~ ~
Instruction level parallelism How much can ILP help?
 Potential overlap among instructionsiscalled ILP » Goal: execute as many instructions as possible in as little
0 Impliesalack of dependence between instructions. time as possible
— All of the techniques in this chapter exploit parallelism among — Keep functional units busy with useful work
instruction sequences « Execute instructions out of order
* |LP techniquesinclude » Use other techniques to do as much as possible at one time
— Static techniques (done by compiler) — Allow more functional units to be useful
— Basic dynamic scheduling (done by hardware) e LimitstoILP
— Additional “hidden” registers (done by hardware) — Processor: ILP limited by number and type of functional units
— Branch prediction — Program: interdependence of i nstructions can limit the instructions
— Superscalar execution that can be donein parallé
1-Mar-00 r#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 1-Mar-00 }zg{;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
4 4
ILP and CPI Techniques for reducing CPI vialLP
 How is CPI calculated? » Loop unrolling (reduces control stalls)
CPl = ideal CPI + structural stalls + RAW stalls + Basic pipeline scheduling (reduces RAW stalls)
WAW stalls + WAR stalls + control stalls » Scoreboarding (reduces RAW stalls)
» Previous chapter: reduce RAW & control stalls Register renaming (reduces both WAR and WAW stalls)
» Thischapter: reduce all components of the CPI equation « Dynamic branch prediction (reduces control stalls)
— Additional reductionsin RAW & control stalls * Issuing multiple instructions per cycle (reducesideal CPI)
— Reduceidea CPI » Compiler dependence analysis (reducesideal CPI and data stalls)
— Use more hardware to reduce or eliminate structural stalls « Software pipelining and trace scheduling (reduces ideal CPI and
data stalls)
» Speculation (execute “possible’ instructions, reducing data &
control stalls)
L L * Dynamic memory disambiguation (reduce RAW memory stalls)
1-Mar-00 ,m UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 1-Mar-00 E%ﬁ': UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

4) 4
Where does |LP come from? Loop-level parallelism
e |LP comesfrom basic blocks » Exploit paralelism among iterations of aloop
— Block of code with no branches into the code except at the start and — Iterations of aloop are often independent
no branches out of the code except at the end — Each iteration can overlap with any other iteration even though individual
. . . . iterations have few (if any) overlappableinstructions
» Codeinside the average basic block is quite small) : " :
_ o . e Techniques exist for exploiting the ILP in loops
— Average dynamic branch frequency in integer programs = 15% _ Done statically by the compiler (loop unrolling)
— About 6 to 7 instructions are executed between a pair of branches — Donedynamically by the CPU
» Average = usual case? — Vector processors can run very quickly on simple loop operations
* Instructions in basic block depend on one another because they
tend to operate on the same data in sequence
[0 Exploit ILP across multiple basic blocks! for (j = 0; < 2000; j++) {
dp[j1 = x[j]1 * ylil + z[jl;
- J -
1-Mar-00 w#;: U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 5 1-Mar-00 }?q‘;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
4 ™\ 4
Pipeline scheduling Pipeline scheduling example: before
» Compiler tries to separate a dependent instruction from the source e Compile the following code: Loop: (RD |
: :) f i = 0 |<2000; j++ LD FO,O0(RL FO=array el em
mstrucﬂopsotheresnpqlatastalls | - O)r([j(J] - X[]_J] 2008 j++) F4 FO.F2 . add scalar
— Compiler must have intimate knowledge of the internal hardware workings ’ SD O(Rl),F4 ; store result
.- . - — Assume R1 holds the ' :
— Code optimized for one version of a processor may not be optimized on a address of x[1999] SUBI R1,RL, #8 pointer--
future version of the processor... BNEZ R1, Loop repeat |oop
. . — Assume F2 has the scalar
* Assumethefollowing latencies: valuec
Loop:
+ Unscheduled code has many LD FO,O0(R1) FO=array el em
stallg! STALL
. . - : ' ADDD F4, F0,F2 ; add |
Instruction producing result | Instruction using result | Latency (clock cycles) _ 5cycles of ussful work STALL adad scal ar
FP ALU operation Another FPALUop (3 — 5cyclesof stalls! STALL
; _ - SD O(Rl),F4 ; store result
FP ALU operation Store double 2 Total = 10 cycles per SUBI RL.RL #8 boi Nt er - -
Load double FPALU op 1 Iteration STALL
Load double Store double 0 (using forwarding) \E;Efl_m’ Loop repeat | oop
\. J \.
1-Mar-00 a7- UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 7 1-Mar-00 3%: UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

) 4 N\
Pipeline scheduling: after Loop unrolling
* Reschedule code to reduce stalls Loop: » Loop unrolling => create multiple copies of the loop body
— Move SUBI earlier LD FO,0(Rl) ; FO=array elem .
_ ADDD F4,F0,F2 : add scal ar — Improves scheduling by
" Move S5 fater (end foxeridress) 288! g(lmR)l, ,Z;‘ ; rs):)?:]f e; ?.Sm t * Eliminating branches (control hazards cost time!)
» Siill onestall N BNEZ R1. Loop repeat | oop « Allowing instructions from multiple iterations to be interleaved,
- iDDggllrséﬁ/clewaltmg for exposing more parallelism
. : — Allows CPU to amortize |loop overhead across several loop iterations
+ Reduced total time from 10 -> 6 tg"p' 0. o(Rl _ P P
. + O(RL) « Comparison at end of loop
— Still only 3 cycles of work! SUBI R1, R1, #8 . . .
— 2ingtructions & 1 stall overhead QZEZD Eif' Eov F2 * Pointer /index increments
“ ” , Oop . . .
+ Goal: get more " useful [STALL]SD 8(RL), F4 » Loop unrolling increases register usage
operations per loop overhead — Better utilization of a scarce resource
O Replicate the loop body multiple — More chance for cycles between uses of aregister to befilled
times and adjust loop control
. J . J
1-Mar-00 % UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 9 1-Mar-00 }?q‘;f UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 10
4 N\ 4 N\
Loop unrolling: example Loop unrolling: details
* Unroll & schedule code from | oop: * What if loop index in exampleisn’t amultiple of 32?
previous example 'EB Eg’ ?é(R;)l) — Real code: don’t always know upper bound on loop
B Unro'! 4 times) LD F10,-16(R1) — Real code: don’'t know how many times the loop will be executed!
— Usedisplacement addressing LD F14,-24(R1)
mode to increment index once ADDD F4, FO. F2 » Solution: assume loop unrolled k times and iterated n times
per “macro” loop ADDD F8, F6, F2 — First code body contains original code, and executes n MOD k times
— Assume R1MOD 32 == ADDD F12, F10, F2 ~ _ _
ADDD F16, F14, F2 Second code contains unrolled body and executes [h/k(times
* Code hasno stdls! gg Oé(RlR)lj Flis — Savestimeif the number of iterations was large
B iig%cggéfgégﬁ ‘}ggnﬂeenn,fs SUBI RI1,RI, #32 — Anocther solution: jJump into the middle of the code (if possible)
' SD 16(Rl), F12 — .
— Speedup of 6/3.5 = 1.7x BNEZ le | Of)p * Loop unrolling is easy to recognize
— Using different registers => SD 8(R1),F16 — Not trivial for acompiler to perform these optimizations!
avoid false dependencies — Compilers can, however, do scheduling very well
— Reordering code eliminates
|
S stalls! Y, Y y
1-Mar-00 ,?Q?z; UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 1 1-Mar-00 ‘i%:“‘ UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 12

g, v v
1-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
{4 UMBC

15

~ ™ ~ ™
Dependencies: the basics Data dependence
« Dependency => instruction B uses aresult of instruction A * Instruction j is dependent on i if i | oop:
— Dependencies are a property of programs, not of CPUs and pipelines. producesargsult us_eo_l by | LD R o(RL
— Dependence between two instructions will always exist unless the * Dependenceistransitive
program is changed — jisdependent uponi andkis ADDD F4, FO, F2
L . dependent uponj, =>kis \
» Presence of a dependence indicates the potential for a hazard dependent on |
— Actual hazard and the length of any stall is a property of the pipeline » Dependence chains can be o O(RL), F4
— Goal isto eliminate stalls, not dependencies! arbitrarily long!
» Threetypes of dependencies - A compiler scheduling SUBI RL,RI, #8
Dat instructions cannot move j before l
— bda i if j depends upon i BNEZ R1, | oop
— Name
— Control
- J N\ J
1-Mar-00 Vw%b UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 13 1-Mar-00 }?q‘;f UM BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 14
4 ™) 4)
Overcoming data dependencies Eliminating data dependencies
 Datadependencies » It'spossible to eliminate data Loop:
] o dependencies LD FO,O(R1) FO=array elem
— Indicate the possihility of a hazard R _ ADDD F4,F0,F2 ; add scal ar
— Determine the order in which results must be generate ~ Eliminateinstructions! SD O(R1),F4 ; store result
i — Loop unrolling: eliminate SUBI R1,RL,#8 ; pointer--
— Place an upper bound on the amount of ILP available branches and index updates BNEZ L, Loop, . |
H H . ' =array elem
« Data dependencies can be overcome in two ways - Compiler removes dependence apop Fe. F6, F2 + add scal ar
— Keeping the dependence but avoiding a hazard by eliminating instructions SD O(RL),F8 ; store result
— Eliminating the dependence by transforming the code — BNEZ instructions dropped S8l RLRL#S G opointer-
. — Eliminate SUBI instructions & LD F10,0(Rl) :; FO=array el em
» Scheduling is the primary way to avoid hazar ds without fold computation into offset ADOD 19, 2 N A e
altering dependencies SD O(Rl),F12 ; store result
_ ; ; SUBlI R1,R1,#8 ; pointer--
See previous exampleywth LD, ADDD and SD o BNEZ RI. Loop repeat | 0op
— Code scheduled to avoid the hazard, but the dependence remained in
the code
\ J \. J

1-Mar-00

Py
§ ‘i%:‘ U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000
e

Chapter 4

16

4 N 4)
More on data dependencies Name dependencies
 Eliminating data dependencies requires a fair amount of * Twoinstructions use the same register or tgop: F0. O R1)
analvsis => done by the compiler memory location, but there’s an '
Y) y P . . intervening writeto it ggDD g?gg’ Ej
* Avoiding hazards through scheduling can be done in ~ TheseareNOT datadependencesbecase o gy pt my o0
hardware or software or both no information is passed betweenthetwo " 10" o Ry
« What about data dependence through a memory location? nstructions ADDD F4,FO,F2 —
. . o — The instructions could be executed out of SD O(RL), F4
— Registers are easy to figure out at compiletime order or in parallel if the CPU renamedthe gug; R1. R1, #8
— Memory dependences may not be known until runtime => much more register or memory location involved
difficult to deal with! » Register renaming can either be done by Unrolled loop before
— Example: 100(R4) and 20(R6) may refer to the same memory location — Compiler, asin earlier loop unrolling register renaming
» Not known until runtime, though! — CPU (dynamic register renaming)
— Explore hardware and software techniques that detect data * Inexample
dependencies that involve memory locations (later...) — Second LD replacesvaluein FO
_ W, _ — Second ADDD replaces vaue in F4 Y,
1-Mar-00 Vw%b U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17 1-Mar-00 }?q‘;f U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 18
4 N 4 N
Control dependencies Control dependencies
A control dependency determines the ordering of the * Inloop unrolling before Loop:
instructions with respect to branch instructions removing branches: o o o oR
— If aninstruction depends on the outcome of an earlier branch thenitis ~ Control hazards after each SD O(R1),F4
branch! SUBI RL, R, #8
only executed on one of the two forks - P
hisi ionisd d h edina b h « Eliminated branches because we BNEZ R1, Loop
— Thisingtruction is dependent on the preceding branc! knew the outcome of each branch IABDD Eg' géR}:)z
. Exampl € — lterations divisible by 4 SD O(Rl). F8
i f (condl) — All “internal” branches taken (to SUBI RL, R, #8
sk top of loop) BNEZ R1, Loop
el Z; — Eliminated control e
. dependencies!
» Obviously, we cannot:
— Move S1 or S2 before the if statement
— Move other instructions before the if stmt into “then” or “else”
_ J _ J
1-Mar-00 ,?Q?z; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 19 1-Mar-00 ‘i%:“‘ U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 20

4 ™ ~ ™
Preserving program correctness Preserving data flow
» Preserving control dependence is NOT acritical property » Branches make the flow of information between instructions
— Program can be rewritten to violate control dependence! dynamic
— Program correctness is the critical property that must be preserved — Different values for particular regi sters depend on whether or not
« Violating control dependence may be OK if program branches are taken
correctness is preserved! — Thisinformation flow must be preserved!
« Two properties critical to program correctness are » Dataflow can be preserved by
— Preserving exception behavior: any changes in the ordering of - CRU gancels ! nsxruc_u ons that were wrongly executed
» Aninstruction that should not have been executed can’'t cause an shouldn’t have been exectited)
exception
» Memory operations and floating point often cause problems like
this
_ — Preserving data flow) _)
1-Mar-00 Vw#; U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 21 1-Mar-00 “?!#E U M BC CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 2
s N r ™)
Dealing with control dependencies Control dependencies: summary
» Sometimes, violating control d dencies can’t affect * Control dependence is preserved by implementing control
g epen ep p P g
execution behavior or data flow hazard detection
ADD R1, R2, R3 « Control hazard detection causes control stalls
BEQZ R12, ski pnext
SUB R4, R5,R6 e Control stalls can be avoided by:
ADD RS, _R4' R9 — Scheduling instructions in delay slots
ski pnext:)
OR R7,R8,R9 — Loop unralling
« Could move SUB before BEQZ if we knew — Conditional execution
— The SUB instruction could not generate an exception — Speculation by both compiler and CPU
— 1f R4 werenot ‘live , i.e, used after the skipnext label » Wewill cover the latter two shortly along with other dynamic
« Thistype of scheduling is called speculation: the compiler is methods for taking advantage of ILP
betting that the branch will not be taken
9 — Hardware can do thistoo... Y, 9 y,

1-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
% UMBC

23

Ry v v
1-Mar-00 § g CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4
‘W UMBC

24

