
24-Feb-00 1UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch behavior

• Observations using SPEC subset on DLX:
– Dynamic frequencies (used here) count number of executions

– Static frequencies count number of occurrences in program

– Conditional branches are much more common:

• Conditional outnumber unconditional about 3-4 to 1.
– 14% to 16% is normal for integer benchmarks

– FP benchmarks are much more varied at 3%-12%

• Forward branches more common: outnumber backwards
branches by 3 to 1

• Frequency of taken branches
– 67% of conditional branches are taken on average.

– 60% of the forward and 85% of the backward branches.

24-Feb-00 2UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Reducing branch penalties

• Move the address calculation and decision of whether to take
the branch back into ID
– If the comparison is to zero, we know the address and the decision at

the end of ID.

– If comparing one register to another, we wait until after EX to decide
if the branch is taken

• Method 1: freeze pipeline until decision known
– Always flush the pipeline of instructions up until the branch

destination and condition are known

– Branch penalty is fixed and cannot be reduced by software &
compiler

24-Feb-00 3UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Static branch prediction

• Treat every branch as not taken (predict-not-taken)
– Continue to fetch instructions.

– Flush the pipeline if the branch is taken.

– Note that successor instructions may NOT change the state of the
machine

⇒ This results in a 1 cycle stall for DLX since the decision (for zero
compares) is known after ID

• Treat every branch as taken (predict-taken)
– Wait until the target address is computed and then fetch instructions

using the new PC value.

– Flush the pipeline if the branch is NOT taken.

– For DLX, this doesn’t do much good since BOTH the branch target
address and the decision (for zero compares) is known after ID

24-Feb-00 4UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Delayed branches

• An execution cycle with a branch delay of length n is:
Branch instruction

Sequential successor1
…

Sequential successorn
Branch target

• Instructions(s) in the branch delay slot(s) after the branch are
always executed
– The compiler should try to put a “useful” instruction here.

– If none are available, then a “no-op” is inserted in the delay slot.

• Improves performance by letting the CPU do useful work
while waiting for branch target and condition resolution

Branch delay slots

24-Feb-00 5UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Delayed branch scheduling

ADD R1,R2,R3
BEQZ R2,label
 delay slot

loop:
SUB R4,R5,R6
ADD R1,R2,R3
BEQZ R1,loop
 delay slot

ADD R1,R2,R3
BEQZ R1,label
 delay slot
label:
SUB R4,R5,R6

BEQZ R2, label
 ADD R1,R2,R3

SUB R4,R5,R6
loop:
ADD R1,R2,R3
BEQZ R2,loop
 SUB R4,R5,R6

ADD R1,R2,R3
BEQZ R1,label
 SUB R4,R5,R6
label:

From before From target From fall-through

24-Feb-00 6UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Delayed branch limitations

• Restrictions on the instructions that are scheduled into the
delay slots (i.e. data dependencies.)
– Compiler’s ability to predict accurately whether or not a branch is

taken determines how much useful work is actually done.

• Many machines have introduced a cancelling or nullifying
branch instruction.
– Includes the direction that the branch is predicted to go.

– If branch is predicted incorrectly, CPU turns the instruction in the
branch delay slot into a no-op.

• Compilers can usually fill a single branch delay slot &
improve performance

• More delay slots => more difficult to fill with useful work

24-Feb-00 7UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Delayed branch performance

pipeline speedup
pipeline depth

pipeline stalls from branches

=
+1Pipeline performance:

This assumes no delays from other hazards...

Calculate pipeline stalls due to branches by:

Total pipeline speedup is thus:

stall cycles from branches branch frequency branch penalty = ×

pipeline speedup
pipeline depth

branch frequency branch penalty

=
+ ×1

24-Feb-00 8UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch performance example

• Assume: branches have a single delay slot
– Filled with a useful instruction 65% of the time

• Assume: branch condition not known for two cycles beyond
the delay slot
– If predicted properly, there is no penalty

– If mispredicted, the two intervening instructions must be cancelled

• Forward branches (75%) are always predicted not taken

• Backward branches (25%) are always predicted taken

• Branches are 20% of all instructions.
– 50% of forward branches taken

– 85% of backward branches are taken

• What is the new CPI (assuming the original CPI is 1)?

24-Feb-00 9UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Branch performance example: solution

• For 35% of the branch instruction, the delay slot isn’t filled
– This adds 0.35 cycles of branch stalls

• 50% of forward branches suffer a 2 cycle penalty.
– 75% of branches are forward => 0.50 * 0.75 * 2 = 0.75 cycles

• 15% of backward branches suffer a 2 cycle penalty
– Penalty is 0.15 * 0.25 * 2 = 0.075 cycles

• Total branch penalty is 0.35 + 0.75 + 0.075 = 1.175 cycles.

• Since branches make up 20% of all instructions, the penalty
to the CPI is 1.175 * 0.2 = 0.235 cycles.

• The new CPI is thus 1 + 0.235 = 1.235

24-Feb-00 10UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

More compiler optimizations for branches
• Having accurate information about branch

behavior at compile time is also helpful for
scheduling data hazards

• Suppose we knew that the branch was almost
always taken and value in R7 was not needed
in the fall through part
– Compiler could move ADD R7, R8, R9 after

the load instruction

• Suppose we knew that the branch was rarely
taken and value in R4 was not needed on the
taken path
– Compiler could move OR R4, R5, R6 after

the load instruction.

• These optimizations are in addition to any
branch delay scheduling.

 LW R1,0(R2)

 SUB R1,R1,R3

 BEQZ R1,L

 OR R4,R5,R6

 ADD R10,R4,R3

L: ADD R7,R8,R9

24-Feb-00 11UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Compilers & static branch prediction

• Predict all branches taken
– Surprisingly effective since 85% of backward branches and 60% of

forward branches are taken

– Still leaves more than a third of the branches improperly predicted

– For some programs, this method is excellent (< 10% mispredictions),
but for others, it does badly (> 50%)

• Predict forward not taken and backward taken
– This scheme is similar to predicting all branches as taken except that

it uses information about the types of branches.

– Forward branches are usually part of if-else constructs, and may be
less likely to be taken

– Backward branches are often part of loops and more likely to be taken

– Won’t perform much better than simply predicting not-taken

24-Feb-00 12UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Using profiling to predict branches

• Use profile information from previous runs
– The compiler can instrument the code using the profile information

from previous runs of the program.

– It can build a higher performance program by predicting that branches
taken in the practice run(s) will be taken in the final version.

• Not perfect since many branches are both taken and not taken
in the course of execution.
– Provides better prediction than other static methods.

– Misprediction rates for this method range from 5% to 20%, even if
different input data is used for the program

24-Feb-00 13UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Wrapping up static branch techniques

• Studies have shown that profile-based prediction is almost
always better than predict-taken or other non-profile-based
methods
– Since profile-based prediction is so good, why not use it?

– Limits to static prediction

• Branches behave differently at different times

• Behavior can be very input-dependent

• Dynamic branch prediction provides a better solution
– Predict branch behavior while program is running

– Visit this topic in a week or two

24-Feb-00 14UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline difficulties

• Why is pipelining difficult?
– Now that we’ve seen how pipelining can be done and how to detect

and resolve hazards, the question arises: what’s so hard about this?

– Exceptions

– Instruction set complications

• Exceptions
– An instruction in the pipeline can raise an exception that may force

other instructions in the pipeline to be aborted

– These other instructions may have altered the state of the machine.

– Exceptions introduce the possibility that an exception in a later
instruction (i.e. in ID or EX) will prevent a previous instruction (i.e.
in MEM or WB) from completing

24-Feb-00 15UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Exception causes

• I/O device requests

• User OS service requests

• Breakpoints

• Integer arithmetic overflow/underflow

• FP arithmetic anomaly

• Page fault

• Misaligned memory accesses

• Memory protection violations

• Hardware malfunctions

• Undefined instructions

24-Feb-00 16UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Classifying exceptions

• Synchronous vs. asynchronous
– Synchronous: exception comes as a result of execution at the same

place for every run of a program with the same data and memory
allocation

– Asynchronous: generated external to the CPU

– Asynchronous events can usually be handled after the completion of
the current instruction, making them easier to handle.

• User requested vs. coerced
– Did the user request an exception, i.e. through a trap?

– Or did it happen as a result of something beyond the user program’s
control, i.e. a hardware event?

– Coerced exceptions are harder to implement since they are not
predictable

24-Feb-00 17UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Classifying exceptions

• User maskable vs. non-maskable
– Can the user prevent the hardware from responding?

– Note that for maskable interrupts, the user can choose to respond to
them, and therefore they are similar to non-maskable interrupts

– Maskable interrupts must still be handled properly!

• Within vs. between instructions
– Does the exception prevent instruction completion, by occurring in

the middle of execution?

– Or is it recognized between instructions?

– Exceptions occurring within instructions are usually synchronous,
since the instruction triggers the exception

– Within is more difficult to implement than between since the former
must be restarted

24-Feb-00 18UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Classifying exceptions

• Resume vs. terminate
– Terminate: the exception stops the program from running

– Resumable: the program must be restartable after the interrupt

– Restarting is harder (obviously), and is the more common case

– The most difficult case is handling interrupts within an instruction,
where the instruction must be resumed

• Save the state of the executing program

• Fix the cause of the exception

• Restore the state of the original program, and restart it as if
nothing had happened

• Exceptions of this type occur for virtual memory management
systems

⇒ Restartable instructions

24-Feb-00 19UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Saving pipeline state

• For exceptions that occur within instructions (i.e. in EX or
MEM) and must be restarted (page fault), the pipeline state
must be saved
– Insert a trap instruction into the pipeline on the next IF.

– Turn off all writes for the faulting instruction and the instructions
following it in the pipeline

– Allow previous instructions to complete

– Save the PC of the faulting instruction so it can be restarted (usually
done by OS)

• This method requires as many PCs as there are delay slots
– Instructions currently in the pipeline may not be sequentially related!

– Save at least one PC value: the location of the faulting instruction

24-Feb-00 20UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Precise vs. imprecise exceptions

• Precise exceptions mean:
– All instructions before the faulting instruction complete

– Instructions following the faulting instruction, including the faulting
instruction, do not change the state of the machine.

• Restarting is easy with precise exceptions!
– Simply re-execute the original faulting instruction

– If it’s not a resumable instruction, i.e. an integer overflow, start with
the next instruction

• Precise exceptions can be difficult because of instruction
completions and exceptions that occur out of order
– Solution: imprecise exceptions.

– Often used for floating point pipelines more so than integer pipelines

• Integer -> precise, FP -> imprecise (usually)

24-Feb-00 21UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

When do exceptions occur?
• IF

– Page fault for instruction

– Unaligned memory access

– Memory protection fault

• ID
– Undefined / illegal opcode

• EX
– Arithmetic exception

• MEM
– Page fault for data

– Unaligned memory access

– Memory protection fault

• WB: no faults

24-Feb-00 22UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Exception ordering
• Two consecutive instructions cause exceptions in the same cycle

– Which should be handled?

– Handle the one belonging to the earlier instruction

• Cancel the later instruction (the ADD)

• Handle the page fault in the earlier (LW) instruction

IF ID EX MEM WB

IF ID EX MEM WB

LW

ADD

1 2 3 4 5 6Cycle ->

LW R4, 8(R5) ; causes page fault for data
ADD R9, R10, R11 ; causes overflow

24-Feb-00 23UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Exception ordering
• Page fault in ADD occurs first
• Must finish LW before handling the page fault in ADD if we want precise

exceptions!

• Solution: keep an exception vector
– Posted exceptions added to the vector, disabling writes for that instruction

– Vector checked at end of each instruction...

IF ID EX MEM WB

IF ID EX MEM WB

LW

ADD

1 2 3 4 5 6Cycle ->

LW R4, 8(R5) ; causes page fault for data
ADD R9, R10, R11 ; causes page fault for instr

24-Feb-00 24UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Exception vectors

• When the instruction is about to exit the pipeline
(MEM/WB), any pending exceptions for the instruction are
examined
– If an instruction generates multiple exceptions, the exception

occurring in the earliest stage takes precedence.

– For the DLX, the faulting instruction has not updated any state (since
all updates occur in WB)

• Many CPUs support both precise & imprecise exceptions
– Precise exceptions are slower (often)

– Imprecise exceptions are faster but don’t note where the exception
occurred (OK if the process will be killed anyway…)

24-Feb-00 25UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Instruction set complications

• An instruction is committed when it is guaranteed to
complete
– In DLX, all instructions are committed at the end of MEM

– Since no updates occur before instructions commit, precise interrupts
are straightforward.

• In most RISC systems, each instruction writes only one result
– Instruction can be cancelled any time before the instruction is

committed, with no harm to the system state

– Not true for many CISC machines, i.e. VAX: system state may be
modified well before the instruction or its predecessors are committed

• Example: instruction using autoincrement mode is aborted
because of an exception, altering the machine state

• It’s difficult to restart the instruction or keep precise exception

24-Feb-00 26UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Exceptions in CISC architectures

• The situation is worse for instructions that access and write
memory in multiple places
– These instructions can generate multiple faults.

– Therefore, it becomes difficult to know where to resume

– For string instructions, the CPU must also know how far into the
operation it was when the exception occurred

• Usually solved by using general purpose registers as scratch
space (that are saved and restored)

• General solution used by more complex instruction set
machines is to pipeline the microcode.

⇒ RISC has often been compared to having the microcode
as the actual assembly language

24-Feb-00 27UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Multi-cycle pipeline operations

• Many operations can’t finish in one or two cycles
– FP operations

– Vector operations

• It might be possible to allow it, but would require
– Slow clock

– Lots of logic (more than we want to dedicate…)

• Use FP operations as an example (vectors later…)

• Implement several FP units (adder, multiplier, divider, etc.)
– Allow a longer latency (several clocks)

– May pipeline them to avoid structural hazards

– One possible way to implement an FP pipeline is to allow the EX
stage to repeat as many times as necessary

24-Feb-00 28UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Non-pipeline FP in DLX
• FP multiplier, adder

• FP/integer divide unit

• FP units take multiple cycles
– Non-pipelined

– Structural hazards may occur if
successive instructions use the
same functional unit

• Structural hazards can cause
stalls!

IF

ID

FP
Mult

MEM

WB

FP
Add

Divide ALU

24-Feb-00 29UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipelining the FP functional units

• Define the latency and the initiation interval for FP units
– Latency => number of cycles needed beyond the first

• Integer ALU has its result ready at the end of its first cycle

• Integer ALU requires 0 additional EX stages

– Initiation interval => number of cycles that must elapse between
instruction issue to the same unit

• Pipelined units have
– Various latencies

– Initiation interval of 1

• May issue a new operation every cycle

• May have multiple outstanding operations!

24-Feb-00 30UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Sample pipeline unit parameters

• Integer ALU: 0 cycle latency - result can be used on next clock cycle

• Data memory: 1 cycle latency, pipelined - result can be used after one
intervening cycle

• FP add: 3 cycle latency, pipelined

• FP/integer multiplier: 6 cycle latency, pipelined

• FP/integer divide and FP square root: 24 cycle latency, non-pipelined

Functional unit Latency Initiation interval # of pipe stages

Integer ALU 0 1 1

Data memory 1 1 1

FP add 3 1 4

FP/int multiply 6 1 7

FP/int divide 24 25 1

24-Feb-00 31UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline including FP units

IF ID
M1 M2 M3 M4 M5 M6

A1 A2 A3 A4

MEM WB
M7

EX
Multiple EX stages
require more pipeline
registers

Non-pipelined

24-Feb-00 32UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipeline characteristics

• Structural hazards can occur for the divide unit

• Several instructions can reach WB in a single cycle because
of variable length instructions
– More than 1 register write could occur in one cycle

⇒ Structural hazard if the CPU can only write one register per cycle

• Instructions no longer necessarily complete in the order in
which they were issued (out-of-order completion)
– WAW hazards are now possible and must be detected.

– More problems with exceptions: the exception handling mechanism
relied on the fact that instructions completed in issue order

• Since instructions have longer latencies, stalls for RAW
operations will be more frequent

24-Feb-00 33UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

RAW hazards in the FP pipeline
• MULTD stalls due to load latency.

• ADDD stalls until multiply produces F0 value, which is forwarded.

• SD stalls in MEM waiting on result from ADDD

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
LD F4,0(R2) IF ID EX MM WB
MULTD F0,F4,F6 IF ID - M1 M2 M3 M4 M5 M6 M7 MM WB
ADDD F2,F0,F8 IF - ID - - - - - - A1 A2 A3 A4 MM WB
SD 0(R2),F2 IF - - - - - - ID EX - - - MM

24-Feb-00 34UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Contention for the register write port
• Assume the FP register file has only one write port

• In this example, three instructions write to it in one cycle: hazard!

• Possible solutions
– Increase the number of write ports: may not be worth it if the situation

doesn’t happen very often

– Serialize the writes (stall instructions conflicting for resource)

 1 2 3 4 5 6 7 8 9 10 11
MULTD F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MM WB
ADD R1,R2,#1 IF ID EX MM WB
SUB R4,R4,#4 IF ID EX MM WB
ADDD F2,F0,F8 IF ID A1 A2 A3 A4 MM WB
OR R8,R8,#8 IF ID EX MM WB
OR R9,R9,#1 IF ID EX MM WB
LD F8,0(R7) IF ID EX MM WB

24-Feb-00 35UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Serializing writes to the FP registers

• Solving the write port structural hazard through serialization
can be done in two ways

• Stall the instruction when it tries to enter the MEM or WB
stage.
+ Easy to detect the conflict at this point

– Complicates pipeline control since stalls can now occur in two places

• Keep track of when each instruction will use the WB stage
and stall instructions in ID if their “slot” is already in use
• Can be done using a shift register that tracks when already-issued

instructions will use the register file

+ Instructions are stalled only in ID

– Requires additional hardware (shift register and write conflict logic)

24-Feb-00 36UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

WAW hazards
• Consider situation below: WAW hazard since LD writes F0 one cycle

earlier then MULTD
– ONLY a hazard when MULTD is overwritten without any instruction ever

using it -- it appears to be a useless instruction

– If there was a use between MULTD and LD, then a RAW hazard would stall
the pipeline and the WAW would not occur

• However, we must still detect them since they do occur in reasonable
code (as we will see).

 1 2 3 4 5 6 7 8 9 10 11
MULTD F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MM WB
ADD R1,R2,#1 IF ID EX MM WB
SUB R4,R4,#4 IF ID EX MM WB
OR R8,R8,#8 IF ID EX MM WB
LD F0,0(R7) IF ID EX MM WB

24-Feb-00 37UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Dealing with WAW hazards

• The WAW hazard can be handled in one of two ways
– Stall an instruction that would “pass” another until after the earlier

instruction reaches the MEM phase

– Cancel the WB phase of the earlier instruction

• Either can be done in ID, i.e. when LD is about to issue

• Pure WAW hazards are not common => use either method
– Pick the one that simplest to implement.

⇒ Simplest solution for the DLX pipeline is to hold the
instruction in ID if it writes the same register as an instruction
already issued

24-Feb-00 38UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Hazard checking during ID

• Possible sources of hazards
– Hazards among FP instructions (already handled)

– Hazards between an FP instruction and an integer instruction

• Separate FP & integer register files => only FP loads and
stores and FP register moves to integer registers involve
hazards

• Assume all hazards are detected during ID

• Three checks are required in ID (before instruction issue)
– Check for structural hazards

• Divide unit

• Register write port

24-Feb-00 39UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Hazard checking during ID

• Check for RAW hazards: CPU stalls the instruction at ID
stage until
– Its source registers are no longer listed as destinations in any of the

execution pipeline registers (registers between stages of M and A) OR

– Its source registers are no longer listed as the destination of a load in
the EX/MEM register

• Check for WAW hazards
– Check instructions in A1, ..., A4, Divide, or M1, ...,M7 for the same

destination register (check pipeline registers)

– Stall instruction in ID if necessary

• Instructions after the current one might have been able to
execute, but they’ll all have to wait (until the next chapter...)

24-Feb-00 40UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

FP pipelining & exception handling

• Exceptions are difficult because instructions may now finish
out of order
 DIVF F0, F2, F4
ADDF F10, F10, F8
SUBF F12, F12, F14

• ADDF and SUBF are expected to complete before DIVF

• Suppose SUBF causes an arithmetic exception at a point
where ADDF has completed but DIVF has not
– Imprecise exception!

– Fix here is to let pipeline drain

• Suppose DIVF has an exception after ADDF completes
– ADDF destroys one of its operands => can not restore the state to

what it was before the DIVF instruction, even with software!

24-Feb-00 41UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Handling exceptions

• Ignore the problem (imprecise exceptions)!
– This may be fast and easy, but it’s difficult to debug programs without

precise exceptions

– Many modern CPUs,, provide a precise mode that allows only a
single outstanding FP instruction at any time (DEC Alpha 21064,
IBM Power-1, MIPS R8000)

– Precise mode is much slower than the imprecise mode!

• Buffer the results and delay commitment: CPU doesn’t
actually make any state (register or memory) changes until
the instruction is guaranteed to finish
– Becomes difficult when the difference in running time among

operations is large.

– Lots of intermediate results have to be buffered (and forwarded…)

24-Feb-00 42UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Handling exceptions: save values

• History file: saves the original values of the registers that
have been changed recently
– If an exception occurs, the original values can be retrieved

– File must have enough entries for one register modification per cycle
for the longest possible instruction

– Similar to the solution used for the VAX for autoincrement and
autodecrement addressing

• Future file
– This method stores the newer values for registers

– When all earlier instructions have completed, the main register file is
updated from the future file

– On an exception, the main register file has the precise values for the
interrupted state

24-Feb-00 43UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Handling exceptions: save pipeline state
• Keep enough information for the trap handler to create a precise sequence

for the exception
– Instructions in the pipeline and the corresponding PCs must be saved.

– After the exception, the software finishes any instructions in the pipeline that
precede the latest instruction completed

• State must be saved by hardware with software assist

• Technique used in the SPARC

Instruction0 ; causes exception
Instruction1 ; not completed
Instruction2 ; not completed
…
Instructionn ; not completed
Instructionn+1 ; not yet started

Pipeline state saved

24-Feb-00 44UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Handling exceptions: delay issue

• Allow instruction to issue only if it is known that all previous
instructions will complete without causing an exception
– Floating point function units must determine if an exception is

possible early in the EX stage

• Necessary to keep the pipeline flowing smoothly (avoid stalls)

• Pipeline may need to be stalled in order to maintain precise
interrupts

– Solution may cause unnecessary stalls by delaying a sequence of
instructions...

• R4000 and Pentium use this solution

24-Feb-00 45UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

ISA and pipelining

• Avoid variable instruction lengths and running times
whenever possible
– Variable length instructions complicate hazard detection and precise

exception handling

• Sometimes it is worth it because of performance advantages such
as caching, but this can cause instruction timings to vary

• Added complexity may be handled by freezing the pipeline

• Avoid sophisticated addressing modes
– Addressing modes that update registers (post-autoincrement)

• Complicate exceptions and hazard detection

• Make it harder to restart instructions

– Allowing addressing modes with multiple memory accesses also
complicates pipelining

24-Feb-00 46UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

ISA and pipelining

• Don’t allow self-modifying code
– Instruction being modified may already be in the pipeline => address

being written must constantly be checked

– Conflict => pipeline must be flushed or the instruction updated!

– Even if it’s not in the pipeline, it could be in the instruction cache..

• Avoid implicitly setting condition codes in instructions
– Harder to avoid control hazards => impossible to determine if

condition codes are set on purpose or as a side effect

– Implementations that set the CC almost unconditionally make
instruction reordering difficult => hard to find instructions that can be
scheduled between the condition evaluation and the branch.

24-Feb-00 47UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Sample pipeline: MIPS R4000
• IF: first half of instruction fetch

– PC selection occurs

– Cache access is initiated

• IS: second half of instruction
fetch.
– Allows cache access to take two

cycles

• RF: decode and register fetch
– Hazard checking

– I-cache hit detection

• EX: execution
– Address calculation

– ALU Ops

– Branch target calculation

– Condition evaluation.

• DF/DS/TC: data memory
– Data fetched from cache in the

first two cycles

– The third cycle involves
determine if it was a cache hit

• WB: write back
– Write result for loads and R-R

operations

24-Feb-00 48UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Stalls & delays in the MIPS R4000

• Load delay: two cycles
– Delay might seem to be three cycles, since the tag isn’t checked until

the end of the TC cycle

– However, if TC indicates a miss, the data must be fetched from main
memory and the pipeline is backed up to get the real value

• Branch delay: three cycles (including one branch delay slot)
– Branch is resolved during EX, giving a 3 cycle delay

– First cycle may be

• Regular branch delay slot (instruction always executed)

• Branch-likely slot (instruction cancelled if branch not taken)

– MIPS uses a predict-not-taken method presumably because it requires
the least hardware

24-Feb-00 49UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Effects of longer pipeline in MIPS R4000

• Disadvantages of a longer pipeline
– Longer (and possibly more frequent) stalls

– Additional forwarding hardware

– More complex hazard detection to find dependencies in the additional
stages

• Benefits of longer pipeline
– Each stage may be shorter

• Clock cycle can be shorter

⇒ More instructions can be issued in a fixed time

• Do added stalls might eat up this benefit?

⇒ Hopefully, at least some speedup will be left

24-Feb-00 50UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Performance issues in MIPS R4000

• Ideal CPI for the pipelined CPU is 1
– Biggest contributor to stalls is branch stalls

– Load stalls contribute very little (compiler can usually reorganize
code to avoid stalling on loads)

– Load latency is two cycles => job is harder than it might be on
processors with a single-cycle latency

24-Feb-00 51UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

Pipelining improves performance!

• Pipelining is one of the main tools designers use to improve
performance!
– Allows the CPU to issue one instruction per cycle even when

finishing an instruction takes many cycles

– Allows faster and faster cycle times by spreading work over many
cycles

• Pipelining has been the major factor allowing consumer-level
microprocessors to run at 500 MHz or higher

• Next few weeks: more ways to squeeze performance out of
the CPU, such as
– Dynamic optimizations

– Multiple instructions per cycle

