Instruction level parallelism

« Potential overlap among instructionsis called ILP
[Implies alack of dependence between instructions.
— All of the techniques in this chapter exploit parallelism among
INstruction sequences
e |LPtechniquesinclude
— Static techniques (done by compiler)
— Basic dynamic scheduling (done by hardware)
— Additiona “hidden” registers (done by hardware)
— Branch prediction
— Superscalar execution

L
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

How much can ILP help?

Goal: execute as many instructions as possible in as little
time as possible
— Keep functional units busy with useful work
» Execute instructions out of order
» Use other techniques to do as much as possible at one time
— Allow more functional units to be useful

Limitsto ILP

— Processor: ILP limited by number and type of functional units

— Program: interdependence of instructions can limit the instructions
that can be done in parallel

1-Mar-00

S
S

i,
:g MBC 9%\% . .
1 m l | M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

ILP and CPI

e How isCPI calculated?
CPIl = idea CPI + structural stalls + RAW stalls +
WAW dgtalls + WAR stalls + control stalls

* Previous chapter: reduce RAW & control stalls

e Thischapter: reduce all components of the CPI eguation
— Additional reductionsin RAW & control stalls

— Reduce ideal CPI
— Use more hardware to reduce or eliminate structural stalls

L
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

Techniques for reducing CPI vialLP

Loop unrolling (reduces control stalls)

Basic pipeline scheduling (reduces RAW stalls)

Scoreboarding (reduces RAW stdls)

Register renaming (reduces both WAR and WAW stallg)
Dynamic branch prediction (reduces control stalls)

|ssuing multiple instructions per cycle (reducesideal CPI)
Compiler dependence analysis (reduces ideal CPl and data stalls)

Software pipelining and trace scheduling (reduces ideal CPI and
data stalls)

Speculation (execute “possible’ instructions, reducing data &
control stalls)

Dynamic memory disambiguation (reduce RAW memory galls)

1-Mar-00

Y

!

:5 MBC Q%é . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

Where does |LP come from?

e |LP comesfrom basic blocks

— Block of code with no branches into the code except at the start and
no branches out of the code except at the end

e Codeinside the average basic block is quite small
— Average dynamic branch frequency in integer programs = 15%
— About 6 to 7 instructions are executed between a pair of branches
» Average = usual case?
 Instructions in basic block depend on one another because they
tend to operate on the samedata in sequence

[Exploit ILP across multiple basic blocks!

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

L oop-level parallelism

» Exploit parallelism among iterations of aloop
— lterations of aloop are often independent

— Each iteration can overlap with any other iteration even though individual
iterations have few (if any) overlappable instructions

e Techniques exist for exploiting the ILP in loops
— Done statically by the compiler (loop unrolling)
— Done dynamically by the CPU
— Vector processors can run very quickly on ssmple loop operations

for (j = 0; j < 2000; j++) {
dp[j] = x[j] * y[i]l + z[j];

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

Pipeline scheduling

o Compiler tries to separate a dependent instruction from the source
Instruction so there’ s no data stalls

— Compiler must have intimate knowledge of the internal hardware workings

— Code optimized for one version of a processor may not be optimized on a
future version of the processor...

* Assume the following latencies:

Instruction producing result

Instruction using result

Latency (clock cycles)

FP ALU operation

Another FP ALU op

3

FP ALU operation Store double 2
Load double FPALU op 1
Load double Store double O (using forwarding)

g,
1-Mar-00 i w % UMB C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

Pipeline scheduling example: before

Compile the following code:
for (j = 0; j<2000; j++)
x[J] = x[j] + c;
— Assume R1 holds the
address of x[1999]

— Assume F2 has the scalar
vauec

Unscheduled code has many
stalls!
— 5 cycles of useful work
— 5cyclesof stals!
— Total = 10 cycles per
iteration

Loop:

LD FO, O(R1)
ADDD F4, FO, F2
SD O(R1), F4
SUBI R1, R1, #8
BNEZ R1, Loop

Loop:
LD
STALL
ADDD F4, FO, F2
STALL
STALL
SD
SuBl
STALL
BNEZ R1, Loop
STALL

FO, O(R1)

O(R1), F4
R1, R1, #8

FO=array el em
add scal ar
store result
poi nt er - -
repeat | oop

FO=array el em
add scal ar
store result
poi nt er - -

repeat | oop

1-Mar-00

Y

!

-
:5 MBC f?%é . .
] m : U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 4

Pipeline scheduling: after

Reschedul e code to reduce stalls Loop:

— Move SUBI earlier
— Move SD later (and fix address)

Still one stall

— SD gtalls 1 cycle waiting for

ADDD result

Reduced total time from 10-> 6
— Still only 3 cycles of work!
— 2instructions & 1 stall overhead
Goal: get more “useful”
operations per loop overhead

Replicate the loop body multiple
times and adjust loop control

LD FO, O(R1)
ADDD F4, FO, F2
SO O0O(R1),F4
SUBI R1, R1, #8
BNEZ R1, Loop

Loop:

LD FO, O(R1)
SUBI R1, R, #8
ADDD F4, FO, F2

BNEZ R1, Loop

FO=array el em
add scal ar
store result
poi nt er - -
repeat | oop

[STALL]SD 8(R1), F4

1-Mar-00

Y

et

,Npsﬁ%
:5 MBC f?%é . .
] m ; U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

L oop unrolling

* Loop unrolling => create multiple copies of the loop body
— Improves scheduling by
 Eliminating branches (control hazards cost time!)
 Allowing instructions from multiple iterations to be interleaved,
exposing more parallelism
— Allows CPU to amortize loop overhead across several |oop iterations
o Comparison at end of loop
 Pointer / index increments
« Loop unrolling increases register usage
— Better utilization of a scarce resource
— More chance for cycles between uses of aregister to be filled

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

10

L oop unrolling: example
e Unroll & schedule code from
previous example FO, O(R1)
- . F6, - 8(R1)
UnroI_I 4 times | F10, - 16(RL)
— Use displacement addressing F14, - 24(R1)
mode to increment index once F4, FO, F2
per “macro” loop F8, F6, F2
— F12, F10, F2
— Assume R1 MOD 32 == F16. F14. F2
» Code has no stalls! O(RL), F4
— 14 clock cyclesfor 4 elements -8(R1), F8
=> 3.5 clock cycles/ element RL, RL, #32
16(R1), F12
— Using different registers => 8(R1), F16
avoid false dependencies
— Reordering code eliminates
stalls!

1-Mar-00

Y

!

:5 MBC f?%é . .
] m : U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

11

Loop unrolling: details

 What if loop index in example isn’'t amultiple of 327?

— Real code: don’'t always know upper bound on loop

— Real code: don’'t know how many times the loop will be executed!
e Solution: assume loop unrolled k times and iterated n times

— First code body contains original code, and executesn MOD k times
— Second code contains unrolled body and executes LiVk[imes

— Savestime if the number of iterations was large
— Another solution: jJump into the middle of the code (if possible)

e Loop unrolling is easy to recognize
— Not trivial for a compiler to perform these optimizations!
— Compilers can, however, do scheduling very well

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

12

Dependencies. the basics

* Dependency => instruction B uses aresult of instruction A
— Dependencies are a property of programs, not of CPUs and pipelines.
— Dependence between two instructions will always exist unless the
program is changed
* Presence of adependence indicates the potential for a hazard
— Actua hazard and the length of any stall is a property of the pipeline
— Goal isto eliminate stalls, not dependencies!

e Threetypes of dependencies
— Data

— Name
— Control

L
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

(
Data dependence
* Instruction] isdependent oni if i | oop:
produces aresult used by | LD FQ, O(R1)
* Dependenceistransitive \

—] Isdependent uponi and kis ADDD F4, FO, F2
dependent upon j, =>Kkis \
dependent on |

. SD O(R1),F4
* Dependence chains can be
arbitrarily long!
* A compiler scheduling SUBlRL, RL, #8
Instructions cannot move| before l
| If] depends upon | BNEZ R1, | oop
\

1-Mar-00

Y

!

:5 MBC Q%é . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

14

Overcoming data dependencies

Data dependencies
— Indicate the possibility of a hazard
— Determine the order in which results must be generate
— Place an upper bound on the amount of ILP available

Data dependencies can be overcome in two ways
— Keeping the dependence but avoiding a hazard
— Eliminating the dependence by transforming the code

Scheduling is the primary way to avoid hazar ds without
altering dependencies
— See previous example with LD, ADDD and SD

— Code scheduled to avoid the hazard, but the dependence remained in
the code

1-Mar-00

SR,
:5 UMBC Q%é . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

15

Eliminating data dependencies
e It'spossible to eliminate data Loop:
- LD FO,0(Rl) ; FO=array elem
depenQe_nues_ _ ADDD F4, FO,F2 ; add scal ar
— E||m|nate InStrUCtlonS! SD 0(Rl) , F4 : store result
— Loop unrolling: eliminate SUBI R1,R1,#8 ; pointer--
branches and index updates
_ LD F6,0(Rl) ; FO=array el em
« Compiler removes dependence appp F8, F6, F2 : add scal ar
by eliminating instructions SO O(R1),F8 : store result
— BNEZ instructions dropped SUBl R1,R1,#8 | pointer--
— Eliminate SUBI instructions& | p f10. O(Rl) : FO=array el em
fold computation into offset ADDD F12, F10, F2; add scal ar
SD O(R1l),F12 ; store result
SUBI R1,R1,#8 ; pointer--
BNEZ R1, Loop ; repeat |oop

1-Mar-00

Y

!

,‘I,Dsﬁ%
:5 MBC f?%é . .
| m : U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

16

More on data dependencies

 Eliminating data dependencies requires afair amount of
analysis => done by the compiler

e Avoiding hazards through scheduling can be donein
hardware or software or both

* What about data dependence through a memory |location?

— Registers are easy to figure out at compile time

— Memory dependences may not be known until runtime => much more
difficult to deal with!

— Example: 100(R4) and 20(R6) may refer to the same memory location
* Not known until runtime, though!

— Explore hardware and software techniques that detect data
dependencies that involve memory locations (later...)

L
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4 17

_

Name dependencies
e Two instructions use the same register or Loop:
memory location, but there's an LD FO, 0(R1)
intervening write to it ADDD F4, FO, P2 5
SD O(Rl),F4 <
— These are NOT data dependences because SUBl Rl. Rl #8
no information is passed between the two D FO o in) |
Instructions ADDD F4. FO, F2
— The instructions could be executed out of SD O(R1), F4
order or in parallel if the CPU renamed the SUBI R1, Rl, #8
register or memory location involved
* Register renaming can either be done by Unrolled loop before
— Compiler, asin earlier loop unrolling register renaming
— CPU (dynamic register renaming)
 Inexample
— Second LD replaces value in FO
— Second ADDD replacesvaluein F4

1-Mar-00

Y

!

,‘I,Dsﬁ%
:5 MBC f?%é . .
] m : U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 4

18

Control dependencies

A control dependency determines the ordering of the
Instructions with respect to branch instructions

— If an instruction depends on the outcome of an earlier branch then it is
only executed on one of the two forks

— Thisinstruction is dependent on the preceding branch
Example:
I f (condl)

S1;

el se
S2:

Obviously, we cannot:

— Move Sl or S2 before theif statement
— Move other instructions before the if stmt into “then” or “else”

1-Mar-00

Y

!

i,
:g MBC 9%\% . .
1 m l | M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

19

Control dependencies
e Inloop unrolling before Loop:
removing branches: LD RO, O(R1)
ADDD F4, FO, F2
— gontrﬁ: hazards after each SO O(RL).F4
ranch: SUBI RI1, R1, #8
* Eliminated branches because we BNEZ R1, Loop
knew the outcome of each branch LD F6,0(R1)
. L ADDD F8, F6, F2
— lterations divisible by 4 SD O(R1), F8
— All “internal” branches taken (to SuBl R1, R1, #8
top of loop) BNEZ R1, Loop
— Eliminated control
dependencies!

1-Mar-00

Y

!

&é MBC 9%\% . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000

Chapter 4

20

Preserving program correctness

* Preserving control dependenceis NOT acritical property
— Program can be rewritten to violate control dependence!
— Program correctness is the critical property that must be preserved

» Violating control dependence may be OK if program
correctness is preserved!

e Two properties critical to program correctness are
— Preserving exception behavior: any changes in the ordering of
Instructions must NOT change how exceptions are raised
« Aninstruction that should not have been executed can’'t cause an
exception
* Memory operations and floating point often cause problems like
this
— Preserving data flow

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

21

Preserving data flow
* Branches make the flow of information between instructions
dynamic
— Different values for particular registers depend on whether or not
branches are taken
— Thisinformation flow must be preserved!
e Dataflow can be preserved by
— CPU cancels instructions that were wrongly executed
— Compiler cancels things out (add to cancel out a subtract that
shouldn’t have been executed)

Y

!

Y
1-Mar-00 ; m % U M B C CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

22

-
Dealing with control dependencies
e Sometimes, violating control dependencies can't affect
execution behavior or data flow
ADD RI1, R2, R3
BEQZ R12, ski pnext
SUB R4, R5, R6
ADD R5, R4, R9
ski pnext :
OR R7,R8,R9
e Could move SUB before BEQZ if we knew
— The SUB instruction could not generate an exception
— If R4 werenot ‘live’, i.e., used after the skipnext |abel
e Thistype of scheduling is called speculation: the compiler is
betting that the branch will not be taken
\ — Hardware can do thistoo...

1-Mar-00

Y

!

:5 MBC Q%é . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

23

Control dependencies. summary

Control dependence is preserved by implementing control
hazard detection

Control hazard detection causes control stalls

Control stalls can be avoided by:
— Scheduling instructions in delay slots
— Loop unrolling
— Conditional execution
— Speculation by both compiler and CPU

We will cover the latter two shortly along with other dynamic
methods for taking advantage of ILP

1-Mar-00

SR,
& s %“g . .
] m U M B(: CMSC 611 (Advanced Computer Architecture), Spring 2000 Chapter 4

24

