
7-Feb-00 1UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Instruction set architectures
• ISA metrics

• Basic ISA taxonomy

• Differentiating ISAs
– Memory access

• Big vs. little endian

• Alignment

• Addressing modes

– Kinds of instructions

• Making life easier for compiler writers

• Example ISA: DLX

7-Feb-00 2UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

ISA metrics
• Instruction density: how much space per task?

• Instruction count: how many instructions per task?

• Instruction complexity
– How much decoding is necessary?

– How many “simple” operations per instruction?

• Instruction length
– Constant vs. variable-length

– Average instruction length

⇒ Keep these metrics in mind when discussing individual ISAs

7-Feb-00 3UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

ISA taxonomy
• Accumulator

– One operand is in the accumulator, the other in memory

– Instructions move data between accumulator and memory

• Stack-based
– All operands on the top of the stack

– Instructions move data between top of stack and rest of memory

• These are less common ISAs for CPUs
– Java Virtual Machine is stack-based

• More common today: General Purpose Register (GPR) ISAs

7-Feb-00 4UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

GPR ISAs
• Memory-memory (example: VAX)

– May have as many as 3 operands in memory

– Usually have relatively few registers (used to save memory
references)

• Register-memory (example: 680x0)
– One operand in a register, the other may be in memory

– Usually has only two operands (register is both source & dest)

– Generalization of accumulator ISA

• Load-store (example: PowerPC, MIPS, DLX)
– Data moved explicitly between registers and memory

– ALU operates on registers (usually 2 source & 1 destination)

7-Feb-00 5UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

More on GPR ISAs
• GPR ISAs are the most popular design today

– Registers are much faster than memory (2 ns vs. 70ns)

– Compilers can optimize register use for:

• Holding intermediate values in calculations & addresses

• Caching variable values

• Passing parameters

• GPRs can be classified by
– The number of ALU operands (2 or 3)

– The number of operands in memory (0-3)

7-Feb-00 6UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Accessing memory
• Endianness

– Big-endian: most significant byte stored in first byte of word

– Little-endian: least significant byte stored in first byte of word

– No intrinsic advantage to either approach

– Networks usually use big-endian for transmitting words

• Alignment: must n-byte objects be aligned to addresses
evenly divisible by n?
– Advantage: more flexible for programs

– Disadvantage: more complicated hardware

– May be relaxed slightly, ie, 8-byte objects 4-byte aligned

7-Feb-00 7UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Addressing modes
• Instructions specify operands using addressing modes

• Register: value is in a register (ADD R4, R5, R6)

• Immediate: value contained in the instruction (ADD R4, #4)

• Memory
– Indirect / Displacement: address in a register (LW R1, 8(R4))

– Indexed: add two registers to get address (LW R1, 8(R1+R4))

– Modifiers include

• Auto-increment/decrement: used for stacks (LW R1, (R2)+)

• Scaling: address scaled by size of data

• Multiple levels of indirection

– Absolute/Direct: address contained directly in instruction

7-Feb-00 8UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

More addressing modes
• PC-relative addressing

– Use current value of PC as the base rather than a register

– Often used for branches and static variables

• Other addressing modes
– Register update on PowerPC: put the effective address into the base

register (implements auto-increment/decrement flexibly)

– Implicit: top of stack or accumulator used “by default”

– Memory deferred: multiple levels of indirection on a memory access

7-Feb-00 9UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Implications of addressing modes
• More addressing modes can

– Lower instruction count & increase code density

– Increase implementation complexity

– Increase CPI (maybe)

– Reduce execution time (maybe)

• Fewer addressing modes can
– Increase instruction count

– Allow smaller, simpler (and easier to decode) ISA

– Decrease CPI (maybe)

– Reduce execution time (maybe)

7-Feb-00 10UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Minimum set of addressing modes
• Register

– Must have a way of accessing registers!

– Not necessary for stack-based architectures

• Indirect
– Need a way of accessing memory

– May require that all addresses first be loaded into a register...

– Displacement isn’t much harder (often used)

• 75% of displacements are <12 bits

• 99% of displacements are <16 bits

7-Feb-00 11UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Minimum set of addressing modes
• Immediate

– Must be a way of getting constant values into the CPU

– Could use constants in memory, but how would they get there?

– How big must immediate values be?

• Most values are less than 8 bits (50%+)

• Addresses require large immediate values: combine two
16-bit values to make a 32-bit address

• Usually use 8-16 bit immediates

• Other addressing modes could be useful, but are they worth
the complexity?

7-Feb-00 12UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Instruction set operations
• Required operations

– Arithmetic/logical: ALU operations

– Loads/stores: moving data between registers & memory

– Control: branches, jumps, subroutines, traps

• Optional (but very useful!)
– Operating system support: traps (OS calls), VM support (TLB) &

cache support

– Floating point

• Other operations (may be useful for some situations)
– Graphics / vector operations (becoming more common)

– Binary-coded decimal & string (becoming less common)

⇒ Make the common case (ALU, load/store, control) fast!

7-Feb-00 13UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Control flow instructions
• Types of control flow instructions

– Conditional branches (>80% of all control flow instructions)

– Jumps (also unconditional branches)

– Procedure calls & returns

• Addressing for control flow
– PC-relative: allows position-independent (relocatable) code

• Commonly used for branches & jumps

– Indirect: address in register; used for

• Procedure return in some architectures

• Jump tables (switch/case statements) & virtual functions

• Dynamic linking

– Absolute: address in instruction; used for ROM calls

7-Feb-00 14UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Conditional branches
• Displacement length

– Most conditional branches go fewer than 10 instructions away

– Fields of 8 bits (signed) should be enough for most situations!

• Branch condition
– Compare register to 0/1: test condition and put result in register

– Compare register to other values (register, immediate)

– Condition codes

• Comparison sets flags in the CPU

• Can be slower and involves more state to keep track of

• Branch destinations
– Non-loop branches usually forward (75% of branches, hard to predict)

– Looping branches tend to be backward (usually taken)

7-Feb-00 15UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Subroutines
• Transfer control and save some state

– At a minimum, save return address

– Save register state: in CALL instruction or done by compiler?

• Caller save: calling routine saves registers it’ll use after routine

• Callee save: called routine saves registers it’ll modify

• Return from subroutine
– Restore original state

– Jump to instruction after subroutine call

• Complex subroutine call / return can be very slow
– Provide simple instructions & let compiler combine instructions to

save the necessary state

– Leaf subroutines may not even need to access memory to save state!

7-Feb-00 16UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Fixed & variable length instructions
• Variable length instructions (common in CISC)

– Compose instructions of “pieces”: operation type, operand specifiers

– Pack more instructions into a fixed space (better code density)

– Decoding is more difficult: must decode instruction to figure out
where the next one starts

– Instruction fetch must be able to handle unaligned accesses

• Fixed length instructions (common in RISC)
– Operation & addressing modes fixed into opcode

– Supports relatively few addressing modes: common in load/store

– Decoding is much less complex

– Prefetch many instructions ahead without decoding intervening instrs

– Code is less dense: requires more memory for given functionality

7-Feb-00 17UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Goal of ISA design: compilers
• 99%+ of computer code produced by compilers

– Make an instruction set easy for a compiler to use

– Make it possible (but not necessarily easy) for a human to read

• Compiler passes
– Parsing / language front end

– High-level optimization: inlining, loop unrolling

– Global optimization: register allocation, subexpression elimination

– Code generation: output the actual assembly or machine language

• Instruction selection

• Instruction reordering

• Delay slot filling

7-Feb-00 18UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Designing an ISA for compiler use
• Provide a regular instruction set

– Three components of ISA (operations, data types, addressing modes)
should be orthogonal: all operations work on all data types &
addressing modes

– General purpose registers (vs. special purpose)

• Provide primitives, not full solutions
– Complex instructions may not match language (C vs. Pascal strings)

– Allow the compiler to build up its own code sequences

• Simplify tradeoffs
– Don’t make the compiler writer choose from 20 options!

• Allow constants to be specified at compile time

⇒ KISS: KEEP IT SIMPLE, STUPID!

7-Feb-00 19UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

DLX: example load/store ISA
• Skim the material on the DLX ISA

• Highlights include
– Simple load/store architecture

• Relatively large register set (32 GPRs)

• Only load/store can access memory; all other instructions operate
on registers

– Addressing modes

• Displacement (16-bit signed offset)

• Immediate (16-bit signed or unsigned values)

• Register

– Fixed length instructions (32 bits)

7-Feb-00 20UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Here be dragons...
• Don’t design an ISA oriented towards a specific HLL

– Attempts to reduce the semantic gap may result in a semantic clash!

– Instruction mismatch is likely, in which special instructions do more
work than is required for the frequent case.

• There is no such thing as a typical program.
– Programs can vary significantly in how they use an instruction set

– Many times it is meaningless to average frequency criteria over
several programs (i.e. the mix of data transfer sizes)

• Avoid the temptation to put in lots of cool instructions
– What’s cool today may be useless tomorrow

– You’ll have to support for a very long time

7-Feb-00 21UMBC Chapter 2CMSC 611 (Advanced Computer Architecture), Spring 2000

Copyright © 2000 Ethan L. Miller

Building the perfect ISA
• There’s no such thing as a flawless ISA

– Every ISA involves tradeoffs!

• Doing one thing well means doing something else less well

• The perfect ISA for one program isn’t perfect for another program

– Predicting technology 10+ years into the future is very difficult!

• Flawed ISAs can be successful (example: Intel x86 ISA)
– Register architecture is messy (no GPRs)

– Segmentation is somewhat messier than pure paging

– Stack-based FPU isn’t as efficient as register-based FPUs

• ISAs eventually die off, but it takes a while
– Intel x86 ISA still going strong

– Motorola 680x0 ISA runs PalmPilots, printers, and more!

