
Living with CLASSIC:

When and How to Use a KL-ONE-Like Language

Ronald J. Brachman

Deborah L. McGuinness

Peter F. Patel-Schneider

Lori Alperin Resnick

AT&T Bell Laboratories

Murray Hill, NJ

Alexander Borgida

Rutgers University

New Brunswick, NJ

Appears in Principles of Semantic Networks: Explorations in the
Representation of Knowledge, edited by John F. Sowa: Morgan Kaufmann

Publishers, San Mateo, CA, 1991, pp. 401{456.

Abstract

classic is a recently-developed knowledge representation system that follows the

paradigm originally set out in the kl-one system: it concentrates on the de�nition
of structured concepts, their organization into taxonomies, the creation and manipu-

lation of individual instances of such concepts, and the key inferences of subsumption

and classi�cation. Rather than simply presenting a description of classic, we com-

plement a brief system overview with a discussion of how to live within the con�nes

of a limited object-oriented deductive system. By analyzing the representational

strengths and weaknesses of classic, we consider the circumstances under which it

is most appropriate to use (or not use) it. We elaborate a knowledge-engineering

methodology for building kl-one-style knowledge bases, with emphasis on the mod-

eling choices that arise in the process of describing a domain. We also address some

of the key di�cult issues encountered by new users, including primitive vs. de�ned

concepts, and di�erences between roles and concepts, as well as representational
\tricks-of-the-trade," which we believe to be generally useful. Much of the discussion

should be relevant to many of the current systems based on kl-one.

Contents

1 Introduction 1

2 The CLASSIC Knowledge Representation

System 3

2.1 Knowledge Base Components . 6
2.1.1 Named Concepts and Conjunction 6
2.1.2 Role Restrictions . 6
2.1.3 Other Restrictions . 7
2.1.4 Rules . 8

2.2 Knowledge Base Inferences . 9
2.3 Knowledge Base Operations . 11

3 When is CLASSIC Appropriate? 13

3.1 When to Use CLASSIC . 13
3.2 When Not to Use CLASSIC . 15

4 Di�cult Ideas 18

4.1 Primitive and De�ned Concepts . 18
4.2 De�nitional and Incidental Properties . 20
4.3 Concepts and Individuals . 21
4.4 Rule Application . 22
4.5 Unknown Individuals in CLASSIC . 22
4.6 Updates . 24
4.7 No Closed World Assumption . 24

5 Building CLASSIC Knowledge Bases 26

5.1 Basic Ontological Decisions|Individuals and Roles 26
5.1.1 Individuals versus Concepts . 26
5.1.2 Concepts versus Roles . 27

5.2 A Simple Knowledge Enginering Methodology for CLASSIC 29
5.3 A Sample Knowledge Base . 36

6 Tricks of the Trade 46

6.1 Negation and Complements . 46
6.2 Disjunction . 47
6.3 Defaults . 47
6.4 More Powerful Rules . 48
6.5 Integrity Checking . 48
6.6 Restrictions on Roles . 48
6.7 Dummy Individuals . 49

7 Conclusion 51

i

1 Introduction

Work on the kl-one Knowledge Representation System [Brachman and Schmolze, 1985]

in the late 1970's inspired the development of a number of frame-based representation
systems. These systems have all embraced the ideas of frames as structured descriptions,
di�erentiation between terminological and assertional aspects of knowledge representation,
and the central nature of subsumption and classi�cation inferences. At this point there
are at least a dozen systems with this shared philosophy and heritage, with widespread
international distribution and much ongoing development. All told, there is a large and
growing population of users of \kl-one-like systems."

While the kl-one family has garnered its share of technical publications, virtually all
of its literature has described technical details of language design, inference complexity,
and semantics. One key issue, of concern to the growing community of users, has remained
relatively ignored:1 how does one go about developing a knowledge base with one of these
languages? It is one thing to understand the syntax and semantics of a formal knowledge
representation language, but quite another to comprehend how to take a complex domain
and represent it appropriately with the constructs a�orded by the language.

In this chapter, we attempt to capture some of the lore of building knowledge bases in
kl-one-like systems. We do this in the context of classic, a new frame-based descrip-
tion system inspired by kl-one and most immediately descended from kandor [Patel-
Schneider, 1984] (and, as it turns out, closely related to back [Peltason et al., 1987]).
classic adopts the point of view that a knowledge base can be treated as a deductive
database, in this case one with an object-centered avor. Because of its intended role as a
database-style repository, classic intentionally limits what the user can say. As a bene�t,
all inferences can be done in a timely manner. All kl-one-like languages are limited in
some way, and learning to live with such limitations is one of the keys to making good use
of these systems in knowledge-based applications.

classic has a number of novel features that distinguish it from other kl-one-like
systems, but here we concentrate less on interesting new developments in the language and
focus instead on how to make good use of it.2 To that end, we �rst give a brief introduction
to the formalities of classic. We then address the key issue of when a system like classic
is appropriate for an application and when it is not. While we can not give a comprehensive
formula for when to use the system, we have tried to give some insight into its strengths
and weaknesses, and thus which applications may be best suited to its abilities.

Since classic and some other kl-one-like systems emphasize certain issues relating
to terminology and classi�cation that are not common in other KR systems, there tend to
be a number of subtle ideas that a user must grasp before he or she can make best use
of such systems. Therefore, we address ourselves to several important ideas that may be
di�cult for the novice user of classic. These involve, among other things, the di�erences
between primitive and de�ned concepts and some di�erences in working with concepts and
individuals. We also address the perennial issue of when to make something a concept or
a role. Subsequently, we present some guidelines for developing classic knowledge bases,

1An exception is a recent paper on how to build medical knowledge bases in the nikl language [Senyk et

al., 1989]. Discussion regarding \ontological engineering" in cyc [Lenat and Guha, 1990] is also somewhat
relevant here.

2The interested reader is referred to [Borgida et al., 1989] for details on classic and its novel contri-
butions.

1

including a sketch of a knowledge engineering methodology that has worked for us in recent
applications. Finally, we o�er some \tricks of the trade" for classic users|some tips on
ways to represent certain information that are not obvious from the syntax of the language.
For example, judicious use of \test" concepts and classic rules can provide a facility for
integrity checking. All in all, we try to give the potential user an idea not so much of what
classic is, but rather how best to live with it and make it work well in an application.

2

2 The CLASSIC Knowledge Representation

System

classic
3 is a frame-based knowledge representation system, i.e., its primary means of

representation is in describing objects as opposed to asserting arbitrary logical sentences.
It allows the user to make assertions about objects (e.g., \Kalin-Cellars-Semillon is a wine,"
and \Mary drinks Marietta-Old-Vines-Red") and to describe classes of objects (e.g., \a wine
made from Cabernet-Sauvignon and Merlot grapes"). The frames in classic|which we
call \concepts"|are interpreted as descriptions rather than assertions. Thus, if we de�ne
a wine as a drink with a number of other properties, then being a drink is a necessary part
of being a wine, and no wine can violate this requirement.

There are three kinds of formal objects in classic:

� concepts, which are descriptions with potentially complex structure, formed by com-
posing a limited set of description-forming operators (e.g., WHITE-FULL-BODIED-WINE4

might represent the concept of a WINE whose color property is restricted to being
White and whose body is Full); concepts correspond to one-place predicates, and
thus are applied to one individual at a time;

� roles, which are simple formal terms for properties (e.g., grape might represent the
grape(s) a wine is made from); roles correspond to two-place predicates, and are used
to relate two individuals at a time. Roles that must be �lled by exactly one individual
are called attributes (e.g., color might be an attribute representing the color of a
wine);

� individuals, which are simple formal constructs intended to directly represent objects
in the domain of interest; individuals are given properties by asserting that they
satisfy concepts (e.g., \Chardonnay is a GRAPE") and that their roles are �lled by
other individuals (e.g., \Kalin-Cellars-Semillon's color is White").

Concepts and individuals in classic are divided into two realms: CLASSIC and HOST.
CLASSIC concepts are used to represent classes of real-world individuals of a domain, while
HOST concepts are used to describe individuals in the implementation language (currently
Common LISP), such as numbers and strings. We treat HOST concepts and individuals
di�erently from their CLASSIC counterparts by not allowing them to have roles (e.g., we
cannot attach any properties to the integer 3).

Concepts and individuals are put into a taxonomy, or hierarchy. A more general con-
cept will be above a more speci�c concept in the taxonomy. For example, if there were a
concept for \a wine made from Cabernet-Sauvignon and Merlot grapes," then this would

3classic stands for \CLASSi�cation of Individuals and Concepts." It has a complete implementation
in Common LISP.

4Throughout this chapter, we use the following orthographic conventions:
CONCEPT-NAME: typewriter font, upper case;
Individual-Name: typewriter font, capitalized;
role-name: typewriter font, lower case;
REALM: slanted, upper case;
function-name: boldface roman, lower case;
CLASSIC-OPERATOR: boldface roman, small capitals.

3

be a more speci�c concept than \a wine made from at least one grape," because the
�rst concept describes wines made from at least two grapes. In the taxonomy, individu-
als are found underneath all the concepts that they satisfy. For example, the individual
Kalin-Cellars-Semillon, which happens to be a wine whose color is white, would be
under the concept WHITE-WINE in the taxonomy. To maintain this taxonomy classic also
determines the derivable properties of all individuals and concepts|inheriting properties
from more-general descriptions as well as combining properties as appropriate.

There are numerous deductive inferences that classic provides:

� completion: logical consequences of assertions about individuals and descriptions of
concepts are computed; there are a number of \completion" inferences classic can
make:

{ inheritance: restrictions that apply to instances of a concept must also apply
to instances of specializations of that concept; in a sense, then, properties are
\inherited" by more speci�c concepts from those that they specialize;

{ combination: restrictions on concepts and individuals can be logically combined
together to make narrower restrictions;

{ propagation: when an assertion is made about an individual, it may hold logical
consequences for some other, related individuals; classic \propagates" this
information forward when an assertion is made;

{ contradiction detection: it is possible to accidentally assert two facts about an
individual that are logically impossible to conjoin together; classic detects this
kind of contradiction;

{ incoherent concept detection: it is possible to accidentally give a concept some
restrictions that combine to make a logical impossibility, thereby not allowing
any instances of the concept to be possible; classic detects this kind of incon-
sistent description;

� classi�cation and subsumption:

{ concept classi�cation: all concepts more general than a concept and all concepts
more speci�c than a concept are found5;

{ individual classi�cation: all concepts that an individual satis�es are determined;

{ subsumption: questions about whether or not one concept is more general than
another concept are answered (this is important during concept classi�cation);

� rule application: simple forward-chaining rules have concepts as antecedents and
consequents; when an individual is determined to satisfy the antecedent of a rule, it
is asserted to satisfy the consequent as well.

classic has a uniform, compositional language, with term-forming operators for creat-
ing descriptions of concepts and individuals. The grammar for this language can be found
in Figure 1 (we discuss the operators below). Note that individuals can be described with
the same expressiveness as concepts. Information can be added to existing individuals, and
information can also be retracted from them, with the appropriate consequences.

5Note that object-oriented programming languages usually have inheritance, but not classi�cation.

4

<concept-expr> ::= THING | CLASSIC-THING | HOST-THING |

<concept-name> |

(AND <concept-expr>+) |
(ALL <role-expr><concept-expr>) |
(AT-LEAST <positive-integer><role-expr>) |
(AT-MOST <non-negative-integer><role-expr>) |
(FILLS <role-expr> <individual-name>+) |
(SAME-AS <attribute-path><attribute-path>) |
(TEST-C <fn><arg>�) |
(TEST-H <fn><arg>�) |
(ONE-OF <individual-name>+) |
(PRIMITIVE <concept-expr> <index>) |
(DISJOINT-PRIMITIVE <concept-expr> <group-index> <index>)

<individual-expr> ::= <concept-expr>
<concept-name> ::= <symbol>
<individual-name> ::= <symbol> | <cl-host-expr>
<role-expr> ::= <mrole-expr> | <attribute-expr>
<mrole-expr> ::= <symbol>
<attribute-path> ::= (<attribute-expr>+)
<attribute-expr> ::= <symbol>
<cl-host-expr> ::= <string> | <number> |

'<CommonLISP-expr> | (quote <CommonLISP-expr>)
<fn> ::= a function in the host language (Common LISP) with three-valued logical return type
<arg> ::= an expression passed to a test function
<index> ::= <number> | <symbol>
<group-index> ::= <number> | <symbol>

Figure 1: The classic Grammar.

5

We should add that we have taken the approach in classic that a knowledge repre-
sentation system should be small and simple (i.e., limited in expressive power), so that
its response time is quick, and thorough inference can be peformed. Thus, a user cannot
expect to program arbitrary computations in classic. One should envision classic as be-
ing one component within a larger application system, where it would be used to represent
the domain knowledge of the system and calculate a limited set of domain-independent
inferences from that knowledge. Other modules in the system would be responsible for the
more complicated inferences relating to the particular domain and task.

2.1 Knowledge Base Components

The classic operators are used to form conjunctions, role restrictions, test restrictions,
enumerated concepts, and primitive and disjoint primitive concepts. The typical way of
describing a new concept or individual in classic is to give a list of more general concepts
(or in the case of an individual, a list of concepts that are satis�ed by the individual), and
then a list of restrictions that specify the ways in which this new concept or individual
di�ers from these more general concepts. At the end of this subsection, we also discuss the
rule component of classic.

2.1.1 Named Concepts and Conjunction

The simplest type of concept expression is a single symbol designating a concept. classic
starts o� with a number of built-in named concepts, including THING, CLASSIC-THING,
HOST-THING, and concepts for each of the Common LISP types.6 These names can be
used in other concept expressions to build up complex de�nitions. While the user can create
a new name and make it directly synonymous with an existing one, the simplest useful
means of building a compound concept expression is the AND operator, which creates a
new concept that is the conjunction of the concepts given as arguments. For example, if
WHITE-WINE and FULL-BODIED-WINE are two concepts that have been previously de�ned,
we can de�ne their conjunction as

(AND WHITE-WINE FULL-BODIED-WINE)

and call it WHITE-FULL-BODIED-WINE. This name can then be used in later concept de�ni-
tions. Note that the AND operator can be applied to any concept expressions (as long as
any names are de�ned before they are used), not just simple named ones (see Section 2.1.2�
for examples).

2.1.2 Role Restrictions

The �ve operators ALL, AT-LEAST, AT-MOST, FILLS, and SAME-AS form expres-
sions known as role restrictions, and can be used only in CLASSIC concepts and individuals,
not in their HOST counterparts. As speci�ed in the grammar, a role restriction is itself a
well-formed concept.

6Technically, THING, CLASSIC-THING, and HOST-THING are primitive concepts, with the latter two being
disjoint (see Section 2.1.3). The concepts for the Common LISP types are formed using the TEST-H
construct (see also Section 2.1.3), so that all instances of them can be recognized automatically.

6

A universal value restriction, or ALL restriction, speci�es that all the �llers of a partic-
ular role must be individuals described by a particular concept expression. For example,
a CALIFORNIA-WINE might be de�ned as a wine whose region is a California region, where
the California regions are Napa Valley, Sonoma Valley, etc. The region role restriction
would be written

(ALL region CALIFORNIA-REGION).

AT-LEAST and AT-MOST restrictions restrict the minimum and maximum number
of �llers allowed for a given role on a concept or individual. For example, part of the
de�nition of a wine might be that it is made from at least one kind of grape, which would
be written

(AT-LEAST 1 grape),

where grape is a role.
The FILLS operator speci�es that a role is �lled by some speci�ed individuals (al-

though the role may have additional �llers). For example, we might de�ne the concept
CHARDONNAY-WINE as a wine whose grapes include chardonnay; the restriction would be
written as

(FILLS grape Chardonnay).

A SAME-AS restriction requires that the individual found by following one attribute-
path is the same individual as that found by following a second attribute-path. For example,
suppose that there is a food and a drink associated with each course at a meal. Then the
concept REGIONAL-COURSE might be de�ned as a course where the food's region is the same
as the drink's region. This would be written as

(AND MEAL-COURSE (SAME-AS (food region) (drink region))).

2.1.3 Other Restrictions

Tests: There are two operators that allow procedures to be used in specifying concepts:
one is used in CLASSIC concepts (TEST-C), and one is used in HOST concepts (TEST-H).7

A test restriction requires that an individual must pass the test to satisfy the restriction.
For example, the concept EVEN-INTEGER might be de�ned as the conjunction of the built-in
concept INTEGER and a test to see if the integer is an even number:

(AND INTEGER (TEST-H evenp))

(assuming evenp is a function in the host language). The individual currently being tested
is assumed to be the �rst argument to the function, and other arguments can be speci�ed
as well. Since CLASSIC individuals may change, the test functions return one of three
values when applied to a CLASSIC individual:

� NIL: the individual is inconsistent with this restriction;

7There are two di�erent operators for tests in order to allow classic to recognize the realm of any
concept directly from its expression. While it can do this with all other constructs, since tests are opaque,
classic can not tell just by looking whether an unmarked test concept is a CLASSIC concept or a HOST
concept. Thus we have two operators, which directly indicate the realm.

7

� ?: unknown, i.e., the individual is currently consistent with the restriction, but if
information is added to the individual, the individual may become either inconsistent
with or provably described by the restriction. In other words, the individual neither
provably satis�es the restriction nor provably falsi�es it;

� T: the individual de�nitely passes the test, i.e., it provably satis�es it.

Test functions must be monotonic; that is, it should not be possible for the same test
function to return T (or NIL) for an individual at one time and NIL (T) at a later time,
unless an explicit retraction (see Section 2.3) has been done in between.
Enumerated concepts: A ONE-OF concept (or enumerated concept) enumerates a set
of individuals, which are the only instances of the concept. For example, a wine whose
body could be either full or medium would have the restriction

(ALL body (ONE-OF Full Medium)).

Primitive concepts: Normally, when one gives a classic de�nition for a concept, it
is both necessary and su�cient. For example, if we de�ne a FULL-BODIED-WHITE-WINE

as a FULL-BODIED-WINE and a WHITE-WINE, we expect the relationship to be an \if and
only if" relationship. The PRIMITIVE and DISJOINT-PRIMITIVE operators allow a
user to form concepts that cannot be fully speci�ed by necessary and su�cient conditions.
These operators can only de�ne concepts in the CLASSIC realm. If we want to de�ne
a wine as a drink with special properties we do not want to or cannot fully specify, we
would de�ne the concept WINE as (PRIMITIVE POTABLE-LIQUID *wine*), with *wine*

being an arbitrary symbol (the index) used simply to distinguish this concept from others.8

WINE is then known to be di�erent from any other PRIMITIVE concepts de�ned under
POTABLE-LIQUID (i.e., those with di�erent indices|see the discussion on indices in Sec-
tion 4.1). A DISJOINT-PRIMITIVE concept is just like a PRIMITIVE concept, except
that any concepts within the same \disjoint grouping" are known to be disjoint from each
other, and thus, no individual can be described by two DISJOINT-PRIMITIVEs in the
same disjoint grouping. For example, if we know that �sh and shell�sh are both types of
seafood, and nothing can be both a �sh and a shell�sh, then we could de�ne �sh and shell�sh
as disjoint primitives under seafood within the same disjoint grouping. That is, we would
de�ne the concept FISH as (DISJOINT-PRIMITIVE SEAFOOD *type* *fish*), and
we would de�ne the concept SHELLFISH as (DISJOINT-PRIMITIVE SEAFOOD *type*

shellfish), where *type* is an arbitrary symbol designating the grouping.

2.1.4 Rules

Aside from the language constructs used in forming concept and individual expressions,
classic allows for forward-chaining rules. A classic rule consists of an antecedent and
a consequent, both of which are concepts, where the antecedent must be named. As soon
as an individual is known to satisfy the antecedent concept, the rule is \triggered," and
the individual is also known to satisfy the consequent concept. For example, if there is a
rule that says that the best wine for a dessert course is a full-bodied, sweet wine, then if
Mary is eating a dessert course, the rule is �red and classic will deduce that her course

8Any symbol at all can be used as an index. We use symbols that mirror the names of the concepts just
to make it easier to keep them straight. There is absolutely nothing special about the symbol *wine*."

8

is one whose wine is full-bodied and sweet. Consequents of rules are treated as derived
information|if the antecedent of a rule is retracted from an individual, then the consequent
is also retracted (see Section 2.3). (This di�ers from the treatment of rules in typical rule-
based systems, such as OPS, where the consequents of retracted antecedents remain in the
knowledge base.)

2.2 Knowledge Base Inferences

classic provides a number of di�erent deductive inferences. The three main types are
completion, classi�cation/subsumption, and rule application. Completion involves com-
puting the implicit logical consequences of assertions about individuals and descriptions
of concepts. For example, when a new concept is de�ned in terms of existing concepts,
inheritance is used to determine all of the properties of the new concept|the new concept
\inherits" all of the properties from the existing concepts. Thus, if WINE is de�ned to have
exactly one body, avor, and color, and WHITE-WINE is de�ned as a WINE whose color is
white, then WHITE-WINE will inherit the properties that it has exactly one body, avor,
and color, in addition to having the color white. When a new individual is described in
terms of existing concepts, it inherits the properties of those concepts. For example, if
Chateau-d-Yquem-Sauterne is an individual which is, among other things, a WHITE-WINE,
then it inherits from WHITE-WINE the property that its color is white. It also inherits from
WINE the properties that it has exactly one body, avor, and color.

When a new concept or individual is created, all of its properties are combined, which can
lead to a number of conclusions. Suppose that the concept FULL-OR-MEDIUM-BODIED-WINE
is de�ned as a wine whose body is either full or medium:

(AND WINE (ALL body (ONE-OF Full Medium))),

and the concept MEDIUM-OR-LIGHT-BODIED-WINE is de�ned as a wine whose body is either
medium or light:

(AND WINE (ALL body (ONE-OF Medium Light))).

Suppose that we de�ne the concept SPECIAL-BODIED-WINE as both a FULL-OR-MEDIUM-

BODIED-WINE and a MEDIUM-OR-LIGHT-BODIED-WINE:

(AND FULL-OR-MEDIUM-BODIED-WINE MEDIUM-OR-LIGHT-BODIED-WINE).

classic combines the properties inherited on the body role by intersecting the two ONE-
OF restrictions, and discovers that the body for SPECIAL-BODIED-WINE must be Medium.

As another example, suppose that Mary wants to serve a regional course (the food and
drink are from the same region). She is not very knowledgeable about regions of wines,
but she would like to serve a Chianti wine. She knows it is from either France or Italy,
so she decides to serve either beef bourgogne or lasagna|whichever one is consistent. She
attempts to create an individual course with the following de�nition (note: CHIANTI is
considered a general class here, Beef-Bourgogne an individual food):

(AND REGIONAL-COURSE

(ALL drink CHIANTI)

(FILLS food Beef-Bourgogne)).

9

classic will not accept this course description, because the food and drink are from dif-
ferent regions. If Mary were instead to create the course description with the food being
Lasagna, the assertion would be successful.

When combining properties of an individual, classic may discover that a role is closed,
i.e., it can have no more �llers. For example, suppose a wine is de�ned to have exactly
one maker, which is a winery. If the individual Kalin-Cellars-Semillon is known to be
a wine with maker Kalin-Cellars, perhaps represented as

(AND WINE (FILLS maker Kalin-Cellars)),

then the maker role is implicitly closed by classic on Kalin-Cellars-Semillon, since it
can have no more �llers. Thus, if the user tries to add a �ller to the maker role, this will
cause an error. The user may also explicitly close a role (see Section 2.3).

When a new individual is created, inheritance and combination of properties may also
cause certain information to be propagated to another individual. For example, suppose
we know that Sue drinks Chateau d'Yquem Sauterne, and we tell classic that Sue drinks
only dry wines. The information is then propagated that the individual Chateau-d-Yquem-
Sauterne must be a dry wine. Contradiction detection will take place during propagation
of properties. In this example, if Chateau d'Yquem Sauterne were already known to be
a sweet wine, a contradiction would be detected. When a contradiction is found on an
individual, the assertion that caused the contradiction is retracted (i.e., that Sue drinks
only dry wines), and all the inferences done up to the point of discovering the contradiction
are undone (Chateau-d-Yquem-Sauterne is reverted back to being a sweet wine).

When a new concept is de�ned, and all of its properties are inherited and combined,
classic determines whether the concept is incoherent (i.e., if the concept can have no
instances because it contains inconsistent information). For example, if the concept FULL-
BODIED-WINE is a wine whose body must be full, MEDIUM-BODIED-WINE is a wine whose
body must be medium, and a wine must have exactly one body, then

(AND FULL-BODIED-WINE MEDIUM-BODIED-WINE)

will be detected to be an incoherent concept, since a wine cannot have a body of both full
and medium at the same time|it cannot have more than one body.

When a new concept is de�ned, classi�cation is used to �nd all concepts more gen-
eral than the new concept and all concepts more speci�c than it. For example, sup-
pose that the concept FULL-BODIED-WHITE-WINE is de�ned as a WINE whose body is Full
and whose color is White. When it is classi�ed, the concepts FULL-BODIED-WINE and
WHITE-WINE would be found as parent (more general) concepts (assuming these concepts
have been previously de�ned), while the concept FULL-BODIED-STRONG-WHITE-WINE would
be found as a child (more speci�c) concept (assuming it has been previously de�ned). Dur-
ing classi�cation, subsumption is used to determine whether one concept is more general
than another concept. In this example, FULL-BODIED-WINE would be found to subsume

FULL-BODIED-WHITE-WINE, since it is impossible to have an instance of the latter that is
not an instance of the former. Rules are ignored when determining whether one concept
subsumes another.

When a new individual is created, classi�cation is also invoked, to �nd all concepts
that are satis�ed by the individual. For example, suppose that the individual Forman-
Chardonnay is known to be a WINE whose body is Full, whose color is White, and whose

10

flavor is Moderate. When it is classi�ed, it would satisfy the concept FULL-BODIED-

WHITE-WINE, but not the concept FULL-BODIED-STRONG-WHITE-WINE. When a new concept
with a test restriction is de�ned, and a subsumption test is done between that concept and
another existing concept, also containing a test restriction, the Common LISP functions
are not analyzed to see if one is more general than another. However, when a new individual
is created, and a check is done to see if that individual satis�es an existing concept con-
taining a test restriction, the test function is run on the individual to see if the individual
satis�es the restriction.

As discussed in Section 2.1.4, a classic rule consists of an antecedent and a consequent,
both of which are concepts. When an individual is known to satisfy the antecedent concept
of a rule, the rule is applied, or \triggered," and the individual is also known to satisfy the
consequent concept. In the example from Section 2.1.4, when Mary is known to be eating
a dessert course, the rule is �red that asserts that the wine she drinks with the course is a
full-bodied, sweet wine. If she is known to be drinking a dry wine, then a contradiction is
signaled, because the information implied about the wine she is drinking is inconsistent.

2.3 Knowledge Base Operations

There are a number of operations a user can perform on a knowledge base in classic.
The user can query the knowledge base for information, by asking the following types of
questions:

� \What are all the instances of this concept?" (\Which individuals satisfy this de-
scription?")

� \Which concepts does this individual satisfy?"

� \Which individuals �ll role r on individual I?"

� \How is role r restricted on concept C (or on individual I)?"

A user can de�ne a new concept, role, or individual. This may cause any of a number of
inferences to be performed (see Section 2.2). A user can also add information to a known
individual. For example, if the user originally asserts that Mary has exactly one child,
she might later assert that Mary's child is Sue. Concept de�nitions cannot be modi�ed,
although a user can add new rules with any concept as an antecedent at any time.

A user can assert about an individual that a speci�c role is closed, i.e., its current �llers
are the only �llers (unless a role is closed, explicitly with a function call, or implicitly when
the number of �llers reaches the AT-MOST restriction, it may have more �llers, since there
is no closed-world assumption in classic|see Section 4.7). There is no CLOSE operator
in the expression language. Instead, there is a separate function used to close a role on an
individual.9

Information that has previously been asserted about an individual can be retracted in
classic. For example, suppose Mary was originally de�ned to be a PERSON, and then
she is asserted to be a NON-WINE-DRINKER (a person who drinks no wines). If some-
one then sees Mary drinking wine, he or she could retract the information that Mary is a

9This is because a CLOSE operator would provide a di�erent kind of knowledge (autoepistemic) from
all other operators.

11

NON-WINE-DRINKER. In that case, Mary would revert back to being simply a PERSON, and
any inferences that may have been made due to her being a NON-WINE-DRINKER are un-
done. The user can also retract rules that have been added to the knowledge base. No
other information about concepts can be changed.

12

3 When is CLASSIC Appropriate?

As we have seen, classic includes both a language for representing certain kinds of knowl-
edge, and a system that supports the manipulation of descriptions in this language. As
such, it is part of a large family of computer systems variously known as data or knowledge
base management systems. As with all such systems, classic has certain characteristics
that make it appropriate for some applications and inappropriate for others. These key
characteristics include the following:

� object-centered: all individuals have a unique, intrinsic and immutable identity ob-
tained at time of creation; the user cannot form arbitrary logical sentences;

� terminological: the system supports the de�nition of complex \noun phrases" in the
form of concepts (and the discovery of their inter-relationships); these concepts can
then be used to make assertions about objects. classic is therefore good at describing
complex objects, but not particularly suitable for making complex assertions, such
as ones involving multiple quanti�ers or disjunction;

� deductive: classic is not just a passive repository for unconnected assertions, like a
relational database; the system actively searches to �nd an entire class of propositions
entailed by the facts it has been explicitly told;

� incremental: partial, incomplete descriptions of individuals are acceptable;

� supports knowledge retraction: the system tracks dependencies between facts and
allows certain facts to be retracted;

� supports simple rules: these are applied in a simple forward chaining manner, when-
ever appropriate individuals are found;

� supports procedural tests: complex concepts, not otherwise expressible in classic,
can be described procedurally in the host language, so that individuals satisfying
them can be recognized;

� well-integrated with the host language: classic allows values from the host program-
ming language to be managed as instances of their own classes without requiring
them to be \encoded" as classic individuals.

These characteristics allow classic to provide a great deal of power for certain types of
applications, but also limit its utility in some situations.

3.1 When to Use CLASSIC

The most notable feature of classic's family of languages is the \self-organization" of the
concepts de�ned: because concepts have clear de�nitions, it is possible to have the system
organize them into the subsumption hierarchy, rather than have the user specify their exact
place. This is important because standard logic and production systems, for example, do
not address the knowledge engineering issue of organizing large collections of knowledge.
Thus, classic, and more generally, its \sibling" languages can be exploited in any domain
where it is useful to organize a large set of objects that can naturally be represented in

13

terms of \features" or \roles." For example, it has been argued that this kind of automatic
classi�cation is a useful way of organizing a large set of rules in an expert system [Yen et al.,
1989]: by classifying the left-hand sides, the system automatically calculates a well-founded
speci�city ordering over the rules (the generalization hierarchy); this can be used directly
in conict resolution.

Another example of such a family of applications would be information retrieval, where
every object10 has a complex description, and a query may be phrased as a description
of objects having a certain structure (e.g., \�nd all meals with at least two courses, each
of which has a sweet wine as its drink"). In such cases, the descriptions can be classi�ed
with respect to each other so that similar objects are grouped together. This can provide a
much more sophisticated indexing scheme than simple keyword schemes, without increasing
retrieval time signi�cantly since everything is preclassi�ed. (The cost for this type of
system is at concept classi�cation time, but presumably that would not be a problem
in a library scenario.) The lassie system [Devanbu et al., 1990; 1989] is one example
of such an application: it maintains information about a large software system and its
components, viewed from multiple perspectives, and it can be queried as part of the e�ort
of understanding the software system. lassie accepts queries in the form of structured
object descriptions (e.g., \an action that drops a user from a call and is caused by a
button-push by an attendant"), and uses classi�cation to �nd all matching instances of the
query. lassie was �rst implemented in the kandor language, and has now been converted
to classic.

Because the hierarchy of concepts can change dynamically, classic and its close rela-
tives are also more appropriate for database-like applications that have an evolving schema|
the normal state of a�airs in design and speci�cation e�orts, for example. In contrast,
standard database management systems are relatively poor at supporting schema changes,
in comparison to straight updates to data.

Another important class of applications consists of those involving incrementally evolv-
ing descriptions. In contrast to standard repositories of data, such as traditional databases,
a classic knowledge base allows the user to maintain a partial, incomplete view of the
domain of discourse, a view in which information is incrementally acquired. The following
are some of the features of classic that support this:

� role �llers of individuals can be described in ways other than by simple enumeration;
for example, it is possible to

{ assert how many objects an individual is related to via some role, without know-
ing the actual objects (e.g., \every wine has at least one object related to it via
the grape role");

{ describe the �llers of a role, without knowing them; for example, \all the �llers
of the drink role for this course are from France";

� incomplete information may be gradually re�ned as new knowledge is acquired; thus

{ a particular meal can be said to have at least three courses, and then later
discovered to have at least four;

10An object might be a text document, some software component, a chemical compound, a meal, etc.

14

{ a particular individual may �rst be known to be an instance of FRUIT (some
primitive class), and then later be discovered to be an instance of GRAPE (a more
specialized primitive class), without knowing the exact variety of grape (each of
which is a primitive subclass of GRAPE);

� the \closed world assumption," normally invoked in data and knowledge bases, views
the state of knowledge to be complete at any time; therefore when additional infor-
mation (not contradicting past data) is added, one is often faced with the problem
of having to retract certain conclusions that were reached \too hastily." The absence
of the closed world assumption in classic avoids these problems by not drawing
conclusions until all information is known, and hence classic supports incremental
�lling-in of a partially-known situation.

This ability to handle partial knowledge can be usefully exploited in such tasks as the design
or con�guration of artifacts (where something is being created, without having an exact
idea of all its parts until it is completed), or the \detective" process involved in recognizing
objects from clues discovered over time (e.g., identifying criminals). Languages in the kl-
one family have been used for such purposes in con�guration tasks [Owsnicki-Klewe, 1988],
among others.

classic is also suitable for applications that want to enforce constraints on collections
of facts because inheritance is strict and \trigger"-like rules are available. We have one
application (a con�gurator) that uses classic mostly as an integrity checker. This appli-
cation makes use of inheritance by putting constraints on high level concepts and then lets
classic enforce the constraints on all subconcepts, avoiding the redundancy that would
be necessary in many database implementations of the same facts.

classic, unlike other languages of its kind, has been designed to allow the relatively
easy integration of individuals from the host programming language in a manner consistent
with CLASSIC individuals. This makes classic easier to use in situations where values such
as integers, etc., need to be stored in the knowledge base, and in the case of languages like
Common LISP, it allows arbitrary data structures and programs to be kept in a classic
knowledge base|an important feature for AI applications to Software Engineering, for
example.

Because of the object-centered nature of classic, individuals can be created without
knowing some or all of their �nal descriptors. This allows a user to take the following set
of steps: 1) create some new \dummy" individual; 2) relate it to some existing individual
(e.g., as a role �ller); and 3) inspect the KB to see what additional descriptors have been
attached to the dummy individual as a result of rule �rings and other deductions. The
result is a technique for obtaining so-called \intensional" answers to queries|descriptions
of conditions that must hold of any individual, currently existing or not, which satis�es
certain relationships (see [Borgida et al., 1989] and Section 6.7 for more details). Such
querying is not supported by traditional databases.

3.2 When Not to Use CLASSIC

Previous sections have mentioned the goals and philosophy behind the design of classic.
In keeping with our principles of providing e�ective reasoning services, certain expressive
features have been deliberately left out of the language. These features obviously inuence
the situations where classic is appropriate as a representation tool.

15

Because of its object-centered nature, classic is likely to be cumbersome to use in
cases where mathematical entities such as tuples, sequences, geometric entities, etc., are the
center of attention. This is because such entities usually have a notion of \equality" based
on (recursive) component identity. For example, calendar dates are structured objects, and
it seems natural to model them as classic individuals with three attributes: day, month,
and year. However, object identity may provide surprising results: if we are tracking the
date on which wines are bottled through an attribute bottled-on, and we are interested
in �nding out whether two bottles Wine-bottle-53 and Wine-bottle-661 were bottled
the same day, then simply checking that Wine-bottle-53's bottled-on is the same as
Wine-bottle-661's bottled-on may result in the answer \false" even if the two dates
have the same day, month, and year. In order to avoid such problems, the user would have
to search the knowledge base before entering any date, to make sure that a date with the
same attribute values did not already exist.11

With classic, an application requiring simple retrieval of told facts, with no interest
in derived consequences or a complex query language, will pay an unnecessary performance
penalty (both in time and in space) during the processing of input data, and especially
in the revision of told facts, since updates would normally be quite simple in that case.
Furthermore, at least at the moment, classic does not have e�cient data access facilities
built-in in order to handle very large numbers of individuals, such as desired in data-
processing applications.

Since classic does strict inheritance, defaults and exceptions are not easily encoded in
the language. If an application is inherently oriented toward defaults, classic should not
be the language of choice. If, however, there are only a small number of certain kinds of
defaults, classic may be adequate (see Section 6.3).

classic provides only a limited form of rules, where both the antecedent and the
consequent refer to the membership of a single individual in some concept (which of course
might be structured). Applications requiring complex conditions in the antecedent are
much more di�cult to handle properly. First, classic supports neither full negation nor
full disjunction, so these constructs are not usually available for expressing complex trigger
conditions (but see Sections 6.1 and 6.2). Nor is it possible to write rules that are triggered
by the existence of two or more individuals that are not directly related by some chain of
roles (e.g., \if there exist wines x and y such that one is twice as old as the other, then. . . ").
One could consider using something like ops5 as a front-end rule-processing system and
use classic as a back-end structured working memory. An alternative explored in [Yen et

al., 1989] has been to expand the role of the knowledge base to manage both the space of
rules and the policy of rule �ring.

classic does not have full negation. If an application will constantly need to refer to
a concept that includes everything that is not an instance of some other concept, then the
application is not well-suited for classic. Limited uses of negation are discussed in Section
6.1.

Classi�cation systems such as classic are usually implemented as forward-chaining

11In classic, this problem could sometimes be resolved through the use of complex objects in the host-
language domain, as long as the host language performs equality checking in a component-wise fashion
on certain data structures, such as is the case with Common LISP's equal predicate. However, in that
case, the internal structure of the objects of interest (e.g., dates) would not be accessible to classic for
reasoning.

16

inference systems. (By way of contrast, queries in prolog and databases augmented with
recursive rules are usually processed by working backward from the query to the database
of explicitly asserted facts.) This means that the addition of new concepts or individuals is
time-consuming, though retrieval is more e�cient. Therefore if updates are frequent and
time-critical, current implementations would make such systems less than ideal when the
number of objects becomes large.

Because classic distinguishes individuals from (generic) concepts, and does not sup-
port \meta-concepts," classic itself is not suitable in situations where some individual
may in certain cases be viewed as a class with instances. For example, there is no direct
way to associate with the concept WINE a speci�c value through a role such as average-age
or maximum-sugar-content|roles that do not make sense when applied to individual bot-
tles of wine. Note however that this is not an intrinsic lack of kl-one-style languages|it
could easily be remedied in future generations.

Similar problems arise in situations where the \ontology" of the domain is not self-
evident: in a knowledge base about wines, does an instance Kalin-Cellars-Chardonnay

of the concept CHARDONNAY-WINE correspond to a speci�c kind of wine, to a particular
vintage (\the 1985 one"), or, even more speci�cally, to a particular bottle? In the case of
the vintage, is it after bottling, or later on, or both? Such shifts of perspective are not
easily supported by knowledge representation languages that maintain a strict distinction
between individuals and concepts (see Section 5.1.1).

Finally, classic and its relatives have general (weak) reasoning procedures, and do
not support the direct and e�cient addition of specialized kinds of inferences. This means
that applications needing to make intensive use of temporal reasoning or spatial reasoning,
for example, would �nd it di�cult to have classic deduce the desired relationships (but
see [Litman and Devanbu, 1990] for an extension to classic that makes it more useful in
planning applications).

While some of the above limitations are inherent to the object-centered view of classic,
extensions to the system may eventually relax some of the other restrictions. Under active
consideration now are the addition of defaults, a more elaborate rule framework, and large-
scale data storage facilities with a powerful query language.

17

4 Di�cult Ideas

Once you have decided to use classic to build a knowledge base it is important to under-
stand several subtle issues. We will address these in relation to classic; however, many
are equally applicable to the other languages in the kl-one family. The issues concern the
philosophy of the language and knowledge-base design, and can a�ect decisions concerning
the gross structure of the KB. The issues include the amount and kind of information that
should go into a concept de�nition, individuals versus concepts, classic's detection of
incoherencies in role �llers, when rule application occurs, how classic handles unknown
individuals, how updates are done, and the impact of eschewing a closed world assump-
tion. Two other key (and somewhat di�cult) ontological considerations are covered in
Section 5.1.

4.1 Primitive and De�ned Concepts

It has been traditional in the kl-one family of languages to provide for two kinds of
concepts|de�ned and primitive. A de�ned concept is like a necessary \if and only if"
statement in logic. For example, if a white wine is de�ned to be exactly a wine whose color
is white, then deductions can be done in two directions:

� if we know something is a white wine, then we know that it is a wine and it is white;

� if we know something is a wine and has color white, then we know it is a white wine.

In other words, this kind of de�nition includes necessary and su�cient conditions for mem-
bership in the class. So, if WHITE-WINE is de�ned in the obvious way, any object that is
asserted to be one will be both a wine and something whose color is white; also, anything
that is known to be a wine and have white color will be classi�ed as a WHITE-WINE.

A primitive concept includes only necessary (but not su�cient) conditions for member-
ship. In contrast to de�ned concepts, primitive concepts support deductions in only one
direction (like an \if" statement instead of an \if and only if" statement). For example, it
is hard to de�ne \wine" completely. So one might say that, among other things, a wine is
something that has a color that is either Red, White, or Rose. In this case, when classic
is told that something is a wine, it will infer that it has a value restriction on the color

role, but just because something has a color role �lled with value Red, classic does not
infer it to be a wine.

Determining whether a concept should be primitive or de�ned is a key aspect of building
a classic KB. The basic idea is that a primitive concept is appropriate when no complete
de�nition exists or when only part of a completely known de�nition is relevant. In the
former case, we have no choice but to use a primitive concept|if we use a de�ned concept,
accidental and inappropriate \only if" deductions will be sanctioned. In the latter case,
there may be no need to bother with a complete de�nition if the application never demands
that the system automatically recognize an instance of the concept. If the user can be
guaranteed to assert class membership directly, then a full de�nition of a concept like WINE
is not necessary, even if one is possible. De�ned concepts are appropriate when the complete
de�nition is known and relevant, or when one wants the system to determine membership
in a class. Primitive concepts are usually found near the top of a generalization hierarchy

18

and de�ned concepts typically appear as we move further down by specializing general
concepts with various restrictions.

In classic, primitive concepts are distinguished by indices. Thus concepts FOOD and
WINE could be de�ned as classic terms (PRIMITIVE CLASSIC-THING *food*) and
(PRIMITIVE CLASSIC-THING *wine*) respectively; the indices *food* and *wine* al-
low these two concepts to be di�erent, and at the same time permit synonyms to be de�ned:
FAVORITE-BEVERAGE might also be de�ned as (PRIMITIVE CLASSIC-THING *wine*).
The use of indices reinforces that the meaning of a primitive concept de�nition is con-
tained in its expression|as is the case with all other classic descriptor types|while the
name is simply a label that helps the user. De�ned concepts do not need an index as
they are distinguished from other concepts by their very de�nitions. Synonyms can also
be created by de�ning two concepts with equivalent descriptions. Both the concept names
may be used later, but in the concept hierarchy they refer to the same entity.

In general, there are three reasons to consider creating a de�ned concept in systems like
classic:

1. The most important reason is simply that the meaning of an important domain term
can be fully de�ned within the language. In many cases, there will be a natural
name in the domain for the concept and an obvious set of necessary and su�cient
conditions. For example, OENOLOGIST might be de�ned as a PERSON who studies
wines. There will be many of these concepts in an arti�cial domain, and few if the
domain covers mainly naturally occurring objects.

2. In some ontologies, it can be useful to organize the antecedents of rules into a taxon-
omy. Rules can be organized so that each consequent is associated with an antecedent
at the right level of generality, and rules that apply to more general situations can
be inherited and applied in speci�c situations. This allows classi�cation|and not
just direct assertion|to determine when a rule is invoked. For example, as in our
sample knowledge base (see Section 5.3), we might have partial knowledge about
an appropriate wine associated with the general property that a course's food is
seafood (i.e., the wine's color must be white), and another fact associated with a
more speci�c property, for example, that the course's food is shell�sh (i.e., the wine
must be full-bodied). Organization of the antecedents into a hierarchy makes the
ontology clearer and makes knowledge base maintenance substantially easier. Here
a de�ned concept is simply used to express the antecedent of a rule, and need not
correspond to any natural class in the domain; such concepts will most likely not have
any naturally-occurring names in the domain. In our sample KB, we have used con-
structed names like \SHELLFISH-COURSE" for these concepts, although such names
hold no signi�cance other than as placeholders (the antecedents of rules in classic

must be named).

3. For some primitive concepts, there may be a number of ways that class members
can be recognized, even if there is not a single necessary and su�cient de�nition.
A �nal use for de�ned concepts is to express su�ciency conditions for recognition
of members of an otherwise primitive class. For example, while PERSON would most
likely be primitive in most ontologies, conditions like \featherless biped" and \child
of a person" might be considered su�cient conditions for determining personhood. In
classic, one can use a de�ned concept to represent each set of su�cient conditions

19

(e.g., FEATHERLESS-BIPED would be a de�ned concept). Each such concept would be
the antecedent of a rule whose consequent was the primitive concept whose members
were to be recognized (PERSON, in this case).

4.2 De�nitional and Incidental Properties

It is important in classic to distinguish between a concept's true de�nition and any
incidental properties that its instances all share. For example, consider red Bordeaux wines,
which are always dry. The color and the region would clearly be part of the de�nition of
the concept RED-BORDEAUX-WINE, since this constitutes part of the very meaning of the
term. But the property of being dry is certainly not part of the meaning of \red Bordeaux
wine," even if it is a (contingent) universal property of red Bordeaux. Thus, in a classic-
style representation the �rst two properties, (FILLS color Red) and (FILLS region

Bordeaux), would be part of the concept RED-BORDEAUX-WINE, whereas the third would be
expressed as a rule, whose consequent would be (FILLS sugar Dry) and whose antecedent
would be RED-BORDEAUX-WINE.

The distinction between de�nitions and incidental properties is not important in KR
systems that do not perform classi�cation, as it has no e�ect on how these systems work.
However, in classic, since they represent only necessary, and not su�cient conditions,
rules do not participate in either recognition or classi�cation. So, for example, putting the
\dryness" property into the de�nition of RED-BORDEAUX-WINE would mean that a wine
would have to be dry to be recognized as a RED-BORDEAUX-WINE (as opposed to hav-
ing \dryness" automatically asserted about wines that have already been recognized as
RED-BORDEAUX-WINEs); it would also mean that RED-BORDEAUX-WINE would be inappropri-
ately classi�ed under the concept DRY-WINE. (See also Section 5.3, especially footnote 19.)

This type of inappropriate classi�cation also a�ects primitive concepts. Consider the
earlier primitive de�nition of WINE as something that has, among other things, a color that
is either Red, White, or Rose:

(PRIMITIVE (AND (ALL color (ONE-OF Red White Rose))

(AT-LEAST 1 color))

wine).

Another way to view this might be to make WINE an atomic primitive concept (i.e., directly
below CLASSIC-THING), and use a rule to express the color restriction. In both cases, since
WINE is primitive, the color restriction would not be used to answer subsumption questions.
Also, if an individual were stated to be a wine, in both cases, the individual's color role
would be checked for consistency with the restriction. However, there is an important
di�erence. If we added a de�ned concept, COLORED-THING (something that has at least one
color), then if WINE were only a primitive thing that had a color restriction in a rule, it would
not be classi�ed under COLORED-THING. The WINE concept that included the restriction as
part of its meaning would, on the other hand, get classi�ed under COLORED-THING.

The distinction between de�nitional and incidental properties must be carefully made
for all concepts in classic, not just de�ned concepts. In general, the user must decide
on ontological grounds whether a restriction should be taken as part of the meaning of
a concept (and thus participate in classi�cation and recognition) or simply as a derived
property to be inferred once class membership is ascertained. The di�erence between

20

primitive and de�ned concepts is that in the former case class membership must be asserted
directly (by the user or a rule), and in the latter the system can determine it.

4.3 Concepts and Individuals

Although in some ways concepts look very similar to individuals (e.g., classic's syntax
allows the same types of expression for each), there are some subtle (and some not so sub-
tle) di�erences between them. It is useful to understand some of the important distinctions
when trying to understand classic's classi�cation and deductive processes. First, individ-
uals have unique identities and are countable. An individual can be described by concept
expressions that apply to it, but there is a uniqueness assumption that guarantees that two
individuals with di�erent names|even with the same description|will be di�erent individ-
uals. Concepts are descriptions and because of the compositional nature of descriptions, the
concept space is in�nite. The concept hierarchy could include things like full-bodied-wines,
full-bodied-white-wines, full-bodied-white-medium-avored-wines, etc. When considering
the knowledge base, it makes sense to count the individual wines but it is not clear how or
why one would want to count all the descriptions of those wines.

Next, facts in the world can change, and thus individuals can change, too. One might
want to add information to a particular individual or perhaps change something about it,
for example, the price of a wine. In contrast, concept de�nitions and their relationships to
each other do not change. Once someone de�nes a white wine, say as a wine whose color
is white, classic will continue to classify all individuals and concepts with respect to this
de�nition until someone reloads the entire knowledge base. A more subtle issue is that
retraction and addition of facts about individuals do not change the concept classi�cation
hierarchy. Individuals, and their classi�cation, can change through assertion and retraction
of facts; but the semantics of classic was designed to make the concept hierarchy be
immune to changes in individuals. (The concept hierarchy would change monotonically if
a new concept de�nition were added.)

For example, given a concept PICNIC-BASKET de�ned as

(AND BASKET

(AT-LEAST 2 drink) (AT-MOST 2 drink) (ALL drink WINE)

(AT-LEAST 3 food) (ALL food EDIBLE-THING)),

a CALIFORNIA-PICNIC-BASKET de�ned as

(AND PICNIC-BASKET (ALL drink CALIFORNIA-MADE)),

and a KALIN-CELLARS-BASKET de�ned as

(AND PICNIC-BASKET

(FILLS drink Kalin-Cellars-Chardonnay Kalin-Cellars-Cabernet)),

then even though both the wines in the de�nition of KALIN-CELLARS-BASKET happen to be
made in California, KALIN-CELLARS-BASKET will be classi�ed under PICNIC-BASKET but not
under CALIFORNIA-BASKET. The motivation is that the concept hierarchy should not have to
change if the incidental facts about one individual changed. If Kalin Cellars moved its win-
ery to Oregon, we would not want to have to reclassify the concept KALIN-CELLARS-BASKET.
Note, however, that if there were an individual Kalin-Cellars-Basket-1 that was a

21

KALIN-CELLARS-BASKET, this would in fact be classi�ed under CALIFORNIA-BASKET. The
di�erence is that this is an individual, and as such it is classi�ed based on the known
properties of all individuals, including its role �llers. Concepts are not classi�ed based on
properties of individuals; they are only classi�ed based on information that is necessarily
true. The individual Kalin-Cellars-Basket-1 could later be reclassi�ed if the proper-
ties of either Kalin-Cellars-Chardonnay or Kalin-Cellars-Cabernet were changed or
modi�ed.

As mentioned previously, in classic, rules function di�erently with respect to concepts
and individuals. Rules are associated with concepts but they are not \�red" until an
individual is found to be an instance of the concept. Thus, although there may be a rule
that says that wines for seafood courses must be white, this rule would not be enforced
until there was a known individual seafood course.

4.4 Rule Application

A rule (see also Sections 2.1.4 and 6.4) is not actually \�red" until an individual is found to
be an instance of the antecedent concept. Thus, if one creates a rule that says that white
wines must be drunk with seafood courses, this information does not get propagated until
a seafood course exists. One rami�cation of this is that in order to test all the rules in a
knowledge base, e.g., for global consistency, one needs to create individual instances of all
the concepts that are the antecedents of rules. For example, consider the SEAFOOD-COURSE
concept above and a concept SHELLFISH-COURSE that is a kind of SEAFOOD-COURSE with
a rule stating that the wine drunk with a SHELLFISH-COURSE must be a full- or medium-
bodied wine. In order to check consistency of the rules and to observe restrictions appearing
on the wines of courses, individual seafood and shell�sh courses would need to be created.
Once we created a shell�sh course with an associated wine, we would �nd that the wine
would be restricted to being a white, full- or medium-bodied wine.

Because the right hand sides of rules are concepts and not commands, it is not possible
for a retraction to result from the application of a rule. Thus, the only thing that a rule
may do is state that if an individual is found to be an instance of the antecedent concept,
then it is an instance of the consequent concept. If this is not consistent with the other
facts in the knowledge base, then the statement about the individual that triggered the
�ring of the rule would not be allowed as input to the knowledge base.

It should be noted that rules work in one (and only one) direction. In the previous
example, because a course is a seafood course, then we know that the wine for the course
must be a white wine. The system would not make the backward inference that because a
wine for a course is not a white wine, then the course must not be a seafood course.

4.5 Unknown Individuals in CLASSIC

One of the advantages of classic, as pointed out earlier, is that it allows the description of
partially known objects. For example, one way to give information about \null values"|
values that exist but are not currently known to the KB|is through identities between
attribute paths. We can say, for example, that the Thanksgiving day menu will have
the same drink for lunch as for dinner (by adding (SAME-AS (lunch drink) (dinner

drink)) to the description of Thanksgiving-Day-Menu), without knowing the identity of

22

the lunch, dinner or drink objects.
More usually, it is possible to give �ller information about roles of unknown objects;

for example, one can take an individual course, Course-1, and add to its description the
restriction

(ALL drink (FILLS grape Riesling))

to state that the wine served with it is made from Riesling grapes, without knowing the
actual wine to be served.

These examples might make one believe that the system actually creates and maintains
classic individuals for all entities in the domain implied by the current knowledge base
(these are sometimes called \Skolem individuals"). This, however, is not the case. We
cannot say that some restaurant's wine list includes the drink of Course-1, and then, later
on, when we �nd out what is the speci�c drink of Course-1, expect it to show up on the
wine list.

In the current implementation of classic the processing of individuals is complete only
in the case when the �llers of roles are all known. The following two examples illustrate
incompleteness that occurs when some role �llers are not known.

First, in order to determine that some individual Ind is an instance of a concept of the
form (ALL p (ALL q C)), it is su�cient to know the complete set of the q's of the p's of
Ind without necessarily knowing the p's of Ind. Course-1 above illustrates this possibility:
we know that the grapes of the drinks of Course-1 include Riesling, but we don't know
the drinks; if Riesling were known to be a fruit and the grape role could have at most one
�ller, a more complete reasoner would recognize Course-1 as an instance of the concept

(ALL drink (ALL grape FRUIT)).

For the current implementation, we believe that situations in which such conclusions can
be reached are su�ciently rare that we have chosen to avoid the ever-present overhead of
looking for them.

Second, the implementation does not perform case analysis over the set of possible �llers
for some role or role-path. This means that even if Course-2 has one drink, which is either
Mouton-Cadet or Chateau-Lafite, and both are made in France, the system will fail to
recognize that no matter which object is the actual �ller of drink, Course-2 should be an
instance of the concept

(ALL drink (FILLS made-in France)).

We emphasize that the above incompleteness arises only in the presence of the construc-
tions (ALL p (FILLS q ...)) and (ALL p (ONE-OF ...)), used because the actual
�llers of the p role are not yet known. In the current implementation, when information
about individuals is incomplete in this way, the subsumption mechanism normally used for
concepts is used (since that deals with descriptions intended to be incomplete). However,
with that mechanism, the properties of individuals are not considered (e.g., the regions of
the wines in the above example; for the reasons for this, see Section 4.3), even though they
ought to be when processing individuals.

23

4.6 Updates

As mentioned in Section 2.3, classic allows information that has been explicitly asserted
by the user about individuals to be retracted. However, classic does not allow retraction
of information that has been derived from other information. This is best explained with
an example.

Let us begin with an individual that has a restriction on all of the �llers of a role
and a known �ller for that role, and then try to retract the restriction on the �ller. If
classic were told that Lori drinks only kosher wines and that one of the wines that she
drinks is Shalom-Cream-White-Concord, then Shalom-Cream-White-Concord would be
inferred to be kosher (by a propagation inference). If at some point, we actually were
to discover that Shalom-Cream-White-Concord was not kosher, we might want to retract
that fact from our knowledge base. classic would not allow this retraction since its
knowledge about this fact is considered to be derived information. classic would force
the retraction of some piece of user-stated information that led to the conclusion that
Shalom-Cream-White-Concord was kosher. For example, the user could retract either the
fact that Lori drinks Shalom-Cream-White-Concord or the fact that Lori drinks only kosher
wines.

The reason for disallowing retraction of derived information is to maintain consistency
of the knowledge base. If classic allowed direct retraction of the fact that Shalom-Cream-
White-Concord was kosher, then if someone asked if it was, it would be unclear how to
answer: if the ALL restriction on Lori's drinks role were enforced, the answer would be
\yes"; if the directly stated facts on Shalom-Cream-White-Concord were examined, the
answer would be \no." Also, if classic allowed retraction of derived information, some
updates would appear never to have occurred. classic's approach to updates is to retract
the stated information and automatically retract all derived information that was based
on that information. Then the system rederives all facts that hold in the new situation. If
classic allowed the retraction of the fact that Shalom-Cream-White-Concord was kosher,
then following this algorithm, it would have to reclassify Shalom-Cream-White-Concord. It
would once again �nd that Shalom-Cream-White-Concord was a wine that Lori drank and
then it would propagate the restriction that the wine must be kosher. Thus the knowledge
base would simply revert back to the previous state wherein Shalom-Cream-White-Concord

was kosher; the update would appear never to have occurred. The only other way to
maintain consistency would be for classic to retract a piece of information that led to the
derived information. In this case, it is not clear which piece of information that should be,
thus it seems appropriate to force the user to make the choice.

4.7 No Closed World Assumption

classic does not work under the closed world assumption (CWA) for individuals, that
is, it does not assume that anything that it does not know is false. Thus, if some basket
were known to have two speci�c wines in it, classic would not assume that it had only

two wines in it|it would deduce only that the basket had at least two wines in it. So
if this same basket had three things to eat in it and we knew that PICNIC-BASKETs by
de�nition had at least three things to eat and at most two wines in them, this basket could
not be classi�ed as a PICNIC-BASKET. It would only be classi�ed as such when the drink

role became \closed"|i.e., when classic was told or it derived that there could be no

24

other �llers for the drink role. This example shows that in general an individual cannot
be classi�ed under a concept with an AT-MOST restriction until the corresponding role is
closed. The same is true for concepts with ALL restrictions.12

A role can be closed in two ways. The user may explicitly tell classic that a particular
role on an individual will have no more �llers. Alternately, the system may derive that a role
must be closed. If the system is told that an individual is an instance of a PICNIC-BASKET,
and it also knows that PICNIC-BASKET contains the wines Kalin-Cellars-Chardonnay and
Marietta-Zinfandel, then classic can deduce that the role is closed since the de�nition
of PICNIC-BASKET states that there may be at most two wines.

12There is one way to classify an individual with respect to concepts with AT-MOST or ALL restrictions.
If the individual in question has a restriction (either directly or by inheritance), then classic can make
deductions based on this restriction, including determining that it implies the target AT-MOST or ALL
restriction. If, for example, classic is trying to classify something as a CALIFORNIA-BASKET and its drink
role is not closed, but it does have a restriction that all its drinks are made in the Napa Valley, and we
know that everything that is made in Napa Valley is made in California, then even without knowing all
the �llers of the drink role, classic can make the deduction that it satis�es the ALL restriction on drink

of CALIFORNIA-BASKET.

25

5 Building CLASSIC Knowledge Bases

Once it has been determined that classic is an appropriate language to use in describing
a domain, and some of the more subtle language issues are well in hand, there is still the
signi�cant problem of designing the knowledge base given the domain structure. While not
identical to the traditional expert systems process, the process of developing a classic

KB is a form of knowledge engineering, where the key is �nding the right way to break the
domain into objects and their relationships. While there is no single method for producing
such an ontology, we discuss some general issues to consider and o�er one possible process
for creating a knowledge base. We also present parts of a classic knowledge base, to
illustrate the style of description of a typical domain representation.

5.1 Basic Ontological Decisions|Individuals and Roles

Since frame systems like classic are object-centered, the key idea is to determine what the
\objects" in the domain are. This involves the speci�cation of the individual items about
which information can be gathered and asserted (the individuals of the domain), as well
as the speci�cation of classes of those items that share common properties (the concepts).
The properties of the individuals and the relationships between them are then represented
as roles. This is all complicated by two key facts: what constitutes an \individual" is not
always clear (di�erent levels of abstraction are possible), and some terms seem equally well
expressible as concepts and as roles. In all of these cases, the knowledge engineer needs to
make a determination fairly early in the KB design process.

Let us consider these two issues in turn, and then we will discuss a general procedure
for getting a domain characterized in classic.

5.1.1 Individuals versus Concepts

Imagine that we are developing a knowledge base of foods and wines. Intuitively, it would
seem clear that items like WINE and WHITE-WINE (a wine whose color is white) should be
concepts. It is likewise reasonably clear that CHARDONNAY-WINE (a wine made from the
chardonnay grape) should also be a concept. However, things are not so simple when we
attempt to represent a single \wine."

In some knowledge bases, for example in an application that will recommend a wine to
a patron for a general class of dinners (e.g., shell�sh), an individual winery's varietal (e.g.,
Forman Chardonnay) will be an appropriate individual. In our sample knowledge base
(Section 5.3), we use this as the level of our individuals. However, for some problems, this
level might not be �ne-grained enough. For the discriminating wine-drinker, the vintage of
a particular wine may be critical, and thus FORMAN-CHARDONNAY would have to be a concept,
in order that 1981-Forman-Chardonnay could be an individual. Or, it might be necessary
in some applications to make individual bottles of wine be individuals in classic.

While di�erent kinds of objects can be considered individuals from di�erent points of
view, in a system like classic we are forced to make a commitment at the outset. In
that case, the key question to ask is, which objects would be appropriate to count in an
application? Or, alternatively, in a retrieval application, which objects would be best to
retrieve given a query? For a wine-advisory application, the answer given by a wine steward
to the question, \How many wines do you stock?" would indicate which items to count as

26

individuals (e.g., Forman-Chardonnay). Alternatively, one could count as individuals the
items appearing on a menu (e.g., winery, varietal, and vintage).

Whatever level we �x for our individuals, any other descriptions in the domain that
could be considered individuals from some other point of view can be handled in one of
two less-than-ideal ways. First, they could simply be represented as concepts. Thus, if
1981-Forman-Chardonnay was an individual, FORMAN-CHARDONNAY would be a concept,
and the former would probably be described by the latter. An alternative would be to
allow both objects to be individuals. But since classic does not currently support a
\meta-description" facility, this representation would be incomplete in an important way,
in that classic would maintain no relationship at all between the two individuals. One
could go so far as to place a generic-varietal role on 1981-Forman-Chardonnay and �ll
that role with Forman-Chardonnay, but classic would treat that role just as any other,
and no properties of the more generic varietal individual would be inherited by the more
speci�c vintage one.

5.1.2 Concepts versus Roles

As mentioned, another key distinction that the user of a language like classic is forced to
make is that between concepts and roles. A number of people working with kl-one-like
languages have reported having di�culty deciding whether something should be a concept
or a role. Terms like \father," \landlord," etc., can be used equally well in either sense. For
example, \Ron is a new father" uses father as a concept. \Ron is the father of Rebecca"
uses it as a role. Even a more straightforward term like \grape"|an obvious candidate
for concepthood|can present a problem. We can easily imagine the properties of grapes
(color, where-grown, age-of-vines, etc.), and can visualize GRAPE's place in a taxonomy
of types of foods. However, it is equally plausible to imagine a grape role for the concept
of WINE, indicating the kind of grape a wine is made from. Should grape be a concept, a
role, or both?

While the treatment of any particular domain term will really depend on the application,
there are some general guidelines to use when trying to design concepts and roles. Since part
of the problem is the use of nouns in natural languages to correspond to both concepts
and roles, we need to look beyond the surface properties of words. In languages like
English, certain nouns seem to reect items that have existence independent of any others
(e.g., \person," \apartment," \wine," \grape"), and others reect items that depend on
others for their existence (e.g., \father," \landlord," \vintage," \skin"). The former most
obviously correspond to one-place predicates in �rst-order logic. We would have no trouble
describing an individual by one of these terms without reference to any other individuals
on whose existence they depend. Thus, we could independently characterize an object as
a grape without needing to make reference to any wines made of out of such grapes, nor
would there ever have to be any. The description of an item as a grape would stand on its
own, without implying the existence of any unmentioned individuals.13

On the other hand, while we might naturally use some terms from the latter set as
if they were also one-place predicates (e.g., \Deb is a landlord"), they in actuality imply

13This discussion is intended to be intuitive, and relies only on a naive understanding of the ontology
of the world. It is not intended to invoke deep discussion about existence, objecthood, or any other
metaphysical issues.

27

the existence of a second argument (e.g., whom Deb is the landlord of). In this case, the
primary representation in classic should be as a role. Any interpretation of the term as
a concept would be derivative from its interpretation as a role, since there is always an
implied second argument.

The clear guideline for discrimination between concepts and roles is thus the determi-
nation as to whether a description can stand on its own without implying an unmentioned
object related to the object in question. In an intuitive ontology, SHELLFISH would clearly
be a concept, and vintage would clearly be a role. There are some cases|including those
just mentioned|where it will be quite easy to determine which is which. In the case of an
unquestionable concept like SHELLFISH, it is almost impossible to imagine using the term in
a phrase like, \the shell�sh of hsomething elsei." That is, it would be very hard to imagine
a property of something called its \shell�sh." In the case of an unquestionable role like
vintage, it is almost impossible to consider using the term without the \of" phrase. For
example, it is unusual to use \vintage" in any other way than as the vintage of a particular
wine.

Unfortunately, most terms will not be so pure in their natural use. However, the basic
guideline still applies. Even though we can refer to a \wine's grape" (i.e., its composition),
the concept of a grape stands on its own and does not need to lean on the existence
of any wines. Even though someone is referred to as a \father," that description is not
truly meaningful without taking into account the implied child. One interesting di�erence
between these two cases (in which a term can be used either as a concept or as a role) is
that in the latter case, the value restriction used for the father role would have a di�erent
name (MAN) than the role, whereas it seems most natural in the former case to name the
role with the same name as the value restriction (the grape role of a WINE would be �lled by
a GRAPE). It would seem somewhat silly and uninformative to have the value restriction of
the father role be FATHER. This is because the only di�erence between the concept MAN and
any proposed concept like FATHER is the man's playing the role of father. One could �nd
all of the fathers in a knowledge base simply by �nding the set of men and then discarding
those not known to �ll the father role for some individual. The concept of a father clearly
has its meaning compositionally dependent on the meaning of the father role.

In the history of kl-one-style languages, proposals have been made for a type of ob-
ject called a \qua-concept" [Freeman, 1982], which would be a concept whose meaning is
dependent on some role. FATHER as a qua-concept would have a slightly di�erent structure
than, say, MAN, reecting the dependence of someone's being a father on the existence of
another individual (some interesting property inheritance can be done in this case as well).
classic, however, has no facility for this, so the best one can do is adhere to some reason-
able conventions. If a separate concept for the role father is truly necessary (e.g., to act
as a value restriction for some other role), consider naming it MAN-qua-father, to indicate
the functional dependence. This concept would be a subconcept of MAN, and it could be
made to work as if it were a qua-concept through the use of a procedural test, so that at
least classi�cation of all fathers could be achieved automatically.14

In the case of a WINE's grape, one could use the same name for the role and the concept
without resorting to any other mechanism. classic will not get confused; however, users

14What will be missing in this case is the automatic recognition that an OLD-FATHER is a FATHER, since
no subsumption is computed on test functions (assuming FATHER and OLD-FATHER each had a single test
function to compute their membership).

28

might. Thus, for clarity, it might be safer either to preface the role name with \has" to
clearly distinguish the two senses (i.e., has-grape would be a role of WINE), or to create a
compound concept name so that the role name will be simple. In our sample knowledge
base in Section 5.3, we do the latter, creating the category of a WINE-GRAPE, and using
grape as a role for WINE. In many cases, there is a natural role name to use so that this
problem will not even arise. Such is the case with a term like \vintage," where the value
restriction of the vintage role for WINE would be YEAR. It is also not required in any way
that the names of roles should be nouns. made-from would be a perfectly reasonable name
for the role we have been calling grape.

Finally, one should in general consider using roles to represent parts of objects, intrinsic
properties (e.g., the color of a wine), and extrinsic properties (e.g., the price of a wine, which
is not an intrinsic feature, but rather set in some external way), as well as for functionally-
de�ned terms like \vintage."

5.2 A Simple Knowledge Enginering Methodology for CLASSIC

When attempting to analyze a domain and build a classic-style representation, it is
often di�cult to know how to begin. Over the years, we have developed some guidelines
for building knowledge bases that break the process down into a series of steps, starting
with a rough cut at the domain ontology and then re�ning the representation in several
passes. While this method may oversimplify the knowledge representation process, it may
be useful in many application areas, especially for those who are just getting started in
using classic or other languages like it. We continue using our wine and meal examples.
We have included below sketches of portions of the evolving KB to exemplify most of the
steps.

1. Enumerate Object Types. First, without making any �ne-grained distinctions,
it is useful to try to write down a list of all types of objects you would ever care to
make statements about or explain to a user. For example, important wine-related
object-types will include wine; grape; winery; location; a wine's color, body, avor,
and sugar-content; di�erent types of food, like shell�sh and red-meat; subtypes of
wine such as white wine; etc. The key thing initially is to get a comprehensive list of
names without worrying about overlap between concepts or any properties that the
items might have.

2. Distinguish Concepts from Roles. Looking at the list, make a major cut by
distinguishing between objects that have independent existence and those that depend
on other objects for their existence (see Section 5.1.2). The former will be concepts,
the latter must be roles. For example, wines will exist as independent objects, as

29

will wineries, but the body of a wine and its sugar content are more appropriately
thought of as roles. In developing a classic KB, it is also necessary to distinguish
which roles are attributes, i.e., which ones have exactly one �ller. Thus, color might
be an attribute, since a given wine can have only one color, and grape would be a
regular, multiply-�llable role, since a wine can be made from more than one type of
grape.

3. Develop Concept Taxonomy. Group the concept objects into a hierarchical tax-
onomy by asking if by being an instance of a type, an object will necessarily (i.e.,
by de�nition) be an instance of some other type. The latter will then be above the
former in the hierarchy. For example, if something is a WHITE-WINE, it will neces-
sarily be a WINE. Thus WHITE-WINE will be a descendant of WINE in the taxonomy.
Remember that it is possible for a type to be an immediate descendant of more than
one other type. For example, a DRY-WHITE-WINE must be both a DRY-WINE and a
WHITE-WINE.15

15Note that once the �nal representation of a concept like DRY-WHITE-WINE is completed, classic will
be able to determine automatically that it is a subconcept of the other two concepts. However, when
developing the domain ontology, it is not a bad idea to sketch out these relationships by hand; once the
formal representation is constructed and everything is classi�ed, the user can check the resulting taxonomy
against his/her original conception of the domain, to see if the formal representation is correct.

30

4. Individuals. Isolate the set of key individuals that will be important in all uses of
the application. For example, wine colors like red, white, and rose, and wine sugar-
levels like dry and sweet will be critical in the de�nition of concepts like WHITE-WINE
and DRY-WINE. For each individual, try to determine all of the concepts that aptly
describe it.

5. Determine Properties and Parts. Once the basic ontology is laid out, with
the taxonomic relationships between concepts being fairly clear, it is time to turn
attention to the internal structure of the concepts. For each concept enumerated so
far, write down a list of its properties. These should include

� \intrinsic" properties like the color and body of a wine;

� \extrinsic" properties like a wine's name and its price;

� parts, if the type of object is structured; these can be both physical and abstract
\parts" (e.g., the courses of a meal, the grape of a wine, the casks of a winery).
(In the case of wines, we have no intuitively obvious parts.)

Record also any key relationships between individual members of the class and other
items (e.g., relationships like employee that might not be considered properties or
parts of a winery). Each of the above relationships should be assigned to a role (while
it is useful to distinguish between parts and other properties, classic and related
languages do not have any formal mechanism for distinguishing amongst di�erent
types of roles). It is reasonable to expect that many of the roles will be used in many
concepts. Each of the items determined to be a role in Step 2 should be accounted
for.

N.B. Some of the roles determined to be relevant to a concept in this step will
ultimately end up playing a part in the de�nition of the concept, and some will
be used to express derived properties. In other words, some of the role restrictions
generated in Steps 6{9 must be satis�ed for an individual to be considered to satisfy
a concept; the other restrictions will be appropriate to infer about the individual once
it is determined to satisfy the concept de�nition. For example, a value restriction like
(FILLS color White), derived in Step 7, will be part of the meaning of WHITE-WINE;
this means that an individual will need to have its color be provably white before it
will be placed in that category. The same restriction could, however, be a derived

31

property of CHARDONNAY-WINE, since it is not necessary to determine that a wine is
white before deciding that it is a Chardonnay (it need only be known that it is made
with a Chardonnay grape). Keep this in mind for Step 10. Also, see Section 4.2 for
more on this distinction.

6. Determine Number Restrictions. For each concept and each role that is relevant
to its meaning, determine the cardinality of the set of role �llers (e.g., that a wine
can have only one region but several grapes). These will be expressed in classic as
AT-LEAST and AT-MOST restrictions.

7. Determine Value Restrictions. For each concept and each of its relevant roles,
determine the class of values that can appropriately �ll the role. These \value restric-
tions" (e.g., that the region of a WINE must be a geographic region) will be expressed
in ALL restrictions. In the event that a role must be �lled by a single individual (e.g.,
a CHARDONNAY-WINE must have its grape role �lled by exactly Chardonnay), or a �xed
set of individuals, use the FILLS construct in conjunction with an AT-MOST restric-
tion. If there is more than one potential �ller (not all of which must necessarily �ll
the role), but the set of candidates is a �xed set of individuals, use the ONE-OF con-
struct (e.g., a NON-SWEET-WINE has as the �llers of its sugar role the set (ONE-OF
Dry Off-Dry)).

32

8. Detail Unrepresented Value Restrictions. For each value restriction thus needed,
make sure that the appropriate concept exists in the previously-generated general
taxonomy. If it had previously been proposed, add it to the general taxonomy (for
example, it is probable that we had not thought to create the concept of a geographic
region prior to thinking about the structure of WINE). If the concept will be impor-
tant in the domain model, go through all of the above steps for that new concept
and any related ones you neglected to create before. For example, if you determine
that the grape of a WINE must be a WINE-GRAPE, and the concept of such a grape
is important, consider creating specialized subconcepts that might be useful (e.g.,
CHARDONNAY). For each of the new concepts, consider their properties and relations
to other concepts and individuals.

9. Determine Inter-role Relationships. For each concept, enumerate any relation-
ships among its roles that might be important to your domain knowledge (for example,
it might be important to restrict the suggested-retail-price of a WINE such that
it is the WINE's maker's marketing-rep that sets it). classic and languages like it
have only limited means of expressing these inter-role restrictions, but they are useful
to enumerate. For a classic representation, any constraint that can be expressed
as an equality between two chains of attributes on the same object can be expressed
with the SAME-AS construct. Any other constraints must be expressed in opaque
form with the TEST-C or TEST-H construct.

33

10. Distinguish Essential and Incidental Properties. At this point, for each con-
cept, we will have determined a set of parent concepts (expressed in the taxonomy)
and a set of restrictions, namely number, value, inter-role equality (SAME-AS), and
opaque test restrictions. For each concept, look over this set, think about what it
would mean to be a member of the class speci�ed by the concept, and isolate the
set of concepts and restrictions that would appropriately constitute a set of essential
properties. These properties would be su�cient for determining membership in the
concept in question. For example, with a RED-BORDEAUX-WINE, the fact that it is a
WINE whose color is Red and whose region is Bordeaux would be essential to its
de�nition. It sugar content would be an incidental property and would not be neces-
sary to know before determining that something was a red Bordeaux. The essential
properties would constitute the de�nition of the concept while the other properties
would then be expressed as the consequents of rules associated with the concept (e.g.,
RED-BORDEAUX-WINE would have a rule asserting that the wine is a DRY-WINE; thus
the sugar content need not be known in order to determine that something is a red
Bordeaux, but it would be universally true of all red Bordeaux wines).

11. Distinguish Primitive and De�ned Concepts. Determine if each proposed con-
cept de�nition is complete. That is, do the conditions determined by the above steps
constitute a complete set of necessary and su�cient conditions for the concept? In
the case of a RED-BORDEAUX-WINE, the conditions that it is a WINE, that its color
must be exactly Red, and that its region must be Bordeaux would indeed be both
necessary and su�cient. For those items whose de�nitional complement is not fully
su�cient, make the concepts primitive. For example, we may not consider WINE to
be fully de�ned as a POTABLE-LIQUID with at least one grape; we would not want
every liquid made from grapes to be considered a wine. Thus WINE would have to be

34

primitive.

12. Determine DISJOINT-PRIMITIVE Concepts. For those concepts determined
to be primitive, determine if any are mutually exclusive. Group those so determined
into clusters under a common superconcept.16 Typically, the highest concepts in the
hierarchy will be primitive and disjoint. For example, SHELLFISH and FISH would
be good candidates for disjoint primitive concepts with a mutual parent of SEAFOOD.
They are disjoint because no individual can be described by more than one of them
at a time, and they are primitive because in this domain we are not interested in any
internal structure or further description of individuals that satisfy these descriptions
(we will typically declare by �at that Crab is a SHELLFISH, without expecting classic
to be able to determine it by itself). Use the DISJOINT-PRIMITIVE construct to
specify these concepts.

The result of translating the informal representation created above into classic will
be a knowledge base of concepts, roles, individuals, and rules (note that an item must
be de�ned prior to its �rst use, since there are no circular de�nitions allowed; however, a
concept can be used in the consequent of a rule that is associated with it). The concepts
will have a set of necessary, and sometimes, necessary and su�cient conditions expressed as
sets of more general concepts and restrictions (those concepts with no su�cient conditions
would be constructed using the PRIMITIVE or DISJOINT-PRIMITIVE operators).
The parents and restrictions on a concept would be conjoined with the AND operator,
and each restriction would be expressed with an ALL, AT-LEAST, AT-MOST, FILLS,
or SAME-AS operator (or a TEST, if appropriate). Named concepts would also be the
antecedents of rules expressing necessary conditions|descriptions that would follow once
something were determined to be a member of the class. Here we show both the schematic
form and the classic form of the two examples we have been following:

16In classic, there can be several disjoint groupings under the same concept, with the assumption that
there is a common dimension along which all the items in a grouping di�er (imagine, for example, grouping
subconcepts of PERSON by gender or by age). Thus the DISJOINT-PRIMITIVE construct requires the
user not only to specify the parent concept, but to name a grouping into which to put the primitive being
speci�ed.

35

5.3 A Sample Knowledge Base

In order to illustrate the general ways a user will use classic to build a knowledge base,
we will now consider some sample de�nitions from the world of wines and meals. The basic
goal here is to allow a user to describe the food eaten at a particular course of a meal (in a
very simple way), and have the KB recommend an appropriate set of wines. The knowledge
is organized so that a new wine can be described in a number of di�erent ways (e.g., it

36

might be asserted to be a late-harvest Semillon, or a white wine from the Loire region); it is
then classi�ed with respect to a general set of useful wine-types (e.g., CHARDONNAY-WINE).
Once the wine is classi�ed, properties not directly asserted by the user are derived using
rules whose antecedents are the general wine-types (e.g., if all Chardonnays are either
full- or medium-bodied, this information will be represented as a rule whose antecedent is
the concept of a Chardonnay wine). Thus wines can be entered in a variety of ways|by
region, by varietal, by color, etc.|and ultimately as much as possible about their color,
body, sweetness, etc., will be ascertained automatically.

In parallel to the hierarchy of useful wine-types, we have a simple hierarchy of food-
types. The food-types are used to describe a course the user is considering having (e.g., \a
MEAL-COURSE17 whose food is a SHELLFISH"). The connection between wines and food is to
be made via a hierarchy of course-types (e.g., SHELLFISH-COURSE). Each useful course-type
(not every possible course-type forces a choice of wines) has an associated rule that states
what characteristics are required of its wine (e.g., seafood-courses demand white wines,
oyster-courses need sweet wines). The system makes a \recommendation" in a simple
forward-chaining way: the user's course-type is classi�ed, rules applying to it are inherited
from all descriptions that apply to the course, the rules are �red, and the consequents assert
various constraints on the drink of the course. The user can then examine the drink role
of the course to see what characteristics are necessary for the wine, as well as which wines
are compatible with those characteristics. This is an example of a simple forward-chaining
constraint propagation application. The value of organizing the knowledge in this fashion
is that the wine descriptions are decoupled from the requirements for each course type. A
new wine can be added, a given wine can easily have its characteristics changed, or a given
food can be associated with di�erent wine characteristics, all by making only local changes.

Figure 2 shows the top few levels of the concept hierarchy for our wine and food KB.
In the subsequent �gures illustrating our concepts, we do not present the information

in the exact form in which we would type it to classic|that would involve for each item
a call to a Common LISP function. Instead, we have used the notation in Figure 3 to
signify the type of description being de�ned or applied.

Thus, for example,

WINE-COLOR , (AND WINE-PROPERTY (ONE-OF White Rose Red))

would mean that WINE-COLOR is fully de�ned as a WINE-PROPERTY whose only possible
instances are White, Rose, and Red. Similarly,

SEAFOOD-COURSE � (ALL drink WHITE-WINE)

would mean that if an object were determined to be a SEAFOOD-COURSE, it automatically
follows that all of its drinks are WHITE-WINEs. The two de�nitions,

MEAL-COURSE
+
1) CONSUMABLE-THING,

(AND (AT-LEAST 1 food)

(ALL food EDIBLE-THING)

(AT-LEAST 1 drink)

(ALL drink POTABLE-LIQUID))

17In the sample KB, we use course for the role of a course at a meal, and MEAL-COURSE for the concept
of a course.

37

Figure 2: Hierarchy of the Sample Knowledge Base

38

expression meaning

c , e c is fully de�ned by the expression e

c) e c is a primitive subconcept of the concept represented by e

c
i) e c is a disjoint primitive subconcept of the concept
represented by e, in the disjoint grouping labeled \i"

c is the combination of the expression E and
c
+

i) e, E a (unnamed) disjoint primitive subconcept of the concept
represented by e (which is in the disjoint grouping labeled \i")

c � e c is the antecedent of a rule whose consequent is e
i ! e i is an individual and is asserted to have the properties

described by e

r 7! r is a role

r
!
7! r is an attribute

Figure 3: Symbols Used to Describe the Sample Knowledge Base

and

MEAL
+
1) CONSUMABLE-THING,

(AND (AT-LEAST 1 course)

(ALL course MEAL-COURSE))

would mean that MEAL-COURSE and MEAL were both specializations of CONSUMABLE-THING,
they were mutually disjoint, and they each had the additional properties speci�ed.

Figure 4 illustrates the beginning of our wine and food KB. Since roles are used in
concept de�nitions, and, in the current version of classic, do not themselves depend on
any other constructs, the roles to be used in the KB would be de�ned �rst. In this case, we
assume the following roles are de�ned at the beginning of the KB: color, body, flavor,
sugar, region, grape, maker, drink, food, and course (note that all but grape and
course are attributes). After the roles are de�ned, it is usually a good idea to de�ne the
classes of objects that are used only in value restrictions of other concepts. In the �gure,
we de�ne a simple primitive, WINE-PROPERTY, which will serve as the parent for all wine-
properties later used in the KB.18 Since we want wines to have colors, and we can specify
in advance all of the individuals that can be wine colors, we create a de�ned subconcept
of WINE-PROPERTY called WINE-COLOR, specifying all of its possible instances with a ONE-
OF description. Similarly, we create the wine-properties of WINE-BODY, WINE-FLAVOR, and
WINE-SUGAR.

Next we create the top part of the main hierarchy. Because concepts and roles must be
de�ned before they are used, a classic KB �le will generally proceed from most general
concepts to most speci�c ones. In Figure 5, we de�ne a few high-level primitive concepts.
The simple world we are describing is broken into four disjoint parts: WINE-PROPERTYs,
WINERYs, WINE-REGIONs, and CONSUMABLE-THINGs (this will be used for foods and wines,

18As illustrated, WINE-PROPERTY is a member of disjoint grouping number 1 of CLASSIC-THING. In Fig-
ure 5, we illustrate the other concepts that are disjoint from this one.

39

Wine and Meal Knowledge Base.

After de�ning the roles, de�ne value restriction concepts and
individuals to be used in further de�nitions.

color
!
7!

body
!
7!

flavor
!
7!

sugar
!
7!

region
!
7!

grape 7!

maker
!
7!

drink
!
7!

food
!
7!

course 7!

WINE-PROPERTY
1) CLASSIC-THING

WINE-COLOR , (AND WINE-PROPERTY (ONE-OF White Rose Red))

WINE-BODY , (AND WINE-PROPERTY (ONE-OF Light Medium Full))

WINE-FLAVOR , (AND WINE-PROPERTY (ONE-OF Delicate Moderate Strong))

WINE-SUGAR , (AND WINE-PROPERTY (ONE-OF Sweet Off-Dry Dry))

Figure 4: Sample Knowledge Base | Roles and Some Basic Value Restrictions

40

De�ne the other topmost concepts.

WINERY
1) CLASSIC-THING

WINE-REGION
1) CLASSIC-THING

CONSUMABLE-THING
1) CLASSIC-THING

EDIBLE-THING
1) CONSUMABLE-THING

POTABLE-LIQUID
1) CONSUMABLE-THING

SEAFOOD
1) EDIBLE-THING

FRUIT
1) EDIBLE-THING

SHELLFISH
1) SEAFOOD

FISH
1) SEAFOOD

De�ne some instances of WINERY and WINE-REGION.

Forman ! WINERY

Kalin-Cellars ! WINERY

Napa-Valley ! WINE-REGION

De�ne WINE-GRAPE and some instances of it.

SWEET-FRUIT
1) FRUIT

GRAPE
1) SWEET-FRUIT

EATING-GRAPE) GRAPE

WINE-GRAPE) GRAPE

Chardonnay ! WINE-GRAPE

Semillon ! WINE-GRAPE

Figure 5: Sample Knowledge Base | More General Concepts

as well as meals and courses|special categories needed to trigger the inferences about
wine-types for di�erent foods|see Figure 9). In this �gure we also de�ne several types of
CONSUMABLE-THING, and then some representative instances of WINERY and WINE-REGION.
We then include some information about grapes that will be needed later. Note that there
may be some grapes used for eating that are also used for making wine, so EATING-GRAPE

and WINE-GRAPE have been de�ned as primitive but not disjoint concepts under GRAPE.
So far, we have created only simple primitive concepts. classic allows the construction

of much more complex, but still primitive concepts. For example, we might want to give
WINE some complex necessary conditions as part of its meaning, but tell classic that the
conditions we give it are not su�cient for recognizing wines. We would accomplish this by
de�ning WINE as a primitive with a complex expression, as illustrated in Figure 6. We can
read this de�nition of WINE as something like, \a wine is, among other things, a potable
liquid with exactly one color [because color is an attribute], which must be a wine-color,
exactly one body, . . . "

Once we have the key basic concept of a WINE de�ned, we can describe the more special-
ized types of wines we would like to be able to recognize automatically. Figure 7 illustrates
three fully-de�ned wine subconcepts. For example, a WHITE-WINE is fully de�ned as a
wine whose color is white. The condition that the color of a WHITE-WINE must be exactly

41

De�ne the concept of a wine.

WINE) (AND POTABLE-LIQUID

(AT-LEAST 1 color)

(ALL color WINE-COLOR)

(AT-LEAST 1 body)

(ALL body WINE-BODY)

(AT-LEAST 1 flavor)

(ALL flavor WINE-FLAVOR)

(AT-LEAST 1 sugar)

(ALL sugar WINE-SUGAR)

(AT-LEAST 1 region)

(ALL region WINE-REGION)

(AT-LEAST 1 grape)

(ALL grape WINE-GRAPE)

(AT-LEAST 1 maker)

(ALL maker WINERY))

Figure 6: Sample Knowledge Base | WINE

White is su�ciently stated as (FILLS color White), since color has been de�ned as
an attribute, and an attribute has exactly one �ller. In the case of CHARDONNAY-WINE,
whose grape role must be �lled by exactly the individual Chardonnay, the de�nition of
WINE says that a CHARDONNAY-WINE (or any wine) must have at least 1 grape, and the
restriction on CHARDONNAY-WINE, (ALL grape (ONE-OF Chardonnay)), speci�es what
that grape is, and that there can be no additional �llers for the grape role. Returning
to WHITE-WINE, note that White is consonant with the general value restriction previously
stated for the color role of WINE (i.e., White is a WINE-COLOR). In any case, classic will
recognize any wine whose color is determined to be white by any means (user assertion,
rule �ring, propagation from some other assertion, etc.) as an instance of WHITE-WINE.

Figure 7 also illustrates some rules based on CHARDONNAY-WINE. Since we have stated
nothing speci�c about the Chardonnay grape (i.e., it is never stated that wines made from
this grape are white), we have a rule stating that Chardonnays have color white. Thus, any
wine whose grape is recognized to be exactly Chardonnay will end up being a WHITE-WINE

as well, since the rule will assert that its color is white, and classi�cation will use the fact
that it is a wine and also white to determine that it is a WHITE-WINE.19 We also include
rules about the body and avor of Chardonnays.

Once we have the wine hierarchy de�ned, it is reasonable to create and describe indi-
viduals for various particular wines. Figure 8 illustrates two typical descriptions of such
individuals. Note that by inheritance Forman-Chardonnay will end up with all known
properties of CHARDONNAY-WINEs (as well as of WINEs in general), as well as the individual
properties stated in the �gure. As we mentioned above, once this individual is created,
it will be classi�ed under all appropriate de�ned concepts, such as FULL-BODIED-WINE. In
addition, in this case, the rule that says that Chardonnays are always white will �re, and

19Note that if we had included the white color restriction as part of the de�nition of CHARDONNAY-WINE,
it would have made that restriction one of the conditions necessary for a wine to have before it could be
determined to be a Chardonnay wine. Since the essential property of being a Chardonnay wine is having
the right grape, then the white color is a derivative property that should not be included in the basic
concept de�nition. Thus we use a rule to assert that Chardonnays are white.

42

De�ne some subcategories of wines.

A white wine is a wine whose color is white.
WHITE-WINE , (AND WINE (FILLS color White))

A full-bodied wine is a wine whose body is full.
FULL-BODIED-WINE , (AND WINE (FILLS body Full))

A CHARDONNAY-WINE is a wine with exactly one grape, which is Chardonnay.
CHARDONNAY-WINE , (AND WINE (ALL grape (ONE-OF Chardonnay)))

Now assert some rules about Chardonnay wines.

Chardonnays are always white.
CHARDONNAY-WINE � (FILLS color White)

Chardonnays are always either full- or medium-bodied wines.
CHARDONNAY-WINE � (ALL body (ONE-OF Full Medium))

Chardonnays are not delicate.
CHARDONNAY-WINE � (ALL flavor (ONE-OF Strong Moderate))

Figure 7: Sample Knowledge Base | De�ned Wine Subconcepts

Forman-Chardonnay will end up being classi�ed as a WHITE-WINE as well. Also note that
Kalin-Cellars-Semillon is only partially described, in that we have stated that one of
its grapes is Semillon, but have not closed the grape role.

In Figure 9 we illustrate some simple primitive concepts that will appear below SHELLFISH

in the hierarchy. We then represent the concepts MEAL-COURSE and MEAL as disjoint prim-
itive concepts under CONSUMABLE-THING (disjoint also from POTABLE-LIQUID and EDIBLE-

THING|see Figure 5), but having complex structure. A MEAL-COURSE is de�ned as having
exactly one food and exactly one drink (recall that food and drink are attributes), while
a MEAL is de�ned as having at least one course. In this simple application, the type of food
served at a course will be stated directly; the categorization of the course on the basis of
this food will then be used to trigger rules constraining the properties of any wine served.
Thus, the food concepts and individuals need no internal structure. A course individual
will be classi�ed under a speci�c type of course (e.g., SEAFOOD-COURSE in Figure 10) as
soon as its food is known, and the drink role will be used to accumulate properties of the
wine for the given course.

Finally, to allow our knowledge base to perform the appropriate inferences when we
describe an individual course, we will need a set of rules that constrain the type of wine to
be drunk with each appropriate food-type. In some cases, we can have very general rules,
such as seafood requiring white wines, and in others we can have very narrowly applicable
ones, such as oysters requiring sweet wines. Each rule is associated with the appropriate
concept in the KB, as illustrated in Figure 10. When a given course is described (such as
Course-256 in the �gure), all rules that apply will be inherited and triggered. In the case
of Course-256, since the food of the course is oysters, the course will be classi�ed as an
OYSTER-SHELLFISH-COURSE: because food is an attribute, the food role of Course-256 is
closed as soon as it is asserted that it is �lled with Oysters; with Oysters as the only

43

Create and describe some individual wines.

Forman-Chardonnay ! (AND CHARDONNAY-WINE

(FILLS body Full)

(FILLS flavor Moderate)

(FILLS sugar Dry)

(FILLS maker Forman))

Kalin-Cellars-Semillon ! (AND WINE

(FILLS grape Semillon)

(FILLS body Full)

(FILLS flavor Strong)

(FILLS sugar Dry)

(FILLS maker Kalin-Cellars))

Figure 8: Sample Knowledge Base | Individual Wines

De�ne some primitive food-types.

OYSTER-SHELLFISH
1) SHELLFISH

NON-OYSTER-SHELLFISH
1) SHELLFISH

Create some instances of foods.

Oysters ! OYSTER-SHELLFISH

Crab ! NON-OYSTER-SHELLFISH

De�ne the concepts for a course and a meal

MEAL-COURSE

+
1) CONSUMABLE-THING,

(AND (AT-LEAST 1 food)

(ALL food EDIBLE-THING)

(AT-LEAST 1 drink)

(ALL drink POTABLE-LIQUID))

MEAL

+
1) CONSUMABLE-THING,

(AND (AT-LEAST 1 course)

(ALL course MEAL-COURSE))

Figure 9: Sample Knowledge Base|Foods, Meals, and Courses

44

De�ne some concepts that allow recognition of course-types,
which will be antecedents of rules constraining wines.

SEAFOOD-COURSE , (AND MEAL-COURSE (ALL food SEAFOOD))

Note that SHELLFISH-COURSE will be classi�ed under SEAFOOD-COURSE and
OYSTER-SHELLFISH-COURSE will be classi�ed under SHELLFISH-COURSE:

SHELLFISH-COURSE , (AND MEAL-COURSE (ALL food SHELLFISH))

OYSTER-SHELLFISH-COURSE , (AND MEAL-COURSE (ALL food OYSTER-SHELLFISH))

Now assert rules pertaining to course-types:

SEAFOOD-COURSE � (ALL drink WHITE-WINE)

SHELLFISH-COURSE � (ALL drink

(AND (FILLS body Full)

(ALL flavor (ONE-OF Moderate Strong))))

OYSTER-SHELLFISH-COURSE � (ALL drink (FILLS sugar Sweet))

Create a speci�c course with oysters as food.

Course-256 ! (AND MEAL-COURSE (FILLS food Oysters))

Figure 10: Sample Knowledge Base | Course-types with Rules

�ller of that role, the ALL restriction on OYSTER-SHELLFISH-COURSE is satis�ed. The
classi�cation of Course-256 as an OYSTER-SHELLFISH-COURSE makes applicable all rules
from OYSTER-SHELLFISH-COURSE, SHELLFISH-COURSE, and SEAFOOD-COURSE. The drink of
Course-256 will thus be constrained to be a sweet (from OYSTER-SHELLFISH-COURSE), full-
bodied (from SHELLFISH-COURSE) white wine (from SEAFOOD-COURSE), of either moderate
or strong avor (from SHELLFISH-COURSE).

45

6 Tricks of the Trade

The expressive limitations of classic mean that there are many things that it cannot
directly represent. After building a number of knowledge bases using the system, we have
found some ways of getting around some of these expressive limitations.

The reason these techniques are presented in a separate section is that the meanings that
classic places on the resultant concepts are di�erent than their intuitive meanings. Under
some circumstances classic will act in a way inconsistent with the intuitive meanings.
Often this divergence only shows up when certain types of extra information are added to
the knowledge base|if this extra information is never added, then classic will adhere to
the intuitive behavior. (For example, see the �rst way of representing a limited form of
negation in Section 6.1.) Therefore, the knowledge base designer must be extremely careful
when using these techniques.

These techniques are most useful when used sparingly. If a designer �nds it necessary to
use a large number of these \tricks," then perhaps classic should not be used for his/her
application.

6.1 Negation and Complements

As noted before, there is no full negation in classic, but there are a few ways to represent
limited forms of negation or complements.

One method can be used to de�ne the concept of non-sweet wines. Given that wines
have exactly one �ller for their sugar role, and that the only possible �llers for the sugar
role of wines are Dry, Off-Dry, and Sweet, a non-sweet wine can be de�ned as

(AND WINE (ALL sugar (ONE-OF Dry Off-Dry))).

Since WINE-SUGAR has exactly three instances, this concept is the complement of sweet
wines (WINEs with �ller Sweet for their sugar role) in the universe of wines.

However, this trick does not work as well when a restriction is based on a primitive
concept (i.e., WINE-GRAPE) and not on a ONE-OF concept (i.e., WINE-SUGAR). A non-
Chardonnay wine can be de�ned as

(AND WINE (ALL grape (ONE-OF Semillon))),

since Chardonnay and Semillon are the only grapes in the KB. However, if a new grape is
added to the KB (i.e., Riesling), then this de�nition would no longer represent the wines
made from all grapes except Chardonnay.

Another form of negation can be represented with disjoint primitives. If the concepts
FISH and SHELLFISH are disjoint primitives under the concept SEAFOOD, then there can
be no individuals belonging to both FISH and SHELLFISH. However, in this situation, it is
possible for something to be a seafood and neither a �sh nor a shell�sh, and thus FISH is
not exactly the relative complement of SHELLFISH with respect to SEAFOOD.

Finally, test concepts can also be used to capture part of the meaning of complements. A
test function that returns false if an individual satis�es some concept, true if the individual
cannot possibly satisfy it, and unknown otherwise, can be used to create a complement
concept. However, there is a small problem with this method of complementation. The
complement concept will not be recognized as disjoint from the other concept, so, for

46

instance, the conjunction of the two concepts will not be considered incoherent, although
it cannot, in reality, have any instances.

6.2 Disjunction

Although there is no \OR" operator in the classic language, disjunction can be captured
in some special cases.

The �rst of these is simply a ONE-OF concept, which provides an extremely simple
and uninteresting case of disjunction (of the individuals in the set). The second case builds
on the �rst by using the ONE-OF concept in a value restriction. For example, the concept

(AND WINE (ALL grape (ONE-OF Semillon Sauvignon)))

represents the disjunction of wines made from semillon grapes and wines made from sauvi-
gnon grapes. Once a disjunctive concept like this is formed with a ONE-OF embedded
in an ALL, such a concept can in turn be used in another ALL restriction, thus allowing
arbitrarily deep nesting.

The above types of disjunction are not really tricks at all. They represent true dis-
junction|however, only certain, very limited, types of disjunction can be represented this
way.

General disjunction can be crudely approximated, however, by using a simple trick.
When one concept subsumes others, then it subsumes their disjunction, and can, under
some circumstances, act like their disjunction. For example, in Figure 5, SEAFOOD subsumes
the disjunction of SHELLFISH and FISH. If no individuals become instances of SEAFOOD
without becoming instances of either SHELLFISH or FISH then SEAFOOD can be considered
to be the disjunction of SHELLFISH and FISH. Because there may be instances of SEAFOOD
that are neither SHELLFISH nor FISH, this is not true disjunction. (Learning that an
individual is not an instance of FISH does not make it an instance of SHELLFISH.)

6.3 Defaults

classic enforces a strict inheritance hierarchy and does not provide a default operator.
However, a limited form of defaults can be represented with the aid of rules and test
functions.

For example, to make wines have default color red, use a test function (perhaps called
no-known-color) that returns true if the number of currently known �llers of the color

role is zero, and false otherwise20 and use it in the concept WINE-CAUSE-DEFAULT-RED,
de�ned as

WINE-CAUSE-DEFAULT-RED , (AND WINE (TEST-C no-known-color))

WINE-CAUSE-DEFAULT-RED � (FILLS color Red).

This will cause wines that are not given a color to become red wines because they will pass
the test function, become instances of WINE-CAUSE-DEFAULT-RED, and be given color Red

as a result of the �ring of the rule above.

20This is di�erent from knowing that there are no possible �llers for the color role, as classic can
represent individuals, such as instances of WINE, for which there must be a �ller for a role without knowing
the actual �ller.

47

WARNING: Small changes to the implementation of classic could cause this trick to
fail as it uses a test function that violates the conditions placed on test functions. (Test
functions in classic should be monotonic, i.e., adding information cannot cause the result
of a test function to change from true to false, or vice versa.) Use this trick with extreme

caution.

6.4 More Powerful Rules

Rules are an important part of classic, but are limited in that the antecedent of a rule
can only be a named classic concept. However, using test restrictions in the antecedent
of rules allows arbitrary pattern-matching to determine rule applicability. For example,
we might want to extend the wine example to consider vintages and then conclude that
if some wine is from a good vintage year then it is expensive. The de�nition of \good
vintage" might be quite complicated, and not expressible in classic without using a test
restriction.

This method does not cause any particular problems, aside from the general problem
inherent in the use of (opaque) test functions, as long as the test conforms to the conditions
placed on test functions. However, excessive use of test functions can cause performance
degradation if the test concepts end up near the top of the concept hierarchy, where their
tests will be run frequently.

6.5 Integrity Checking

Rules can also be used to provide a sort of integrity checking, by using test concepts as
their conclusions. In this case, once an individual is found to satisfy the antecedent of the
rule, it is made an instance of the test concept. Part of this process is to run the test
function on the individual; if the individual is inconsistent with the test function then the
individual is also removed from the antecedent concept. In this way complicated integrity
constraints can be created for otherwise test-free concepts.

For example, we might want to check that late-harvest grapes have a sugar content of
at least 30. This can be done by creating a rule

LATE-HARVEST-GRAPE � (TEST-C sugar-at-least-30)

where sugar-at-least-30 returns unknown if there is no currently known �ller of the sugar-
content role of a grape, true if the �ller is known and is at least 30, and false otherwise.

This is di�erent from including the test condition as part of LATE-HARVEST-GRAPE in
two ways. First, the test does not become part of the de�nition of the concept so it will
not be subsumed by another concept that happens to incorporate the same test. Second,
if LATE-HARVEST-GRAPE is a de�ned concept then individuals can be recognized as its
instances without passing the test; they are forced to be (and remain) consistent with the
test.

6.6 Restrictions on Roles

The classic language supports restrictions of the form \all of the drinks in a picnic basket
are wines," and \a picnic basket has at least one drink," but there is no operator for saying

48

precisely \at least two of the drinks in a picnic basket are white wines."21

When this sort of restriction is needed, a test can be used. For example, a test function
to determine if at least two of the drinks in a picnic basket are white wines can be written
as follows:

� if there are two known �llers of the drink role of the picnic basket that are instances
of WHITE-WINE then return true;

� otherwise, if there can be at most one �ller of the drink role of the picnic basket,
then return false;

� otherwise, if all the �llers of the drink role of the picnic basket must be white wines
because the type of its drinks is subsumed by WHITE-WINE, and there must be at least
two drinks for the picnic basket, then return true;

� otherwise, if all the picnic basket's drinks are known, then if there is at most one of
them that is an instance of WHITE-WINE then return false;

� otherwise return unknown.

As with all tests, classic treats the function as a black box, and will not discover any
subsumption relationships between di�erent test functions. This can pose a problem here
because there are a large number of possible subsumption relationships between these sorts
of restrictions. For example, \at least two of the drinks in a picnic basket are white wines"
subsumes \at least three of the drinks in a picnic basket are full-bodied white wines,"
but classic cannot discover these relationships, which depend on the behavior of test
functions.

Further, this test function contains a potentially dangerous \closed-world assumption"
in that it assumes that a drink that is not known to be an instance of WHITE-WINE will never
be an instance of WHITE-WINE. Since classic allows the acquisition of extra information
about individuals, it is possible that a drink could later become an instance of WHITE-WINE,
thus invalidating the conclusion drawn by this test function.

6.7 Dummy Individuals

As mentioned in Section 3.1, classic can answer queries about mandated properties of
�llers of roles without knowing the identity of the �llers. Some of these queries can be
answered by getting the value restriction for the role. For example, Course-256 from
Figure 10 must have the body of all its drinks be Full, since it has the property

(ALL drink (FILLS body Full)),

by virtue of its being a SHELLFISH-COURSE. This can be determined by classic without
knowing the actual drink of the course.

However, this method does not pick up the rules that might be applied to the role �ller.
For example, under the de�nitions,

21This is a deliberate omission, as the inclusion of such operators makes determining subsumption com-
putationally intractable [Nebel, 1988].

49

KOSHER-WEDDING , (AND WEDDING (ALL meal KOSHER-MEAL))

KOSHER-MEAL � (ALL course (ALL drink KOSHER-WINE))

Lori's-Wedding ! KOSHER-WEDDING,

the value restriction for the drink of any course of the meal at Lori's-Wedding would
not be known to be a KOSHER-WINE, even though the meal at Lori's-Wedding must be
a KOSHER-MEAL and there is a rule on KOSHER-MEAL asserting that all the drinks of each
course must be KOSHER-WINEs. To pick up this restriction it is necessary to create a
\dummy" meal for Lori's-Wedding. Then the rule will �re, and assert the restriction that
the drink for each course of this dummy meal must be a KOSHER-WINE.

The creation of dummy individuals must be performed with care, as classic assumes
that they are distinct from all other individuals. Thus when the real meal is found, it
cannot just be added, but, instead, either the dummy individual must be removed as a
�ller, or the two individuals must be merged in an application-dependent manner. It is
best to use a dummy individual to answer the query, and then immediately remove it.

50

7 Conclusion

By now it is clear that learning a programming language involves more than just learning
its syntax and semantics: there are usually an associated methodology or paradigm of use
that needs to be absorbed, a collection of techniques for handling various special situations,
warnings about frequent pitfalls, and the recognition that some other language might be
more appropriate for a speci�c programming task. For example, in order to use prolog ex-
pertly one should, among other things, understand the paradigm of logic programming, the
trick of building data structures with unbound variables (which are assigned a value later
in the computation), the problems of negation by failure, and the cost of non-deterministic
search/backtracking.

Knowledge representation languages are no di�erent in this respect. For this reason, we
have chosen to provide in this chapter more than just the description of an existing, imple-
mented classi�cation-based frame language. We have attempted to present the paradigm
of using such languages by working through examples and by listing situations in which
classic is likely to be useful. Additionally, we have indicated under what circumstances
languages like classic may prove to be less than ideal. We have also assembled from our
experiences of using the language and teaching it to others a collection of potentially con-
fusing distinctions, together with \tricks of the trade" for representing special situations.
Most importantly, we have presented a methodology for working through a domain and
producing a knowledge base that reects the domain structure in classic terms.

51

References

[Borgida et al., 1989] Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Lori Alperin Resnick. CLASSIC: A structural data model for objects. In Proceedings of

the 1989 ACM SIGMOD International Conference on Mangement of Data, pages 59{67.
Association for Computing Machinery, June 1989.

[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. Schmolze. An
overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171{
216, April{June 1985.

[Devanbu et al., 1989] Premkumar Devanbu, Peter G. Selfridge, Bruce W. Ballard, and
Ronald J. Brachman. A knowledge-based software information system. In Proceedings

of the Eleventh International Joint Conference on Arti�cial Intelligence, pages 110{115,
Detroit, Michigan, August 1989. International Joint Committee on Arti�cial Intelligence.

[Devanbu et al., 1990] Premkumar Devanbu, Ronald J. Brachman, and Peter G. Selfridge.
LaSSIE|a classi�cation-based software information system. In Proceedings of the In-

ternational Conference on Software Engineering, Nice, France, 1990. IEEE Computer
Society.

[Freeman, 1982] Michael W. Freeman. The qua link. In James G. Schmolze and Ronald J.
Brachman, editors, Proceedings of the 1981 KL-One Workshop, pages 54{64, Jackson,
New Hampshire, June 1982. Bolt Beranek and Newman Inc.

[Lenat and Guha, 1990] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-

Based Systems. Addison-Wesley, Reading, Massachusetts, 1990.

[Litman and Devanbu, 1990] Diane Litman and Premkumar Devanbu. Clasp: A plan and
scenario classi�cation system. AI Principles Research Department, AT&T Bell Labora-
tories, 1990.

[Nebel, 1988] Bernhard Nebel. Computational complexity of terminological reasoning in
BACK. Arti�cial Intelligence, 34(3):371{383, April 1988.

[Owsnicki-Klewe, 1988] Bernd Owsnicki-Klewe. Con�guration as a consistency mainte-
nance task. In W. Hoeppner, editor, Proceedings of GWAI-88|the 12th German Work-

shop on Arti�cial Intelligence, pages 77{87. Springer Verlag, September 1988.

[Patel-Schneider, 1984] Peter F. Patel-Schneider. Small can be beautiful in knowledge
representation. In Proceedings of the IEEE Workshop on Principles of Knowledge-Based

Systems, pages 11{16, Denver, Colorado, December 1984. IEEE Computer Society.

[Peltason et al., 1987] Christof Peltason, Kai von Luck, Bernhard Nebel, and Albrecht
Schmiedel. The user's guide to the BACK system. KIT-Report 42, Fachbereich In-
formatik, Technische Universit�at Berlin, January 1987.

[Senyk et al., 1989] Oksana Senyk, Ramesh S. Patil, and Frank A. Sonnenberg. Systematic
knowledge base design for medical diagnosis. Applied Arti�cial Intelligence, 3(2{3):249{
274, 1989.

52

[Yen et al., 1989] John Yen, Robert Neches, and Robert MacGregor. Using terminological
models to enhance the rule-based paradigm. In Proceedings of the Second International

Symposium on Arti�cial Intelligence, Monterrey, Mexico, October 1989.

53

