop operations

for (j = 0; j < 2000; j++) {
 dp[j] = x[j] * y[j] + z[j];
}

1-Mar-00 7UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline scheduling
• Compiler tries to separate a dependent instruction from the source

instruction so there’s no data stalls
– Compiler must have intimate knowledge of the internal hardware workings

– Code optimized for one version of a processor may not be optimized on a
future version of the processor...

• Assume the following latencies:

Instruction producing result Instruction using result Latency (clock cycles)

FP ALU operation

FP ALU operation

Load double

Load double

Another FP ALU op

Store double

FP ALU op

Store double

3

2

1

0 (using forwarding)

1-Mar-00 8UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline scheduling example: before
• Compile the following code:

for (j = 0; j<2000; j++)
 x[j] = x[j] + c;

– Assume R1 holds the
address of x[1999]

– Assume F2 has the scalar
value c

• Unscheduled code has many
stalls!
– 5 cycles of useful work

– 5 cycles of stalls!

– Total = 10 cycles per
iteration

Loop:
LD F0,0(R1) ; F0=array elem
ADDD F4,F0,F2 ; add scalar
SD 0(R1),F4 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1,Loop ; repeat loop

Loop:
LD F0,0(R1) ; F0=array elem
STALL
ADDD F4,F0,F2 ; add scalar
STALL
STALL
SD 0(R1),F4 ; store result
SUBI R1,R1,#8 ; pointer--
STALL
BNEZ R1,Loop ; repeat loop
STALL

1-Mar-00 9UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline scheduling: after
• Reschedule code to reduce stalls

– Move SUBI earlier

– Move SD later (and fix address)

• Still one stall
– SD stalls 1 cycle waiting for

ADDD result

• Reduced total time from 10 -> 6
– Still only 3 cycles of work!

– 2 instructions & 1 stall overhead

• Goal: get more “useful”
operations per loop overhead

⇒ Replicate the loop body multiple
times and adjust loop control

Loop:
LD F0,0(R1) ; F0=array elem
ADDD F4,F0,F2 ; add scalar
SD 0(R1),F4 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1,Loop ; repeat loop

Loop:
LD F0,0(R1)
SUBI R1,R1,#8
ADDD F4,F0,F2
BNEZ R1,Loop
[STALL]SD 8(R1),F4

1-Mar-00 10UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Loop unrolling

• Loop unrolling => create multiple copies of the loop body
– Improves scheduling by

• Eliminating branches (control hazards cost time!)

• Allowing instructions from multiple iterations to be interleaved,
exposing more parallelism

– Allows CPU to amortize loop overhead across several loop iterations

• Comparison at end of loop

• Pointer / index increments

• Loop unrolling increases register usage
– Better utilization of a scarce resource

– More chance for cycles between uses of a register to be filled

1-Mar-00 11UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Loop unrolling: example
• Unroll & schedule code from

previous example
– Unroll 4 times

– Use displacement addressing
mode to increment index once
per “macro” loop

– Assume R1 MOD 32 == 0

• Code has no stalls!
– 14 clock cycles for 4 elements

=> 3.5 clock cycles / element

– Speedup of 6/3.5 = 1.7x

– Using different registers =>
avoid false dependencies

– Reordering code eliminates
stalls!

loop:
 LD F0,0(R1)
 LD F6,-8(R1)
 LD F10,-16(R1)
 LD F14,-24(R1)
 ADDD F4,F0,F2
 ADDD F8,F6,F2
 ADDD F12,F10,F2
 ADDD F16,F14,F2
 SD 0(R1),F4
 SD -8(R1),F8
 SUBI R1,R1,#32
 SD 16(R1),F12
 BNEZ R1,loop
 SD 8(R1),F16

1-Mar-00 12UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Loop unrolling: details

• What if loop index in example isn’t a multiple of 32?
– Real code: don’t always know upper bound on loop

– Real code: don’t know how many times the loop will be executed!

• Solution: assume loop unrolled k times and iterated n times
– First code body contains original code, and executes n MOD k times
– Second code contains unrolled body and executes n/k times

– Saves time if the number of iterations was large

– Another solution: jump into the middle of the code (if possible)

• Loop unrolling is easy to recognize
– Not trivial for a compiler to perform these optimizations!

– Compilers can, however, do scheduling very well

1-Mar-00 13UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dependencies: the basics

• Dependency => instruction B uses a result of instruction A
– Dependencies are a property of programs, not of CPUs and pipelines.

– Dependence between two instructions will always exist unless the
program is changed

• Presence of a dependence indicates the potential for a hazard
– Actual hazard and the length of any stall is a property of the pipeline

– Goal is to eliminate stalls, not dependencies!

• Three types of dependencies
– Data

– Name

– Control

1-Mar-00 14UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Data dependence
• Instruction j is dependent on i if i

produces a result used by j

• Dependence is transitive
– j is dependent upon i and k is

dependent upon j, => k is
dependent on I

• Dependence chains can be
arbitrarily long!

• A compiler scheduling
instructions cannot move j before
i if j depends upon i

loop:
LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BNEZ R1,loop

1-Mar-00 15UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Overcoming data dependencies

• Data dependencies
– Indicate the possibility of a hazard

– Determine the order in which results must be generate

– Place an upper bound on the amount of ILP available

• Data dependencies can be overcome in two ways
– Keeping the dependence but avoiding a hazard

– Eliminating the dependence by transforming the code

• Scheduling is the primary way to avoid hazards without
altering dependencies
– See previous example with LD, ADDD and SD

– Code scheduled to avoid the hazard, but the dependence remained in
the code

1-Mar-00 16UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Eliminating data dependencies
• It’s possible to eliminate data

dependencies
– Eliminate instructions!

– Loop unrolling: eliminate
branches and index updates

• Compiler removes dependence
by eliminating instructions
– BNEZ instructions dropped

– Eliminate SUBI instructions &
fold computation into offset

Loop:
LD F0,0(R1) ; F0=array elem
ADDD F4,F0,F2 ; add scalar
SD 0(R1),F4 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1,Loop ; repeat loop
LD F6,0(R1) ; F0=array elem
ADDD F8,F6,F2 ; add scalar
SD 0(R1),F8 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1,Loop ; repeat loop
LD F10,0(R1) ; F0=array elem
ADDD F12,F10,F2; add scalar
SD 0(R1),F12 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1,Loop ; repeat loop

1-Mar-00 17UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

More on data dependencies

• Eliminating data dependencies requires a fair amount of
analysis => done by the compiler

• Avoiding hazards through scheduling can be done in
hardware or software or both

• What about data dependence through a memory location?
– Registers are easy to figure out at compile time

– Memory dependences may not be known until runtime => much more
difficult to deal with!

– Example: 100(R4) and 20(R6) may refer to the same memory location

• Not known until runtime, though!

– Explore hardware and software techniques that detect data
dependencies that involve memory locations (later…)

1-Mar-00 18UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Name dependencies
• Two instructions use the same register or

memory location, but there’s an
intervening write to it
– These are NOT data dependences because

no information is passed between the two
instructions

– The instructions could be executed out of
order or in parallel if the CPU renamed the
register or memory location involved

• Register renaming can either be done by
– Compiler, as in earlier loop unrolling

– CPU (dynamic register renaming)

• In example
– Second LD replaces value in F0

– Second ADDD replaces value in F4

Loop:
LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

Unrolled loop before
register renaming

1-Mar-00 19UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Control dependencies

• A control dependency determines the ordering of the
instructions with respect to branch instructions
– If an instruction depends on the outcome of an earlier branch then it is

only executed on one of the two forks

– This instruction is dependent on the preceding branch

• Example:
if (cond1)
 S1;
else
 S2;

• Obviously, we cannot:
– Move S1 or S2 before the if statement

– Move other instructions before the if stmt into “then” or “else”

1-Mar-00 20UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Control dependencies
• In loop unrolling before

removing branches:
– Control hazards after each

branch!

• Eliminated branches because we
knew the outcome of each branch
– Iterations divisible by 4

– All “internal” branches taken (to
top of loop)

– Eliminated control
dependencies!

Loop:
LD F0,0(R1)
ADDD F4,F0,F2
SD 0(R1),F4
SUBI R1,R1,#8
BNEZ R1,Loop
LD F6,0(R1)
ADDD F8,F6,F2
SD 0(R1),F8
SUBI R1,R1,#8
BNEZ R1,Loop
...

1-Mar-00 21UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Preserving program correctness

• Preserving control dependence is NOT a critical property
– Program can be rewritten to violate control dependence!

– Program correctness is the critical property that must be preserved

• Violating control dependence may be OK if program
correctness is preserved!

• Two properties critical to program correctness are
– Preserving exception behavior: any changes in the ordering of

instructions must NOT change how exceptions are raised

• An instruction that should not have been executed can’t cause an
exception

• Memory operations and floating point often cause problems like
this

– Preserving data flow

1-Mar-00 22UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Preserving data flow

• Branches make the flow of information between instructions
dynamic
– Different values for particular registers depend on whether or not

branches are taken

– This information flow must be preserved!

• Data flow can be preserved by
– CPU cancels instructions that were wrongly executed

– Compiler cancels things out (add to cancel out a subtract that
shouldn’t have been executed)

1-Mar-00 23UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Dealing with control dependencies

• Sometimes, violating control dependencies can’t affect
execution behavior or data flow
ADD R1,R2,R3
BEQZ R12,skipnext
SUB R4,R5,R6
ADD R5,R4,R9
skipnext:
OR R7,R8,R9

• Could move SUB before BEQZ if we knew
– The SUB instruction could not generate an exception

– If R4 were not ‘live’, i.e., used after the skipnext label

• This type of scheduling is called speculation: the compiler is
betting that the branch will not be taken
– Hardware can do this too...

1-Mar-00 24UMBC Chapter 4CMSC 611 (Advanced Computer Architecture), Spring 2000

Control dependencies: summary

• Control dependence is preserved by implementing control
hazard detection

• Control hazard detection causes control stalls

• Control stalls can be avoided by:
– Scheduling instructions in delay slots

– Loop unrolling

– Conditional execution

– Speculation by both compiler and CPU

• We will cover the latter two shortly along with other dynamic
methods for taking advantage of ILP

