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Abstract

This is yet another paper which tells logic programmers what functional program-
mers have known and practiced for a long time: \higher order" programming is the
way to go. How is this paper di�erent from some of the others? First, we point out
that call/N is not the way to go, despite its recent popularity as the primitive to use
for higher order logic programming. Second, we use standard Prolog rather than a
new language. Third, we compare higher order programming with the skeletons and
techniques approach. Fourth, we present solutions to some (slightly) more challenging
programming tasks. The interaction between higher order programming and some of the
unique features of logic programming is illustrated and some important programming
techniques are discussed. Finally, we examine the e�ciency issue.
Keywords: call, apply, functions, skeletons and techniques, programming methodology,
programming pearls



1 Introduction

Functional programmers have shown the outstanding bene�ts of the higher order style of
programming. It is ubiquitous in modern functional programming languages. It enables
greater code reuse, encourages more abstraction and alleviates the tedium of writing many
similar long-winded recursive de�nitions. Over the years many people have also toyed with
this style of programming in Prolog but to say it has not caught on would be a gross un-
derstatement. Higher order programming has been has been advocated more in newer logic
programming languages such as HiLog [CKW93], Lambda Prolog [NM88][GH95], Mercury
[SHC95] and the many combined logic and functional languages (see [Han94]). Some ad-
vocates of these languages are apparently unaware of the techniques available to Prolog
programmers, despite the e�orts of Richard O'Keefe and others.

One aim of this paper is to illustrate higher order programming techniques in Prolog.
We give examples to show the interaction between higher order programming and other fea-
tures of Prolog such as nondeterminism, logic variables, exible modes, meta programming,
De�nite Clause Grammar notation and (in some systems) coroutining. Another aim is to
point out a signi�cant di�erence between two ways in which higher order features are sup-
ported in logic programming languages. The superior method was suggested by David H.D.
Warren over a decade ago. Since then higher order logic programming has gone o� the rails.
The Prolog coding style advocated by O'Keefe and the HiLog and Mercury languages use
a less exible method which does not realise the full bene�ts of higher order programming.
The �nal aim is to compare the higher order style with the \skeletons and techniques" ap-
proach to program development, one of the many approaches based on program patterns,
schemata and cliches.

We assume familiarity with a modern functional programming language such as Haskell,
Miranda1 or Gofer [BW88]. The paper is structured as follows. After briey discuss typical
logic programming and functional programming styles we show how \higher order" predi-
cates can be coded using the call/N primitive. Next we demonstrate that greater exibility
can be achieved using apply/3 and discuss the implementation of both primitives. We then
give some slightly larger examples of higher order programs and compare higher order cod-
ing with skeletons and techniques. Finally we discuss e�ciency issues and some limitations
of staying within the conventional Prolog framework.

2 Logic Programming Style

We use the following insertion sort program to illustrate how simple Prolog programs are
typically constructed.

% insertion sort (simple version)

isort([], []).

isort(A.As, Bs) :-

isort(As, Bs1),

insert(A, Bs1, Bs).

% insert number into sorted list

insert(N, [], [N]).

1Miranda is a trademark of Research Software Limited
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insert(N, H.L, N.H.L) :-

N =< H.

insert(N, H.L0, H.L) :-

N > H,

insert(N, L0, L).

The isort predicate follows a typical pattern for list processing. There is a base case for
[] and a case for A.As with a recursive call containing As and another call containing A.
The structure of insert is similar, except the case dealing with non-empty lists has been
split further into two sub-cases. The two basic techniques used are structural induction and
case analysis.

More experienced Prolog programmers who are concerned about e�ciency may use
another typical pattern for the de�nition of isort: simply calling an auxiliary predicate
which as an extra argument, an \accumulator". This tail-recursive coding typically uses less
space and time than the simple version. Later we discuss the \skeletons and techniques"
approach to developing code, which uses textual patterns in code more formally.

% insertion sort (accumulator version)

isort1(As, Bs) :-

isort_a(As, [], Bs).

% second arg is sorted elements seen so far

isort_a([], Bs, Bs).

isort_a(A.As, Bs, Cs) :-

insert(A, Bs, Bs1),

isort_a(As, Bs1, Cs).

3 Functional Programming Style

A typical programmer using a modern functional language would code insert in a similar
way to the Prolog version, using structural induction and case analysis. The code for isort
may also be written in the same style. However, a good functional programmer should
realise that the resulting code follows a familiar pattern. That pattern is generalised by the
higher order function foldr, which can be used to code isort more simply as follows.

isort As = foldr insert [] As

Languages such as Haskell which use \curried" functions allow an even more concise
and high level de�nition. The idea of currying it that applying a function f to arguments
a1; a2; :::; an is equivalent to applying f to a1, which returns a function, and applying that
function to a2; :::; an. This allows greater exibility in both the de�nition and use of func-
tions and encourages more abstraction. Just considering the semantic relationship between
the functions isort, insert and foldr we easily can arrive at the following de�nition:

isort = foldr insert []

The functional equivalent of the tail recursive isort1 de�nition can obtained by replacing
foldr by foldl and reversing the argument order of insert:
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isort1 = foldl (converse insert) []

Experienced functional programmers use structural induction and case analysis where
needed, but also use higher order functions to simplify the coding where common patterns
of recursion would otherwise be used. In an introductory computer science course using
Miranda at the University of Melbourne most students used map and filter, many used
until, foldl and foldr, many de�ned their own higher order functions and some use
compose (.), converse, scan and iterate.

4 Logic Programming with call/N

In standard Prolog call(A) treats A as a goal and calls it. For example, A = append(Xs,

Ys, [1,2]), call(A) is equivalent to append(Xs, Ys, [1,2]). Richard O'Keefe and
others have advocated the de�nition of call/N for larger N. Call(A, B1; :::; BN) calls A with
additional arguments B1; :::; BN . For example, A = append(Xs), call(A, Ys, [1,2]) is
equivalent to the code above. Several Prolog systems support call/N as library predicates
(up to some maximum N) or built in, and some newer logic programming languages such
as Mercury [SHC95] have used call/N as the basis for their higher order features. Using
call/N is it simple to de�ne Prolog analogues of higher order functions:

% map(f, [e1, e2,..., en], [f e1, f e2,..., f en])

map(_F, [], []).

map(F, A0.As0, A.As) :-

call(F, A0, A),

map(F, As0, As).

% returns elements in list for which pred succeeds

filter(_P, [], []).

filter(P, A0.As0, As) :-

(call(P, A0) ->

As = A0.As1

;

As = As1

),

filter(P, As0, As1).

% foldr(op, b, [e1, e2,..., en], (e1 op (e2 op (...(en op b)...))))

foldr(F, B, [], B).

foldr(F, B, A.As, R) :-

foldr(F, B, As, R1),

call(F, A, R1, R).

% compose(f, g, x, f (g x))

compose(F, G, X, FGX) :-

call(G, X, GX),

call(F, GX, FGX).

% converse(f, x, y, f y x)
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converse(F, X, Y, FYX) :-

call(F, Y, X, FYX).

The following queries illustrate how these predicates can be used to in similar ways to
higher order functions and how some additional features of logic programming interact with
higher order predicates.

1. ?- filter(>(5), [3, 4, 5, 6, 7], As).

2. ?- map(plus(1), [2, 3, 4], As).

3. ?- map(between(1), [2, 3], As).

4. ?- map(plus(1), As, [3, 4, 5]).

5. ?- map(plus(X), [2, 3, 4], [3, 4, 5]).

6. ?- map(plus(X), [2, A, 4], [3, 4, B]).

7. ?- map(plus(X), [A, 3, 4], [3, 4, B]).

8. ?- foldr(append, [], [[2], [3, 4], [5]], As).

9. ?- foldr(converse(append), [], [[2], [3, 4], [5]], As).

10. ?- compose(map(plus(1)), foldr(append, []), [[2], [3, 4], [5]], As).

Query 1 binds As to the list of elements in the original list which are less than 5 (>(5,X)
holds), that is, [3,4]. Query 2 adds 1 to each member of the list, returning [3,4,5].
These are typical simple examples used in higher order functional languages. The next four
examples illustrate the added exibility logic programs can have. Query 3 is nondetermin-
istic. Given to integers I and J, between(I,J,X) nondeterministically binds X to an integer
between I and J, inclusive. Thus query 3 returns six answers of the form [X,Y], where
X is 1 or 2 and Y is 1, 2 or 3. Query 4 computes the \input" of map, [2,3,4], given the
\output". This relies on plus being reversible. Query 5 computes the \function" map is
applying, plus(1), given the input and the output (of course it is necessary to partially
specify the function for map to have any hope of working in this mode). Query 6 has no
argument completely instantiated but still succeeds in the same way. First, plus(X,2,3)
binds X to 1, then plus(1,A,4) binds A to 3, then plus(1,4,B) binds B to 5. Query 7 will
not work with the standard left to right execution strategy but can if coroutining is used.

The next three queries illustrate more complicated use of higher order features. Query
8 attens a list of lists by appending them all together with []. Query 9 attens a list
of lists but uses the converse of append (the �rst two arguments are swapped), so the
resulting list is reversed. Query 10 attens a list of lists then adds one to each element.
After some practice the higher order style of programming becomes natural. It results in
very concise high level code and the tedium of writing recursive de�nitions which are yet
another instance of map or foldr becomes painfully obvious.

5 Logic Programming with apply/3

Unfortunately, the higher order de�nitions we have given no not always work in the desired
way. The following two queries are the analogue of functional expressions which would be
evaluated correctly in languages such as Haskell.

11. ?- foldr(compose(append, map(plus(1))), [], [[2], [3, 4], [5]], As).

12. ?- map(plus, [2, 3, 4], As).
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Query 11 is intended to add one to each element in a list of lists then concatenate all the
lists giving the same result as query 10. In practice, the following goal is executed.

call(compose(append, map(plus(1))), [5], [], X)

Since compose/5 is not de�ned (though compose/4 is), the execution terminates with an er-
ror or failure. Query 12 calls call(plus,2,X) which also results in an error or failure. The
analogous expression in a functional language would return a list of functions: [plus(2),
plus(3), plus(4)]. It is common for intermediate results in higher order functional com-
putations to contain values which are functions and this allows great exibility.

The relative inexibility of the code we have presented stems from the fact that exactly
the right number of arguments must be given for call/N to work correctly. By using
a di�erent primitive, apply/3 [War82], we can achieve exibility of modern higher order
functional languages. We can think of apply(F,X,FX) as taking a function F and argument
X and returning the result FX. In the case where FX is a �rst order term, apply/3 and
call/3 behave identically. For example, call(plus(1),2,X) and apply(plus(1),2,X)

both bind X to the number 3. However, whereas call(plus,2,X) results in an error or fails,
apply(plus,2,X) binds X to a representation of the function which adds 2 to a number. For
consistency and simplicity we just add the extra argument and return the term plus(2),
though other representations are possible and may be more e�cient in some cases.

In general, apply(F,X,FX) calls F with two extra arguments if such a predicate exists.
If there are not enough arguments it binds FX to F with one extra argument. Previous uses
of call/3 can simply be replaced by apply/3:

% version of map which can return a list of functions

%

map(_F, [], []).

map(F, A0.As0, A.As) :-

apply(F, A0, A),

map(F, As0, As).

Uses of call/N for larger N can be replaced by multiple calls to apply/3 using the
idea of currying. For example, call(F,X1,X2,R) can be replaced by the conjunction
apply(F,X1,FX1), apply(FX1,X2,R):

% version of foldr which supports more complicated functions

foldr(F, B, [], B).

foldr(F, B, A.As, R) :-

foldr(F, B, As, R1),

apply(F, A, FA),

apply(FA, R1, R).

Looking at the execution of a simpli�ed version of goal 11 above clari�es why two calls to
apply/3 are needed:

?- foldr(compose(f,g), [], [..., [5]], As).

...

call(compose(f,g), [5], [], R), ... % call/4 version (doesn't work)

apply(compose(f,g), [5], FA), apply(FA, [], R), ... % apply/3 version
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Two apply computations are performed. The �rst call applies g to [5] obtaining some
result X and binds FA to f(X). The second call applies f to X and []. In general, applying
a function to N arguments may require N separate non-trivial computations. Using call

rather than apply only works when the �rst N � 1 computations are trivial, just returning
the same function with an extra argument added.

The versions of the higher order predicates which use apply/3 behave in the same way as
their functional counterparts. We believe that apply/3 should be a standard part of Prolog.
In retrospect, this is indicated by the implementation of NUE-Prolog [Nai91], a logic and
functional language implemented by translating functions into Prolog via the \attening"
transformation. Higher order functions in NUE-Prolog are implemented using a specially
coded version of apply/3 which only works with functions. If apply/3 had been provided in
the Prolog system no additional predicate would have been needed to support NUE-Prolog
and programmers could write equivalent higher order code using either functional or Prolog
syntax.

Code using call/N is less exible, cannot be reused as much and cannot be understood
at such a high level as code using apply/3. Thus call/N does not achieve the full potential
of higher order programming in Prolog. Mercury inherits this de�ciency since its higher
order features are based on call/N. The same is true of HiLog. The implementations
of higher order code in HiLog are equivalent to using call/N, though much less direct
[SW95][CKW93].

6 Implementation of call/N and apply/3

We will �rst discuss implementation of call/N. It is possible to implement call/N quite
simply in Prolog if we put an upper bound on N. For each di�erent arity we need a separate
de�nition which will construct the term with additional arguments using functor and arg

or =.. then call the term using call/1. Quintus Prolog has supported call/N in this way.
Three disadvantages of this technique are the number of de�nitions needed, the bound on
N and the fact that an intermediate term is constructed, wasting heap space (if =.. is used
the intermediate list wastes even more space). In some systems call/1 also has signi�cant
overheads, partly because it must detect some special cases such as conjunctions containing
cut.

A signi�cantly more e�cient alternative is to build call/N into the Prolog system. The
compiler can recognise call/N for unbounded N and at runtime no additional space needs
to be used. In a WAM [War83] based system it is su�cient to load the argument registers
then jump to the start of the procedure being called. NU-Prolog [TZ86] supports call/N
in this way.

It is possible to achieve similar e�ciency to the builtin implementation using pure Prolog
by specialising the de�nition of call/N to a particular program. Rather than general code
which supports every possible call, the de�nition can have a separate case for each procedure
in the (given) program. For example, call/3 could be de�ned with one clause for each
procedure with arity greater than one as follows:

call(plus(A), B, C) :- plus(A,B,C).

call(append(A), B, C) :- append(A,B,C).

%... all other procedures missing 2 args

call(call, A, B) :- call(A, B).
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call(call(A), B, C) :- call(A, B, C).

%... call/4 etc up to the bound on N

Other arities can be handled in the same way, including a version of call/1 which
doesn't support cut. It is easy to implement a tool which produces these de�nitions. To
reduce the code size explosion these specialised de�nitions could be produced for only some
arities. With a typical good Prolog implementation and these de�nitions the overhead of
call/N is a switch statement and some register shu�ing. In some systems this way of
de�ning call/1 is more e�cient than the built in version. Since the de�nitions are pure
Horn Clauses, they show that �rst order semantics can be given to \higher order" programs,
though whether this is the most appropriate semantics is arguable.

The implementation issues concerning apply/3 are similar to those for call/N but there
is a question of de�nition we have glossed over so far concerning procedures with the same
name but di�erent arities. Suppose we have two procedures, sum/2 and sum/3 and a call of
the form apply(sum,A,B). It is not clear if the atom sum should be interpreted as sum/2
missing two arguments (so sum(A,B) should be called) sum/3 missing three arguments (so
B should be uni�ed with sum(A)), both (both answers could be returned on backtracking)
or neither (apply could fail or cause an error). The choice is somewhat arbitrary but the
bottom line is ambiguous procedure names do not mix well with the higher order style of
programming and are best avoided.

Like call/N, apply/3 can be implemented using call/1, as a built in or using Horn
Clauses as follows (note this is a superset of the clauses in the de�nition of call/3):

apply(plus, A, plus(A)).

apply(plus(A), B, C) :- plus(A,B,C).

apply(append, A, append(A)).

apply(append(A), B, C) :- append(A,B,C).

%... all other procedures missing >= 2 args

apply(apply, A, apply(A)).

apply(apply(A), B, C) :- apply(A, B, C).

To de�ne procedures such as filter a version of call/2 (we use applyp/2) increases
exibility and for procedures such as foldr/4 versions of apply with more arguments are
convenient:

% same as call/2

applyp(plus(A,B), C) :- plus(A,B,C).

applyp(append(A,B), C) :- append(A,B,C).

%... all other procedures missing 1 arg

applyp(applyp(A), B) :- applyp(A, B).

% like call/4 but handles closures properly

apply4(F, A1, A2, R) :-

apply(F, A1, FA1),

apply(FA1, A2, R).
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7 Skeletons and techniques

The \skeletons and techniques" view of Prolog programming has been proposed as a method
of developing and understanding code [SK93]. We will describe this view then discuss how
the higher order style of programming has leads to similar advantages in an (arguably) more
elegant way. The example below illustrates how procedures for �nding the length and sum
of a list are similar to the procedure which de�nes or traverses a list. The only di�erence
is they each have an additional argument and goal in the recursive clause. They are both
enhancements of the list procedure and can be developed from it in a systematic way.

% definition/traversal of a list

list([]).

list(A.As) :-

list(As).

% length of a list

length([], 0).

length(A.As, L) :-

length(As, L1),

L is L1 + 1.

% sum of a list of numbers

sum([], 0).

sum(A.As, S) :-

sum(As, S1),

S is S1 + A.

Under certain syntactic conditions [KSJ93], separate enhancements of the same proce-
dure can be safely combined. For example, the enhancements associated with length and
sum can be combined to create a procedure which computes both the sum and length of a
list in one pass. It is easiest develop and understand length and sum separately but only by
combining them into sum len we avoid the overhead of traversing the list multiple times.

sum_len([], 0, 0).

sum_len(A.As, S, A) :-

sum_len(As, S1, L1),

S is S1 + A,

L is L1 + 1.

Taking the higher order view of the two enhancements of list, we see they are both
instances of foldr:

length(As, L) :- foldr(add1, 0, As, L).

sum(As, S) :- foldr(plus, 0, As, S).

add1(_, X, Y) :- plus(1, X, Y).

Higher order code can be seen as generalising a whole class of enhancements. One advantage
over skeletons and techniques is that rather than just having a syntactic view of enhance-
ments we can manipulate and reason about programs using techniques based on semantics.
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For example, knowing add1 and plus are associative and plus is symmetric we can arrive
at the following de�nitions which uses the more e�cient foldl.

length(As, L) :- foldl(converse(add1), 0, As, L).

sum(As, S) :- foldl(plus, 0, As, S).

There are several ways to arrive at a version of sum_len which uses a single traversal of
the list.

Use program transformation: The �rst method is to start with a version which uses
two traversals (just calling sum and length separately) and transform it using fold and
unfold [TS84] et cetera. The transformations must combine two calls to foldr which use
the same list argument. This is rather complicated and requires some knowledge of the
properties of plus but can be done.

Use a di�erent higher order predicate: The second method is to write a new higher
order predicate which takes as arguments two predicates, two bases cases, one input list and
two outputs. It can be coded directly or by generalising the program transformation steps
above as follows. Given any two enhancements to list, the transformation steps used to
combine them will be similar. The common structure in the transformations can be used
to derive the higher order predicate below.

sum_len1(As, S, L) :-

foldr_2(plus, 0, add1, 0, As, S, L).

% foldr_2(F1, B1, F2, B2, As, R1, R2) :-

% foldr(F1, B1, As, R1), foldr(F2, B2, As, R2).

%

foldr_2(F1, B1, F2, B2, [], B1, B2).

foldr_2(F1, B1, F2, B2, A.As, R1, R2) :-

foldr_2(F1, B1, F2, B2, As, R1a, R2a),

apply4(F1, A, R1a, R1),

apply4(F2, A, R2a, R2).

Use foldr with di�erent arguments: The third method, which we believe is the right
one, is to reuse the abstraction of foldr. By using foldr with a base case consisting of a
pair of zeros and a function which maps pairs to pairs sum_len can be implemented quite
simply:

sum_len2(As, S, L) :-

foldr(plus_add1, 0 - 0, As, S - L).

plus_add1(H, S0 - L0, S - L) :-

plus(H, S0, S),

plus(1, L0, L).

9



By using a new abstraction apply_pair(plus,add1), de�ned below, we can avoid de�ning
plus_add1. Apply_pair can be used for combining any pair of enhancements and for
de�ning foldr_2 much more easily, using foldr:

apply_pair(F1, F2, A, X0 - Y0, X - Y) :-

apply4(F1, A, X0, X),

apply4(F2, A, Y0, Y).

foldr_2a(F1, B1, F2, B2, As, R1, R2) :-

foldr(apply_pair(F1, F2), B1-B2, As, R1-R2),

One reason why the transformation approach is undesirable in general is that is can
produce the wrong result for nondeterministic skeletons [SK93]. Consider the following
example which traverses paths of a graph (later we use a more general version of this
predicate).

connected(A, A).

connected(A0, A) :-

edge(A0, A1),

connected(A1, A).

We may want to enhance this predicate by constructing a path or calculating the length
of the path then combine the enhancements. If there are N paths between two nodes we
want N answers, each consisting of a path and its length. Using a conjunction of the path
and path length predicates would result in N2 solutions and the paths would not be related
to the lengths. However, the enhancements can be generalised by the higher order predicate
foldrp de�ned below and can be combined using foldrp and apply_pair.

% Finds path A0,A1,...,An,A in a graph

% and returns "foldr(F,B,[A0,A1,...,An])"

% (a path with N edges corresponds to a list of N elements)

% Note that edge can be nondeterministic.

%

foldrp(F, B, A, A, B).

foldrp(F, B, A0, A, R) :-

edge(A0, A1),

foldrp(F, B, A1, A, R1),

apply4(F, A0, R1, R).

% finds path between two nodes in graph

% (doesn't include last node; a trivial path from a

% node to itself is represented by the empty list)

path(A0, A, As) :-

foldrp(cons, [], A0, A, As).

% constructs list from head and tail

cons(A, As, A.As).

% finds length of path between two nodes in graph
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p_len(A0, A, L) :-

foldrp(add1, 0, A0, A, L).

% finds path between two nodes in graph and its length

path_len(A0, A, As, L) :-

foldrp(apply_pair(cons, add1), [] - 0, A0, A, As - L).

The next example we will consider is a higher order meta interpreter. Solve_a(F,A,R)
interprets the atomic goal A and returns an additional result R which depends on the higher
order argument F. It is assumed that the object program clauses are represented by non-
ground facts of the lclause/2 predicate, which is like clause/2 except the second ar-
gument is a list of subgoals rather than the normal \defaulty" data structure [O'K90].
Solve_a(F,A,R) �nds a matching clause using lclause/2 and is called recursively on each
subgoal in the body producing a list of results Rs. The predicate F is then called with the
atomic goal A and the list of results Rs to produce the �nal result.

% enhanced meta interpreter

solve_a(F, A, R) :-

lclause(A, As),

map(solve_a(F), As, Rs),

apply4(F, A, Rs, R).

If lclause, map and apply have appropriate control information solve_a will work with
coroutining systems as well as those which use left to right execution. The extra arguments
F and R allow us to implement various structural enhancements to the basic meta interpreter
[SS86]. For example, a proof tree can be returned by simply pairing each atom with results
of sub-computations and the size of the proof tree can be returned by adding one to the
sum of the sizes of the subcomputations2:

% returns proof tree

proof(A, P) :-

solve_a(pair, A, P).

% return pair given two terms

pair(A, B, A - B).

% returns proof tree size

size(A, P) :-

solve_a(add1_sum, A, P).

% sums a list and adds 1

add1_sum(_A, Ns, N) :-

foldr(plus, 1, Ns, N).

These two enhancements can be combined by calling solve_a with a predicate which
is a combination of pair and add1_sum. As before, we could generalise the way these two
predicates are combined using a higher order predicate like apply_pair.

2As an exercise, the reader may wish to generalise solve a so redundant lists are not created in cases

such as this. Hint: map is an instance of the fold paradigm.
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% returns proof tree and its size

size_proof(A, S, P) :-

solve_a(pairFst_add1SumSnd, A, S - P).

% a combination of pair and add1_sum...

pairFst_add1SumSnd(A, SPs, S - (A - Ps)) :-

map(snd, SPs, Ps),

foldr(compose(plus, fst), 1, SPs, S).

Our �nal example is a di�erent style of meta interpreter. The structure of solve_a is
based on proof trees. The more traditional way to describe the Prolog proof procedure is
with SLD trees [Llo87]. Each node contains a goal. The children of a node are found by
resolving the selected literal in the goal with matching program clauses. Prolog uses a depth
�rst search for a path from the root of the SLD tree to a leaf node with an empty goal.

The connected predicate de�ned earlier can be elegantly generalised by a higher order
transitive closure relation. By using a di�erent \edge" relation we can search any graph,
including an SLD tree. Resolution theorem provers can be thought of as �nding a path
in a graph where each edge corresponds to a single resolution step. The Prolog strategy
corresponds to the simple transitive closure algorithm and a simple selection rule for the
resolution step.

% transitive closure of "edge" relation E

% simple depth first algorithm; uses DCG notation

tc(E) --> [].

tc(E) --> apply(E), tc(E).

% connected is the transitive closure of edge

connected --> tc(edge).

% meta interpreter for goal (a list of atoms)

% Finds sequence of resolution steps ending in empty goal

solve(G) :-

tc(resolve, G, []).

% resolves first atom in goal with a clause

% (append could be avoided using difference list

% for clause bodies)

resolve(A.Cont, R) :-

lclause(A, Body),

append(Body, Cont, R).

A bounded depth interpreter can be constructed simply by attaching a depth bound
to each node and preventing nodes with a depth bound of zero having any children. The
depth of the solution in the SLD tree can also be returned:

% meta interpreter with depth bound DB (on SLD tree)

% Also returns depth of solution

solve_d(DB, G, DS) :-

12



tc(apply_pair0(dec_depth, resolve), DB - G, D - []),

DS is DB - D.

% decrements depth; fails if depth < 1

dec_depth(D0, D) :-

D0 > 0,

D is D0 - 1.

% like apply_pair/5 but without the extra argument

apply_pair0(F, G, X0 - Y0, X - Y) :-

apply(F, X0, X),

apply(G, Y0, Y).

We feel this example illustrates how the higher order approach allows more abstraction
than skeletons and techniques. Using the semantics of tc allows us to reason about solve
and solve_d at a very high level. The syntax and indeed the algorithm which implements tc
can be changed without a�ecting the correctness of the meta interpreters. By using skeletons
and techniques we get stuck at the level of syntax and the abstraction that declarative
semantics can provide is di�cult to achieve.

8 E�ciency

There are two disadvantages that the higher order approach has compared with skeletons
and techniques. The �rst is that it requires more abstract thinking and hence is more
di�cult for novice programmers. However, abstraction is a good thing in general and for
more experienced programmers the additional abstraction should be a great advantage.
The second disadvantage is e�ciency. The overheads of executing higher order code can
be signi�cant, especially if the primitives such as apply are implemented poorly. Fortu-
nately, currently available partial evaluators for Prolog do an excellent job at eliminating
the overheads. The sample session below shows how Mixtus [Sah93] optimises the version
of sum_len which used foldr and apply_pair. Since Mixtus does not understand apply/3

or call/N a simple version of call/N which used =.. was supplied. The e�ciency dif-
ference between the Mixtus output and a hand coded version is two jumps, which may be
eliminated by peephole optimisation.

Mixtus 0.3.6

| ?- pe(sum_len(As, S, L)).

sum_len(A, B, C) :-

sum_len1(A, B, C).

% sum_len1(A,B,C):-sum_len(A,B,C)

sum_len1(A, B, C) :-

foldrapply_pairplus1(A, B, C).

% foldrapply_pairplus1(A,B,C):-

% foldr(apply_pair(plus,add1),0-0,A,B-C)
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foldrapply_pairplus1([], 0, 0).

foldrapply_pairplus1([D|F], C, A) :-

foldrapply_pairplus1(F, E, B),

C is D+E,

A is B+1.

We have also experimented with using Mixtus to partially evaluate more complex proce-
dures such as solve_a. In all cases the higher order overheads were eliminated completely.
Some algorithmic ine�ciencies, such as creating redundant lists, were avoided but only in
some cases. Mercury transforms code speci�cally to eliminate higher order overheads and
other systems do the same [SW95][Tra94]. E�ciency considerations should not deter us
from using higher order code in Prolog.

9 Moving away from Prolog

Although we have argued that the higher order style of programming can be supported in
Prolog, it must be conceded that additional bene�ts can be gained by moving to a richer
framework. Here we mention three areas.

9.1 Syntax

De�nitions of many simple functions such as cons and pair can be avoided if the langauge
supports lambda expressions or similar constructs, as is done in Lambda Prolog, Mercury
and many functional languages. This can make programs shorter and the programmer has
fewer names to invent. It typically does not increase expressive power since each lambda
expression in a program can be statically replaced by a call to a new function or procedure.
However, it does have a signi�cant impact on all source level tools and meta program-
ming, since the structure of terms is made more complex. Lambda terms are supported in
Qu-Prolog [CRS91] because they make terms more expressive, not for higher order program-
ming. Semantics and implementation are also signi�cantly a�ected due to the possibility of
unifying two lambda terms.

9.2 Type checking

All too often when developing complex higher order Prolog code the result of a query is
simply: fail. For equivalent code in another language the compiler would inform the pro-
grammer of a type error at a particular line in the program. The types in higher order code
tend to be much more complex than types in �rst order code. For example, the types of the
functions in Query 11 are: (*->**)->(***->*)->***->**, (*->**->**)->**->[*]->**,
(*->**)->[*]->[**], [*]->[*]->[*] and num->num->num. Type checking, either as an
essential part of the language and compiler or as a separate optional tool, is extremely
valuable for debugging higher order code.

9.3 Semantics

Although \higher order" Prolog code can be given �rst order semantics using the Horn clause
de�nition of apply/3, this semantics is not intuitive or high level. Ideally, in the program-
mer's intended interpretation the term plus should be the addition predicate/function and
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the term converse(plus) should have the same interpretation. However, there is nothing
to prevent Prolog from attempting to unify these two terms and failing, even though they
are equal in this interpretation. In general, a call with plus as an argument will have
di�erent answers to a call with converse(plus):

surprise(plus, A, B, C) :- plus(A, B, C).

surprise(converse(plus), A, B, C) :- append(A, B, C).

By insisting that syntactic and semantic equality are equivalent, the Clark equality
axioms (see [Llo87]) prevent a high level interpretation. Instead we must think at a lower
level and interpret plus as a representation of the addition relation. The more abstract
view of programs requires a di�erent approach to semantics and restrictions on programs so
predicates such as surprise cannot be used. It seems that types are essential and modes
are desirable for detecting errors at compile time.

10 Conclusion

The logic programming community should take advantage of the higher order style of pro-
gramming developed by the functional programming community. This style encourages
more abstraction, more reuse of code and more concise programs. We have shown by ex-
ample how higher order programming also �ts well with the additional strengths of logic
programming such as nondeterminism, multiple modes, logic variables, coroutining, meta
programming, De�nite Clause Grammars et cetera. It seems a good alternative to skeletons
and techniques for developing code. The main disadvantage of higher order programming,
loss of e�ciency, can be overcome with current techniques.

To get all these bene�ts it is not necessary to change Prolog in any signi�cant way.
The higher order style of programming can be done using just Horn clauses. However, the
popular approach of using call/N as the basic primitive is not ideal. To achieve as much
exibility as modern functional languages we must abandon call/N and use primitives such
as apply/3. This lesson is also applicable to other logic languages. Other programming
languages arguably have advantages over Prolog in areas such as syntax, debugging support,
semantics and numerous language features. However, the ability to support higher order
programming in itself should not be considered an advantage over Prolog.
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