
3-Feb-00 14UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Trends in cost
• Learning curve : products drop in cost over time

– Minor improvements in design & manufacturing

– Amortization of startup costs (R&D, etc.)

• Volume decreases per-unit cost
– Fixed costs amortized over more units

– May have more competitors to help keep prices down

– Commodities: standardized components available from many
vendors

• Little or no profit margin for commodities

• Often much less expensive than low-volume components

• Relative prices of components can change...

3-Feb-00 15UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Where does the money go?
• Component costs: raw material costs.

• Direct costs: costs incurred to actually make a single item
(usually 20% to 40% of component costs)

• Gross margin: overhead not associated with a single item —
R&D, plant equipment, profit, taxes, etc. (typically 20% to
55% of average selling price)

• Average selling price: direct cost + gross margin.

• List price: ASP + reseller’s margin

3-Feb-00 16UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Design tradeoff examples
• Designing for low cost

– Make choices that minimize cost no matter what

– Design for ease of manufacture as well as low component cost

• Designing for high performance
– Spend more money on R&D

– Worry less about how much it costs to manufacture

• Designing for good cost/performance
– Use more expensive parts if they have “bang for the buck”

– Control costs, but not if they lower performance

• Cray vs. desktop workstation vs. Palm III

3-Feb-00 17UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Chip costs
• Chip cost =

• Die cost =

• Bigger dies => higher cost (dies/wafer decreases)

• How does die size affect yield?

die cost testing cost packaging cost

final test yield

+ +()

wafer cost
dies/wafer die yield×

3-Feb-00 18UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Die yields

die yield wafer yield
defects per unit area die size

 = × + ×





−

1
α

α

• “Wafer yield” accounts for wafers that are completely bad.

• Model assumes randomly distributed defects

– 1995: 0.6 - 1.2 per cm2

– Learning curve reduces this value over time

• Alpha corresponds to the complexity of the manufacturing process

– Roughly equal to the number of masking levels

– Approximately 3 today

3-Feb-00 19UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

IC cost : the bottom line
• # of good dies/wafer = dies/wafer * die yield.

– Larger chips => fewer dies/wafer

– More complex fab process => lower yield

– Not a linear relationship

• Die cost is proportional to area4 for α = 3.0
– Large area => very expensive dies!

– Reduce feature size rather than increase die size

• Designer controls only the die size
– Decides which features/functions to include

– Doesn’t control feature size!

• Moral: smaller dies save money!

3-Feb-00 20UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Computer performance
• Goal: quantitative comparison of two or more systems

– Figure out which is “faster”

– Definition of “faster” can vary…

• User: response time & execution time

• Sysadmin: throughput & bandwidth

• Measure relative performance using ratios
– ExecTimeA/ExecTimeB = 2 => B is 2x the speed of A

– Performance = 1/ExecTime: this corrects ratios so that
PerformanceA/PerformanceB = 2 => A is 2x the speed of B

• Execution time of real programs is the only consistent &
reliable measure of performance!

3-Feb-00 21UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Performance metrics
• Measure time in several ways

– Wall clock time: total time to complete a task (including all
operations & wait time)

– CPU time: includes only the time spent actually executing, and
excludes wait time & I/O time

• User time vs. system time
– User time = time spent running user code

– System time = time spent by process in the OS

– System performance => elapsed time on an unloaded system

– CPU performance => elapsed user CPU time

• Focus on CPU performance (exclude OS effects…)

3-Feb-00 22UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Measuring performance: benchmarks
• Goal of performance evaluation: determine the speed of a

computer on your specific workload
– Best accomplished by simply running your workload, but…

– Difficult to do without a lot of work on your part!

• Alternative: standard workloads called benchmarks
– Real programs: spice, gcc, matmult, etc.

+ Might match programs you might run

- May not include the specific programs you run

– Kernels: key (usually small) pieces of real programs

+ Isolate individual performance elements

- Exclude potentially time-consuming setup & other code

3-Feb-00 23UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

More on benchmarks
• Other kinds of benchmarks

– Toy benchmarks: small programs that produce known results

+ Easily ported to different architectures

- Very small, and may not exercise full system

– Synthetic benchmarks: artificial programs that try to “exercise”
the system in the same way as an “average” real program

+ Easily ported to different architectures

- Average behavior may not be the same as the behavior of
individual programs

• Benchmark suites include several different benchmarks
– Different kinds of programs test different things

– Workload can be formed from a combination of benchmarks

3-Feb-00 24UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Running benchmarks
• Benchmarks are like other kinds of experiments

– Results must be reproducible

– Conditions need to be controlled as much as possible

• Guidelines for running benchmarks
– Record as much information as possible

• Hardware used: CPU, memory size, cache, disk, etc.

• OS & compiler used (including compiler options, etc.)

• Program version (preferably entire code!)

• Program options

• Program input & output

• Another person should be able to reproduce your results!

3-Feb-00 25UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Comparing performance
• Goal: compare performance of several computer systems

– Single number that shows performance?

– Number should be larger for faster machines (use performance
rather than execution time)

• Problem: this isn’t as straightforward as it might seem
– Benchmark INT takes 5 seconds on A, 10 seconds on B

– Benchmark FP takes 18 seconds on A, 10 seconds on B

– Which machine is faster, A or B?

3-Feb-00 26UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Averaging benchmark results

3-Feb-00 27UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Averaging benchmark results

Arithmetic mean =
=
∑1

1n
Execution timei

i

n

Harmonic mean =

=
∑

n

rateii

n 1

1

Weighted arithmetic mean = ×
=
∑1

1n
weight Execution timei i

i

n

3-Feb-00 28UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Combining benchmark results
• Use arithmetic mean for

execution times

– Use weighting to
emphasize one
benchmark

– Capture relative
frequency with weight

• Use harmonic mean for
rates

– Weighting can apply to
harmonic means

Arithmetic mean =
=
∑1

1n
Execution timei

i

n

Harmonic mean =

=
∑

n

rateii

n 1

1

Weighted arith. mean = ×
=
∑1

1n
weight Execution timei i

i

n

3-Feb-00 29UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Another approach: normalize
• Normalize performance or execution time to that of a

reference machine
– Often use a VAX 11/780, set to 1 MIPS

– Combine results with geometric mean:

• Doesn’t predict execution time
– Allows easy comparison of two machines

– Comparison doesn’t depend on choice of “base” machine

• Ideal solution: measure a real workload on each machine!

Geom mean Performancei
i

n

n =
=

∏
1

3-Feb-00 30UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Quantitative design principles
• Make the common case fast!

– Optimize the most frequently used operations

– Calculate overall performance to see if an optimization is
worthwhile

• Example: arithmetic with overflow
– Overflow is uncommon, so use exceptions to handle it

– Don’t make programs check every arithmetic operation!

• Use Amdahl’s Law to quantify potential improvements in
performance from improving particular operations

3-Feb-00 31UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Amdahl’s Law
• Performance improvement for a particular optimization is

limited by the fraction of time the optimization is in use

• Amdahl’s Law defines this speedup as:
– Speedup = Execution timeorig /Execution timeenhanced

– Speedup = Performanceenhanced/Performanceorig

• Factors affecting execution time:
– Fractionenhanced: fraction of execution time that can be sped up

by the enhancement (0≤ fraction ≤1)

– Speedupenhanced: performance improvement on the enhanced
portion of the code (speedup > 1)

• Speedup = Execution timeorig /Execution timeenhanced

3-Feb-00 32UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Defining Amdahl’s Law

Exec time Exec time Fraction
Fraction

Speedupnew old enhanced
enhanced

enhanced

 = × −() +1

Speedup
Exec time

Exec time Fraction
Fraction

Speedup

overall
old

new
enhanced

enhanced

enhanced

= =
−() +

1

1

Time spent in original program

Time spent in enhanced program

• This formula gives the overall speedup for a single enhancement

3-Feb-00 33UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Amdahl’s Law: Example
• A CPU without floating point hardware spends 40% of its

time doing FP calculations

• Adding FP hardware will speed up FP calculations by 8x

• How much faster will the computer run with FP hardware?

• Answer:
– Fractionenhanced = 0.4

– Speedupenhanced = 8

– Speedupoverall =
1 / ((1 - Fractionenhanced) + (Fractionenhanced / Speedupenhanced))
= 1 / ((1 - 0.4) + (0.4 / 8)) = 1/0.65 = 1.54

– The CPU with FP hardware will run the program 1.54x faster

3-Feb-00 34UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Implications of Amdahl’s Law
• Law of diminishing returns

– Speedup is limited by the fraction of execution time that can be
sped up

– If we only enhance 75% of the code, maximum speedup is 4!

• Parallel processing is hard!
– In most parallel programs, there is some serial portion of the

code that can’t be parallelized

– Suppose fractionserial = 0.02

– Maximum speedup is then 50x!

• In general, maximum speedup = 1/(1-Fractionenhanced)

3-Feb-00 35UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

CPU performance equations
• It can be difficult to directly measure performance

improvements using new techniques
– Must build (or simulate) the system first!

– What about different programs?

• Another method: break execution time into three components
– Instruction count (IC): instructions executed for a task

– Cycles per instruction (CPI): average number of cycles each
instruction requires

– Clock cycle time (CCT): frequency of the CPU’s clock

– Execution time = IC * CPI * CCT

– This method can easily predict performance gains from
reducing any factor in the equation

3-Feb-00 36UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

CPI as a performance metric
• Cycles per instruction (CPI) is an important metric

– Cycle time improvements usually come from advances in VLSI
techniques

– Instruction count reductions require changing the instruction set

– CPI can be reduced for a given instruction set

• Calculate average CPI by:
– CPU clock cycles in a program / instructions executed

– Cycles in a program = execution time * clock frequency

• Lower CPIs are better
– CPIs below 1 are possible (execute > 1 instruction per cycle)

– Reducing average CPI improves performance for a given
instruction set and cycle time

3-Feb-00 37UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Improving CPU performance
• It can be difficult to change one factor in isolation

– Cycle time: hardware (VLSI) & organization

– CPI: organization & instruction set architecture (ISA)

– Instruction count: ISA & compiler technology

• Often, different instructions behave differently:

– CPIi is the average CPI for instruction i

– CPIi isn’t a constant for all instructions i!

– ICi is the number of times instruction i appears in the program

– Measuring individual instruction CPIs and counts isn’t too
hard, and allows performance prediction for new programs

CPU time CPI IC clock cycle timei i
i

n

 = ×





×
=
∑

1

3-Feb-00 38UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

Fallacies & pitfalls
• MIPS (millions of instrs per second) isn’t a good metric!

– MIPS is dependent on the instruction set: difficult to compare
across ISAs

– MIPS varies between programs on the same computer

– MIPS can be lower on computers with special purpose
hardware and good compilers

• Example: floating point hardware vs. emulation

• Example: vector instructions

– MIPS considers only CCT and CPI, but not instruction count

• More important: how much work gets done

• MIPS = “Meaningless Indication of Processor Speed”

3-Feb-00 39UMBC Chapter 1CMSC 611 (Advanced Computer Architecture), Spring 2000

More fallacies & pitfalls
• Beware synthetic benchmarks (ie, Whetstone & Dhrystone)

– Often contain code sequences not in real code

– Compilers can be tuned specifically to optimize for them

– Behave unlike real programs in many ways

– Fit into cache, unlike real programs

• Peak performance ≠ observed performance
– Peak = “guaranteed not to exceed”

– Most programs run nowhere near peak performance

– Pipeline hazards, superscalar issue, branches, and cache issues
all slow down the CPU and prevent peak performance

