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Branch behavior

• Observations using SPEC subset on DLX:
– Dynamic frequencies (used here) count number of executions

– Static frequencies count number of occurrences in program

– Conditional branches are much more common:

• Conditional outnumber unconditional about 3-4 to 1.
– 14% to 16% is normal for integer benchmarks

– FP benchmarks are much more varied at 3%-12%

• Forward branches more common: outnumber backwards
branches by 3 to 1

• Frequency of taken branches
– 67% of conditional branches are taken on average.

– 60% of the forward and 85% of the backward branches.
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Reducing branch penalties

• Move the address calculation and decision of whether to take
the branch back into ID
– If the comparison is to zero, we know the address and the decision at

the end of ID.

– If comparing one register to another, we wait until after EX to decide
if the branch is taken

• Method 1: freeze pipeline until decision known
– Always flush the pipeline of instructions up until the branch

destination and condition are known

– Branch penalty is fixed and cannot be reduced by software &
compiler
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Static branch prediction

• Treat every branch as not taken (predict-not-taken)
– Continue to fetch instructions.

– Flush the pipeline if the branch is taken.

– Note that successor instructions may NOT change the state of the
machine

⇒ This results in a 1 cycle stall for DLX since the decision (for zero
compares) is known after ID

• Treat every branch as taken (predict-taken)
– Wait until the target address is computed and then fetch instructions

using the new PC value.

– Flush the pipeline if the branch is NOT taken.

– For DLX, this doesn’t do much good since BOTH the branch target
address and the decision (for zero compares) is known after ID
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Delayed branches

• An execution cycle with a branch delay of length n is:
Branch instruction

Sequential successor1
…

Sequential successorn
Branch target

• Instructions(s) in the branch delay slot(s) after the branch are
always executed
– The compiler should try to put a “useful” instruction here.

– If none are available, then a “no-op” is inserted in the delay slot.

• Improves performance by letting the CPU do useful work
while waiting for branch target and condition resolution

Branch delay slots
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Delayed branch scheduling

ADD R1,R2,R3
BEQZ R2,label
  delay slot

loop:
SUB R4,R5,R6
ADD R1,R2,R3
BEQZ R1,loop
  delay slot

ADD R1,R2,R3
BEQZ R1,label
  delay slot
label:
SUB R4,R5,R6

BEQZ R2, label
  ADD R1,R2,R3

SUB R4,R5,R6
loop:
ADD R1,R2,R3
BEQZ R2,loop
  SUB R4,R5,R6

ADD R1,R2,R3
BEQZ R1,label
  SUB R4,R5,R6
label:

From before From target From fall-through
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Delayed branch limitations

• Restrictions on the instructions that are scheduled into the
delay slots ( i.e. data dependencies.)
– Compiler’s ability to predict accurately whether or not a branch is

taken determines how much useful work is actually done.

• Many machines have introduced a cancelling or nullifying
branch instruction.
– Includes the direction that the branch is predicted to go.

– If branch is predicted incorrectly, CPU turns the instruction in the
branch delay slot into a no-op.

• Compilers can usually fill a single branch delay slot &
improve performance

• More delay slots => more difficult to fill with useful work
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Delayed branch performance

pipeline speedup
pipeline depth

pipeline stalls from branches
 

 
   

=
+1Pipeline performance:

This assumes no delays from other hazards...

Calculate pipeline stalls due to branches by:

Total pipeline speedup is thus:

stall cycles from branches branch frequency branch penalty     = ×

pipeline speedup
pipeline depth

branch frequency branch penalty
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Branch performance example

• Assume: branches have a single delay slot
– Filled with a useful instruction 65% of the time

• Assume: branch condition not known for two cycles beyond
the delay slot
– If predicted properly, there is no penalty

– If mispredicted, the two intervening instructions must be cancelled

• Forward branches (75%) are always predicted not taken

• Backward branches (25%) are always predicted taken

• Branches are 20% of all instructions.
– 50% of forward branches taken

– 85% of backward branches are taken

• What is the new CPI (assuming the original CPI is 1)?
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Branch performance example: solution

• For 35% of the branch instruction, the delay slot isn’t filled
– This adds 0.35 cycles of branch stalls

• 50% of forward branches suffer a 2 cycle penalty.
– 75% of branches are forward => 0.50 * 0.75 * 2 = 0.75 cycles

• 15% of backward branches suffer a 2 cycle penalty
– Penalty is 0.15 * 0.25 * 2 = 0.075 cycles

• Total branch penalty is 0.35 + 0.75 + 0.075 = 1.175 cycles.

• Since branches make up 20% of all instructions, the penalty
to the CPI is 1.175 * 0.2 = 0.235 cycles.

• The new CPI is thus 1 + 0.235 = 1.235
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More compiler optimizations for branches
• Having accurate information about branch

behavior at compile time is also helpful for
scheduling data hazards

• Suppose we knew that the branch was almost
always taken and value in R7 was not needed
in the fall through part
– Compiler could move ADD R7, R8, R9 after

the load instruction

• Suppose we knew that the branch was rarely
taken and value in R4 was not needed on the
taken path
– Compiler could move OR R4, R5, R6 after

the load instruction.

• These optimizations are in addition to any
branch delay scheduling.

   LW R1,0(R2)

   SUB R1,R1,R3

   BEQZ R1,L

   OR R4,R5,R6

   ADD R10,R4,R3

L: ADD R7,R8,R9
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Compilers & static branch prediction

• Predict all branches taken
– Surprisingly effective since 85% of backward branches and 60% of

forward branches are taken

– Still leaves more than a third of the branches improperly predicted

– For some programs, this method is excellent (< 10% mispredictions),
but for others, it does badly (> 50%)

• Predict forward not taken and backward taken
– This scheme is similar to predicting all branches as taken except that

it uses information about the types of branches.

– Forward branches are usually part of if-else constructs, and may be
less likely to be taken

– Backward branches are often part of loops and more likely to be taken

– Won’t perform much better than simply predicting not-taken
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Using profiling to predict branches

• Use profile information from previous runs
– The compiler can instrument the code using the profile information

from previous runs of the program.

– It can build a higher performance program by predicting that branches
taken in the practice run(s) will be taken in the final version.

• Not perfect since many branches are both taken and not taken
in the course of execution.
– Provides better prediction than other static methods.

– Misprediction rates for this method range from 5% to 20%, even if
different input data is used for the program
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Wrapping up static branch techniques

• Studies have shown that profile-based prediction is almost
always better than predict-taken or other non-profile-based
methods
– Since profile-based prediction is so good, why not use it?

– Limits to static prediction

• Branches behave differently at different times

• Behavior can be very input-dependent

• Dynamic branch prediction provides a better solution
– Predict branch behavior while program is running

– Visit this topic in a week or two
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Pipeline difficulties

• Why is pipelining difficult?
– Now that we’ve seen how pipelining can be done and how to detect

and resolve hazards, the question arises: what’s so hard about this?

– Exceptions

– Instruction set complications

• Exceptions
– An instruction in the pipeline can raise an exception that may force

other instructions in the pipeline to be aborted

– These other instructions may have altered the state of the machine.

– Exceptions introduce the possibility that an exception in a later
instruction  (i.e. in ID or EX) will prevent a previous instruction  (i.e.
in MEM or WB) from completing
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Exception causes

• I/O device requests

• User OS service requests

• Breakpoints

• Integer arithmetic overflow/underflow

• FP arithmetic anomaly

• Page fault

• Misaligned memory accesses

• Memory protection violations

• Hardware malfunctions

• Undefined instructions
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Classifying exceptions

• Synchronous vs. asynchronous
– Synchronous: exception comes as a result of execution at the same

place for every run of a program with the same data and memory
allocation

– Asynchronous: generated external to the CPU

– Asynchronous events can usually be handled after the completion of
the current instruction, making them easier to handle.

•  User requested vs. coerced
– Did the user request an exception, i.e. through a trap?

– Or did it happen as a result of something beyond the user program’s
control, i.e. a hardware event?

– Coerced exceptions are harder to implement since they are not
predictable
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Classifying exceptions

• User maskable vs. non-maskable
– Can the user prevent the hardware from responding?

– Note that for maskable interrupts, the user can choose to respond to
them, and therefore they are similar to non-maskable interrupts

– Maskable interrupts must still be handled properly!

• Within vs. between instructions
– Does the exception prevent instruction completion, by occurring in

the middle of execution?

– Or is it recognized between instructions?

– Exceptions occurring within instructions are usually synchronous,
since the instruction triggers the exception

– Within is more difficult to implement than between since the former
must be restarted
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Classifying exceptions

• Resume vs. terminate
– Terminate: the exception stops the program from running

– Resumable: the program must be restartable after the interrupt

– Restarting is harder (obviously), and is the more common case

– The most difficult case is handling interrupts within an instruction,
where the instruction must be resumed

• Save the state of the executing program

• Fix the cause of the exception

• Restore the state of the original program, and restart it as if
nothing had happened

• Exceptions of this type occur for virtual memory management
systems

⇒ Restartable instructions
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Saving pipeline state

• For exceptions that occur within instructions (i.e. in EX or
MEM) and must be restarted (page fault), the pipeline state
must be saved
– Insert a trap instruction into the pipeline on the next IF.

– Turn off all writes for the faulting instruction and the instructions
following it in the pipeline

– Allow previous instructions to complete

– Save the PC of the faulting instruction so it can be restarted (usually
done by OS)

• This method requires as many PCs as there are delay slots
– Instructions currently in the pipeline may not be sequentially related!

– Save at least one PC value: the location of the faulting instruction
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Precise vs. imprecise exceptions

• Precise exceptions mean:
– All instructions before the faulting instruction complete

– Instructions following the faulting instruction, including the faulting
instruction, do not change the state of the machine.

• Restarting is easy with precise exceptions!
– Simply re-execute the original faulting instruction

– If it’s not a resumable instruction, i.e. an integer overflow, start with
the next instruction

• Precise exceptions can be difficult because of instruction
completions and exceptions that occur out of order
– Solution: imprecise exceptions.

– Often used for floating point pipelines more so than integer pipelines

• Integer -> precise, FP -> imprecise (usually)
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When do exceptions occur?
• IF

– Page fault for instruction

– Unaligned memory access

– Memory protection fault

• ID
– Undefined / illegal opcode

• EX
– Arithmetic exception

• MEM
– Page fault for data

– Unaligned memory access

– Memory protection fault

• WB: no faults
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Exception ordering
• Two consecutive instructions cause exceptions in the same cycle

– Which should be handled?

– Handle the one belonging to the earlier instruction

• Cancel the later instruction (the ADD)

• Handle the page fault in the earlier (LW) instruction

IF ID EX MEM WB

IF ID EX MEM WB

LW

ADD

1 2 3 4 5 6Cycle ->

LW  R4, 8(R5)      ; causes page fault for data
ADD R9, R10, R11   ; causes overflow
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Exception ordering
• Page fault in ADD occurs first
• Must finish LW before handling the page fault in ADD if we want precise

exceptions!

• Solution: keep an exception vector
– Posted exceptions added to the vector, disabling writes for that instruction

– Vector checked at end of each instruction...

IF ID EX MEM WB

IF ID EX MEM WB

LW

ADD

1 2 3 4 5 6Cycle ->

LW  R4, 8(R5)      ; causes page fault for data
ADD R9, R10, R11   ; causes page fault for instr
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Exception vectors

• When the instruction is about to exit the pipeline
(MEM/WB), any pending exceptions for the instruction are
examined
– If an instruction generates multiple exceptions, the exception

occurring in the earliest stage takes precedence.

– For the DLX, the faulting instruction has not updated any state (since
all updates occur in WB)

• Many CPUs support both precise & imprecise exceptions
– Precise exceptions are slower (often)

– Imprecise exceptions are faster but don’t note where the exception
occurred (OK if the process will be killed anyway…)
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Instruction set complications

• An instruction is committed when it is guaranteed to
complete
– In DLX, all instructions are committed at the end of MEM

– Since no updates occur before instructions commit, precise interrupts
are straightforward.

• In most RISC systems, each instruction writes only one result
– Instruction can be cancelled any time before the instruction is

committed, with no harm to the system state

– Not true for many CISC machines, i.e. VAX: system state may be
modified well before the instruction or its predecessors are committed

• Example: instruction using autoincrement mode is aborted
because of an exception, altering the machine state

• It’s difficult to restart the instruction or keep precise exception
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Exceptions in CISC architectures

• The situation is worse for instructions that access and write
memory in multiple places
– These instructions can generate multiple faults.

– Therefore, it becomes difficult to know where to resume

– For string instructions, the CPU must also know how far into the
operation it was when the exception occurred

• Usually solved by using general purpose registers as scratch
space (that are saved and restored)

• General solution used by more complex instruction set
machines is to pipeline the microcode.

⇒ RISC has often been compared to having the microcode
as the actual assembly language
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Multi-cycle pipeline operations

• Many operations can’t finish in one or two cycles
– FP operations

– Vector operations

• It might be possible to allow it, but would require
– Slow clock

– Lots of logic (more than we want to dedicate…)

• Use FP operations as an example (vectors later…)

• Implement several FP units (adder, multiplier, divider, etc.)
– Allow a longer latency (several clocks)

– May pipeline them to avoid structural hazards

– One possible way to implement an FP pipeline is to allow the EX
stage to repeat as many times as necessary
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Non-pipeline FP in DLX
• FP multiplier, adder

• FP/integer divide unit

• FP units take multiple cycles
– Non-pipelined

– Structural hazards may occur if
successive instructions use the
same functional unit

• Structural hazards can cause
stalls!

IF

ID

FP
Mult

MEM

WB

FP
Add

Divide ALU
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Pipelining the FP functional units

• Define the latency and the initiation interval for FP units
– Latency => number of cycles needed beyond the first

• Integer ALU has its result ready at the end of its first cycle

• Integer ALU requires 0 additional EX stages

– Initiation interval => number of cycles that must elapse between
instruction issue to the same unit

• Pipelined units have
– Various latencies

– Initiation interval of 1

• May issue a new operation every cycle

• May have multiple outstanding operations!
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Sample pipeline unit parameters

• Integer ALU: 0 cycle latency - result can be used on next clock cycle

• Data memory: 1 cycle latency, pipelined - result can be used after one
intervening cycle

• FP add: 3 cycle latency, pipelined

• FP/integer multiplier: 6 cycle latency, pipelined

• FP/integer divide and FP square root: 24 cycle latency, non-pipelined

Functional unit Latency Initiation interval # of pipe stages

Integer ALU 0 1 1

Data memory 1 1 1

FP add 3 1 4

FP/int multiply 6 1 7

FP/int divide 24 25 1
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Pipeline including FP units

IF ID
M1 M2 M3 M4 M5 M6

A1 A2 A3 A4

MEM WB
M7

EX
Multiple EX stages
require more pipeline
registers

Non-pipelined
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Pipeline characteristics

• Structural hazards can occur for the divide unit

• Several instructions can reach WB in a single cycle because
of variable length instructions
– More than 1 register write could occur in one cycle

⇒ Structural hazard if the CPU can only write one register per cycle

• Instructions no longer necessarily complete in the order in
which they were issued (out-of-order completion)
– WAW hazards are now possible and must be detected.

– More problems with exceptions: the exception handling mechanism
relied on the fact that instructions completed in issue order

• Since instructions have longer latencies, stalls for RAW
operations will be more frequent
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RAW hazards in the FP pipeline
• MULTD stalls due to load latency.

• ADDD stalls until multiply produces F0 value, which is forwarded.

• SD stalls in MEM waiting on result from ADDD

                1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17
LD    F4,0(R2)  IF ID EX MM WB
MULTD F0,F4,F6     IF ID -  M1 M2 M3 M4 M5 M6 M7 MM WB
ADDD  F2,F0,F8        IF -  ID -  -  -  -  -  -  A1 A2 A3 A4 MM WB
SD    0(R2),F2              IF -  -  -  -  -  -  ID EX -  -  -  MM
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Contention for the register write port
• Assume the FP register file has only one write port

• In this example, three instructions write to it in one cycle: hazard!

• Possible solutions
– Increase the number of write ports: may not be worth it if the situation

doesn’t happen very often

– Serialize the writes (stall instructions conflicting for resource)

                1  2  3  4  5  6  7  8  9  10 11
MULTD F0,F4,F6  IF ID M1 M2 M3 M4 M5 M6 M7 MM WB
ADD   R1,R2,#1     IF ID EX MM WB
SUB   R4,R4,#4        IF ID EX MM WB
ADDD  F2,F0,F8           IF ID A1 A2 A3 A4 MM WB
OR    R8,R8,#8              IF ID EX MM WB
OR    R9,R9,#1                 IF ID EX MM WB
LD    F8,0(R7)                    IF ID EX MM WB
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Serializing writes to the FP registers

• Solving the write port structural hazard through serialization
can be done in two ways

• Stall the instruction when it tries to enter the MEM or WB
stage.
+ Easy to detect the conflict at this point

– Complicates pipeline control since stalls can now occur in two places

• Keep track of when each instruction will use the WB stage
and stall instructions in ID if their “slot” is already in use
• Can be done using a shift register that tracks when already-issued

instructions will use the register file

+ Instructions are stalled only in ID

– Requires additional hardware (shift register and write conflict logic)
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WAW hazards
• Consider situation below: WAW hazard since LD writes F0 one cycle

earlier then MULTD
– ONLY a hazard when MULTD is overwritten without any instruction ever

using it -- it appears to be a useless instruction

– If there was a use between MULTD and LD, then a RAW hazard would stall
the pipeline and the WAW would not occur

• However, we must still detect them since they do occur in reasonable
code (as we will see).

                1  2  3  4  5  6  7  8  9  10 11
MULTD F0,F4,F6  IF ID M1 M2 M3 M4 M5 M6 M7 MM WB
ADD   R1,R2,#1     IF ID EX MM WB
SUB   R4,R4,#4        IF ID EX MM WB
OR    R8,R8,#8           IF ID EX MM WB
LD    F0,0(R7)              IF ID EX MM WB
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Dealing with WAW hazards

• The WAW hazard can be handled in one of two ways
– Stall an instruction that would “pass” another until after the earlier

instruction reaches the MEM phase

– Cancel the WB phase of the earlier instruction

• Either can be done in ID, i.e. when LD is about to issue

• Pure WAW hazards are not common => use either method
– Pick the one that simplest to implement.

⇒ Simplest solution for the DLX pipeline is to hold the
instruction in ID if it writes the same register as an instruction
already issued
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Hazard checking during ID

• Possible sources of hazards
– Hazards among FP instructions (already handled)

– Hazards between an FP instruction and an integer instruction

• Separate FP & integer register files => only FP loads and
stores and FP register moves to integer registers involve
hazards

• Assume all hazards are detected during ID

• Three checks are required in ID (before instruction issue)
– Check for structural hazards

• Divide unit

• Register write port
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Hazard checking during ID

• Check for RAW hazards: CPU stalls the instruction at ID
stage until
– Its source registers are no longer listed as destinations in any of the

execution pipeline registers (registers between stages of M and A) OR

– Its source registers are no longer listed as the destination of a load in
the EX/MEM register

• Check for WAW hazards
– Check instructions in A1, ..., A4, Divide, or M1, ...,M7 for the same

destination register (check pipeline registers)

– Stall instruction in ID if necessary

• Instructions after the current one might have been able to
execute, but they’ll all have to wait (until the next chapter...)

24-Feb-00 40UMBC Chapter 3CMSC 611 (Advanced Computer Architecture), Spring 2000

FP pipelining & exception handling

• Exceptions are difficult because instructions may now finish
out of order
  DIVF F0, F2, F4
ADDF F10, F10, F8
SUBF F12, F12, F14

• ADDF and SUBF are expected to complete before DIVF

• Suppose SUBF causes an arithmetic exception at a point
where ADDF has completed but DIVF has not
– Imprecise exception!

– Fix here is to let pipeline drain

• Suppose DIVF has an exception after ADDF completes
– ADDF destroys one of its operands => can not restore the state to

what it was before the DIVF instruction, even with software!
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Handling exceptions

• Ignore the problem (imprecise exceptions)!
– This may be fast and easy, but it’s difficult to debug programs without

precise exceptions

– Many modern CPUs,, provide a precise mode that allows only a
single outstanding FP instruction at any time (DEC Alpha 21064,
IBM Power-1, MIPS R8000)

– Precise mode is much slower than the imprecise mode!

• Buffer the results and delay commitment: CPU doesn’t
actually make any state (register or memory) changes until
the instruction is guaranteed to finish
– Becomes difficult when the difference in running time among

operations is large.

– Lots of intermediate results have to be buffered (and forwarded…)
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Handling exceptions: save values

• History file: saves the original values of the registers that
have been changed recently
– If an exception occurs, the original values can be retrieved

– File must have enough entries for one register modification per cycle
for the longest possible instruction

– Similar to the solution used for the VAX for autoincrement and
autodecrement addressing

• Future file
– This method stores the newer values for registers

– When all earlier instructions have completed, the main register file is
updated from the future file

– On an exception, the main register file has the precise values for the
interrupted state
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Handling exceptions: save pipeline state
• Keep enough information for the trap handler to create a precise sequence

for the exception
– Instructions in the pipeline and the corresponding PCs must be saved.

– After the exception, the software finishes any instructions in the pipeline that
precede the latest instruction completed

• State must be saved by hardware with software assist

• Technique used in the SPARC

Instruction0    ; causes exception
Instruction1    ; not completed
Instruction2    ; not completed
…
Instructionn    ; not completed
Instructionn+1   ; not yet started

Pipeline state saved
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Handling exceptions: delay issue

• Allow instruction to issue only if it is known that all previous
instructions will complete without causing an exception
– Floating point function units must determine if an exception is

possible early in the EX stage

• Necessary to keep the pipeline flowing smoothly (avoid stalls)

• Pipeline may need to be stalled in order to maintain precise
interrupts

– Solution may cause unnecessary stalls by delaying a sequence of
instructions...

• R4000 and Pentium use this solution
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ISA and pipelining

• Avoid variable instruction lengths and running times
whenever possible
– Variable length instructions complicate hazard detection and precise

exception handling

• Sometimes it is worth it because of performance advantages such
as caching, but this can cause instruction timings to vary

• Added complexity may be handled by freezing the pipeline

• Avoid sophisticated addressing modes
– Addressing modes that update registers (post-autoincrement)

• Complicate exceptions and hazard detection

• Make it harder to restart instructions

– Allowing addressing modes with multiple memory accesses also
complicates pipelining
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ISA and pipelining

• Don’t allow self-modifying code
– Instruction being modified may already be in the pipeline => address

being written must constantly be checked

– Conflict => pipeline must be flushed or the instruction updated!

– Even if it’s not in the pipeline, it could be in the instruction cache..

• Avoid implicitly setting condition codes in instructions
– Harder to avoid control hazards => impossible to determine if

condition codes are set on purpose or as a side effect

– Implementations that set the CC almost unconditionally make
instruction reordering difficult => hard to find instructions that can be
scheduled between the condition evaluation and the branch.
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Sample pipeline: MIPS R4000
• IF: first half of instruction fetch

– PC selection occurs

– Cache access is initiated

• IS: second half of instruction
fetch.
– Allows cache access to take two

cycles

•  RF: decode and register fetch
– Hazard checking

– I-cache hit detection

• EX: execution
– Address calculation

– ALU Ops

– Branch target calculation

– Condition evaluation.

• DF/DS/TC: data memory
– Data fetched from cache in the

first two cycles

– The third cycle involves
determine if it was a cache hit

• WB: write back
– Write result for loads and R-R

operations
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Stalls & delays in the MIPS R4000

• Load delay: two cycles
– Delay might seem to be three cycles, since the tag isn’t checked until

the end of the TC cycle

– However, if TC indicates a miss, the data must be fetched from main
memory and the pipeline is backed up to get the real value

• Branch delay: three cycles (including one branch delay slot)
– Branch is resolved during EX, giving a 3 cycle delay

– First cycle may be

• Regular branch delay slot (instruction always executed)

• Branch-likely slot (instruction cancelled if branch not taken)

– MIPS uses a predict-not-taken method presumably because it requires
the least hardware
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Effects of longer pipeline in MIPS R4000

• Disadvantages of a longer pipeline
– Longer (and possibly more frequent) stalls

– Additional forwarding hardware

– More complex hazard detection to find dependencies in the additional
stages

• Benefits of longer pipeline
– Each stage may be shorter

• Clock cycle can be shorter

⇒ More instructions can be issued in a fixed time

• Do added stalls might eat up this benefit?

⇒ Hopefully, at least some speedup will be left
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Performance issues in MIPS R4000

• Ideal CPI for the pipelined CPU is 1
– Biggest contributor to stalls is branch stalls

– Load stalls contribute very little (compiler can usually reorganize
code to avoid stalling on loads)

– Load latency is two cycles => job is harder than it might be on
processors with a single-cycle latency
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Pipelining improves performance!

• Pipelining is one of the main tools designers use to improve
performance!
– Allows the CPU to issue one instruction per cycle even when

finishing an instruction takes many cycles

– Allows faster and faster cycle times by spreading work over many
cycles

• Pipelining has been the major factor allowing consumer-level
microprocessors to run at 500 MHz or higher

• Next few weeks: more ways to squeeze performance out of
the CPU, such as
– Dynamic optimizations

– Multiple instructions per cycle


