The Design Space of
Frame Knowledge Representation Systems

Peter D. Karp
Artificial Intelligence Center
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

pkarp@ai.sri.com

May 5, 1993

SRI AI Center Technical Note #1520

Key words: Knowledge representation, frame, semantic network, description logic, termi-
nologic reasoner, design principles, design space



Contents

1 OVERVIEW OF FRAME REPRESENTATION 6
1.1 The Structure of Frames . . . . . . . ... .. L o oo 6
1.2 A Functional View of Frame Representation Systems . . . . . . .. ... .. 8

1.2.1 Storage and Retrieval of Knowledge . . .. ... ... ... ..... 8
1.2.2  Problem Solving and Inference . . . .. .. ... ... ... ..... 8

2 DESIGN PRINCIPLES FOR KNOWLEDGE REPRESENTATION SYS-
TEMS 9

3 THE FAMILIES OF FRAME KNOWLEDGE REPRESENTATION SYS-

TEMS 11

4 FRAMES 13
4.1 Link Terminology . . . . . . . .« . . e 13
4.2 The Diversity of Frames . . . . . . . . . . . ... ... e 14
4.3 Discussion . . . . . . Lo e e e e e e e e e 15

5 WHAT’S IN A SLOT 16
5.1 Slot Notation . . . . . . .. . e 17
5.2 SlotUnits . . . . . o0 o e 18
5.3  Own Slots, Member Slots, and Bookkeeping Slots . . . . . . .. .. ... .. 19
5.4 Slot Data Types . . . . . . . o e e 19
5.5 Slot Value Constraints . . . . . . .. .. ... e 20
5.5.1 Constraints on Individual Slot Values . . . . ... ... .. ... .. 20

5.5.2  Constraints Between Slot Values . . . . ... ... ... .. ..... 21

5.6 Discussion . . . . . . . Lo e e e e e e 22

6 INHERITANCE 23
6.1 What Information is Inherited? . . . . . . .. ... o oo 23



6.2 Semantic Modes of Inheritance . . . . . . . . . .. .. Lo 24

6.3 Conflicts in Inheritance . . . . . . . . . . . e 25
6.4 Time of Inheritance . . . . . . . . . e 25
6.0 Discussion . . . . . . . e e e 26
7 PERSISTENT KNOWLEDGE BASES 28
7.1 Discussion . . . . . . o v i e e e e e e e e 29

8 OBJECT-ORIENTED AND ACCESS-ORIENTED PROGRAMMING 30

8.1 Object-Oriented Programming . . . . .. ... ... ... ... .. .... 30
8.2 Access-Oriented Programming . . . ... ... ... ... ... ... .. 31
8.3 Discussion . . . . . . . e e 32

9 CLASSIFICATION 32
9.1 Overview . . . . e e e 32
9.2 Discussion . . . . . . . e e e e 35
9.2.1 Performance . . . . . . . . e e 36

9.2.2 How is Classification Used? . . . . . . . . . . . ... .. ... .... 37

9.2.3 Combining the Paradigms . . . . . ... ... ... ... .. ..., 38

10 SUMMARY 40
11 ACKNOWLEDGEMENTS 42



ABSTRACT

In the past 20 years, Al researchers in knowledge representation (KR) have implemented
over 50 frame knowledge representation systems (FRSs). KR researchers have explored a
large space of alternative FRS designs. This paper surveys the FRS design space in search
of design principles for FRSs. The FRS design space is defined by the set of alternative
features and capabilities — such as the representational constructs — that an FRS designer
might choose to include in a particular FRS, as well as the alternative implementations
that might exist for a particular feature. The paper surveys the architectural variations
explored by different system designers for the frame, the slot, the knowledge base, for access-
oriented programming, and for object-oriented programming. We find that few design
principles exist to guide an FRS designer as to how particular design decisions will affect
qualities of the resulting FRS, such asits worst-case and average-case theoretical complexity,
its actual performance on real-world problems, the expressiveness and succinctness of the
representation language, the runtime flexibility of the FRS, the modularity of the FRS, and
the effort required to implement the FRS.



INTRODUCTION

In the past 20 years, Al researchers in knowledge representation (KR) have implemented
over 50 frame knowledge representation systems (FRSs). KR researchers have explored a
large space of alternative FRS designs. The central goal of this paper is to present and
elucidate design principles for FRSs, and to note where such principles are lacking, i.e., to
identify open problems in KR. The FRS design space is defined by the set of alternative
features and capabilities — such as the representational constructs — that an FRS designer
might choose to include in a particular FRS. The design space also includes the alternative
implementations that might exist for a particular feature.

The foremost principle in any area of design is an understanding of what the design space
is. This paper provides that understanding by surveying the RS design space, and by
providing a road map to the FRS literature. As well as elucidating what the FRS design
space is, this survey should help to decrease the frequent duplication of effort where different
researchers rediscover the same new points in the design space. In addition, an understand-
ing of the current range of FRS behaviors is of crucial importance to the standardization
efforts now under way in the KR community [63]. Ideally, an “interlingua” for knowledge
representation would be able to represent any knowledge that can be represented in any
existing FRS. More realistically, those representational constructs that are excluded should
be excluded intentionally, rather than due to ignorance of their existence. Additional prin-
ciples should aid FRS designers in choosing the optimal FRS design for a given class of
applications.

The FRS design space is quite large, therefore this paper does not attempt to cover all of
it. We do not consider FRS features such as graphical user interfaces, context mechanisms,
truth maintenance systems, production-rule systems, or declarative query languages. Fur-
thermore, FRSs form a subset of all KR systems. This paper is not concerned with other
types of KR systems such as theorem provers, nonmonotonic reasoners, or temporal rea-
soners. It is concerned with substantial FRS implementations that have been employed in
complex applications such as natural language understanding and medical diagnosis.

FRSs are known by a variety of names, including semantic networks, frame systems, descrip-
tion logics, structural inheritance networks, conceptual graphs, and terminologic reasoners.
Some researchers may object to my lumping all these types of KR systems together in one
survey. Although differences do exist between different subclasses of FRSs, and the plethora
of names for these systems are not completely synonymous, past authors have interchanged
these names enough that we would be hard pressed to provide precise, consistent definitions
for all of these different terms. Terminology aside, it is productive to survey these systems
together because they were developed by closely related communities of researchers with
similar problem-solving goals, because they have been tested in real-world application do-
mains, because their design spaces overlap to a large degree, and because they share many
of the same design principles. These properties do not apply to other KR systems, and a
survey of all KR research would not fit in a single paper, therefore my aggregation stops
before that of Schubert, who sees a convergence in all the major KR schemes [82].

The intended audience for this paper is quite wide, ranging from experts in KR, to re-



searchers in other areas of Al, to database researchers. This paper should be of great
interest to database researchers because of the high degree of similarity between FRSs and
object-oriented databases since the two classes of systems are different variations of essen-
tially the same data model. The paper will also be valuable to FRS users who wish to select
the existing FRS whose capabilities best meet the requirements of a problem at hand.

The paper begins with an overview of FRSs in a tutorial style for readers who are not
well acquainted with these systems (Section 1). Section 2 discusses in more detail what
design principles for FRSs should tell us, and what design principles have thus far been
elucidated. Section 3 provides a terse road map to the FRS literature from a historical
perspective by listing the major families of FRSs, and by listing the general literature
citations for each FRS. This organization puts most FRS citations in one place and avoids
the need to repeatedly list the same citations later in the paper. Section 4 begins the
in-depth exploration for the FRS design space by considering the diverse models of the
frame that different researchers have explored. Section 5 considers alternative slot designs,
and Section 6 considers alternative models of inheritance. Section 7 considers mechanisms
for providing persistent knowledge base storage, and Section 8 discusses object-oriented
and access-oriented programming systems within FRSs. Finally, Section 9 discusses the
classification operation and its role within FRSs.

As a result of researching this survey I identified a number of methodological problems in
KR research. To focus the subject of this paper, and because of space limitations, they will
be discussed in a separate publication.

1 OVERVIEW OF FRAME REPRESENTATION

This section presents a very brief, simple introduction to frame representation. It begins by
describing the general classes of tasks that FRSs are used for. Next it presents the structure
of frames. We then consider the services that FRSs provide to users and to application
programs. This section simplifies the notion of a frame considerably to set the stage for the
detailed analysis that follows in the remainder of the paper. Other introductions to frame
representation can be found in [27, 30, 11, 26].

It is important to note what FRSs are not: FRSs are not equivalent to “knowledge-based
systems”. This term is very general and encompasses a large number of artificial-intelligence
techniques. FRSs are a subset of knowledge-representation systems, which in turn are used
to build knowledge-based systems.

1.1 The Structure of Frames

A frame is a data structure that is typically used to represent a single object, or a class
of related objects, or a general concept (or predicate). Researchers have used a number of
words synonymously for the word frame, including memory unit, and unit. Whereas some
systems define only a single type of frame, other systems distinguish two or more types,



such as class frames and instance frames. The former represent classes or sets of things
(such as the class of all computers in the VAX-11 family or the class of all VAX-11/780s)
and the latter represent particular instances of things (such as a particular VAX-11/780).

Frames are typically arranged in a tazonomic hierarchy' in which each frame is linked to
one (or in some systems, more than one) parent frame. A parent of a frame A represents
a more general concept than does A (a superset of the set represented by A), and a child
of A represents a more specific concept than does A. A collection of frames in one or more
inheritance hierarchies is a knowledge base (KB).

Frames have components called slots. The slots of a frame describe attributes or properties
of the thing represented by that frame, and can also describe binary relations between that
frame and another frame. In addition to storing values, slots also contain restrictions on
their allowable values. We might stipulate that the Word_Size slot defined in the COMPUTER
frame must be an integer between 1 and 100. Slot definitions often have other components in
addition to the slot name, value, and value restriction, such as the name of a procedure than
can be used to compute the value of the slot, and a justification (in the truth-maintenance
sense) of how a slot value was computed. These different components of a slot are called
its facets.

Inheritance causes slot definitions to propagate down the taxonomic hierarchy. For exam-
ple, when we create a frame called VAX-8000 Family as a child of the VAX Family frame,
VAX-8000 Family automatically acquires the slot Word Size, and the value of this slot
automatically becomes 32. Thus VAX-8000 Family has inherited its Word_Size slot from
VAX Family. Similarly, VAX_Family might have inherited the Word_Size slot from the
frame DIGITAL Computer, but we would not have given the Word_Size slot the value 32 in
DIGITAL Computer because not all computers manufactured by DIGITAL have a word size
of 32. Thus, the value 32 was defined locally in VAX Family.

Inheritance is a tremendously useful tool for engineering complex knowledge bases. When
a user creates a new frame and that frame inherits slots from its parent, the inherited
slots form a template that guides the user in filling in knowledge about the new concept.
Because all slot and facet information is available at run time (in contrast to object-oriented
programming languages such as C++), it is accessible to a program such as a user interface
that guides the user in entering new knowledge. For example, the user interface can directly
determine the slot datatype and value restrictions. Inheritance also facilitates systematic
changes to complex knowledge. If we discover that all Cray computers can run UNIX in
addition to CrayOS, we can encode this information in one place: by altering the value of
the Operating Systems slot in the Cray_Computer frame.

Some FRSs compute a relation between class frames called subsumption that allows the
FRS to automatically determine the correct position of a class in a taxonomic hierarchy
(to classify the class). Frame A subsumes Frame B if A defines a more general concept
than does B, meaning that every instance of the concept B is an instance of A. For
example, because the value of the Manufacturer slot of DIGITAL Computer is DIGITAL,

!Synonyms: generalization-specialization hierarchy, is—a hierarchy, class-subclass hierarchy, AKO (a kind
of) hierarchy, and inheritance hierarchy.



whereas the Manufacturer slot of Computer is constrained only to be an instance of the
class Corporation, a FRS could infer that DIGITAL Computer is subsumed by Computer.

1.2 A Functional View of Frame Representation Systems

This section discusses FRSs from a functional perspective by examining two classes of
operations that these systems provide to problem-solving programs: direct storage and
retrieval of knowledge, and inferential problem solving.

1.2.1 Storage and Retrieval of Knowledge

Most FRSs provide a library of (usually LISP) functions that application programs can call
to perform such actions as: adding a new value to a slot, deleting one or more values of
a slot, retrieving the current value of a slot, creating a new frame with specified parents,
changing the parents of a frame, deleting a frame, renaming a frame, adding a new slot to
a class, and adding a facet to a slot.

In addition to the function-call library, some systems allow the user to accomplish these same
functions with a graphical user interface. For example, KEE, STROBE, CYCL, and KREME
[2] allow the user to create graphical displays on a workstation of both the taxonomic
hierarchy of a knowledge base, and of the slots within a given frame. Items within these
displays are mouse sensitive, and can be used to call up menus from which the operations
described in the previous paragraph can be selected.

In an approach pioneered by KRYPTON, some FRSs provide a declarative language that
users can employ to both query a KB, and to assert new facts into a KB. In PROTEUS, for
example, the query (Manufacturer 7X:Computers DIGITAL) would return a list of asser-
tions describing all children of the Computers frame whose Manufacturer slot contained
the value DIGITAL. Little research has been performed on optimizing the evaluation of FRS
queries.

1.2.2 Problem Solving and Inference

Application programs that interact with a FRS typically employ either production rules
or classification to perform inference based on knowledge stored in the FRS. Most FRSs
provide either production rules or classification, whereas LOOM and CLASSIC support both.
In KEE and CLASS [80], each production rule is itself encoded as a single frame. In KEE and
PROTEUS, queries such as those described in the previous section can invoke a backward-
chaining production-rule interpreter to derive the queried slot value. Similarly, THEO users
can attach PROLOG rules to slots to cause THEO to backward chain to derive queried slot
values. KEE and PROTEUS can also invoke forward chaining when new slot values are
asserted.



Classification is used to support inference in two different ways. First, the very act of
classification can be a problem-solving action, for example, if a system can recognize a
description of a patient as an instance of a disease class, it has computed a diagnosis.
Second, in the KL-ONE family of FRSs, classification is a key component of the query
processor that allows the system to reason about relationships among terms used in a query
and terms in a knowledge base. These systems answer a query by translating the query into
a concept description, and then classifying that concept to determine its placement in the
taxonomic hierarchy. All concepts below the query concept in the hierarchy are subsumed
by the query, and thus comprise the answer to the query.

The principal principle of KR that has thus far been discovered concerns the complexity of
computing subsumption (and therefore, classification). Researchers have compared the cost
of computing subsumption in a number of different FRS representation languages, and have
found that the more expressive the language, the higher the cost of computing subsumption
within that language. This result is called the expressiveness—tractability tradeoff, and will
be discussed in more detail in Section 9.1.

Some FRSs leverage their inference capabilities by combining them with context mecha-
nisms and truth-maintenance systems [20]. These facilities are valuable for investigating
alternative problem solutions in parallel, and for tracking the dependence of problem solu-
tions on underlying assumptions. Context mechanisms exist in THEO, KEE [29], STROBE,
CycL [36], SRL, LoOM, and CRL; truth-maintenance systems are present in THEO, KEE,
CYCL, LooM, CLASSIC, KL-TWO, and PROTEUS.

2 DESIGN PRINCIPLES FOR KNOWLEDGE REPRE-
SENTATION SYSTEMS

The large size of the FRS design space implies that the designer of an FRS must make
many decisions. For example, we will see that she must decide what model of the frame and
the slot to utilize, what inheritance mechanism(s) to use, whether to employ classification,
and what subsumption algorithm to use if classification is employed. A comprehensive set
of principles of KR should guide FRS designers — and users — through a complex web of
choices. FRS users need to know what combination of representational constructs will allow
them to quickly build an application that has acceptable performance. They need to know
what representational constructs can encode the knowledge in their domain most naturally
and succinctly, to yield an application that can be maintained easily as it evolves. Users
need to know the theoretical costs and benefits of FRS features, and they need to know
how a particular FRS will perform under the demands of their application. KR principles
should guide users in choosing the optimal FRS for a particular problem — the one with
the maximum benefits and the minimum costs.

When designing an FRS to solve one or more classes of application problems, implemen-
tors must address a superset of these issues. As well as anticipating what combination
of representational constructs will yield sufficient expressiveness and performance for the



applications, the implementors must make a number of engineering decisions. For example,
implementors must decide among alternative implementation strategies for the representa-
tional constructs they have chosen. And although we might hope that the implementations
of every FRS feature are independent, they often interact to yield an FRS that is not
modular and is therefore difficult to develop, debug, maintain, and improve.

I claim that comprehensive FRS design principles are largely lacking. The main principle of
KR that has thus far been elucidated is the expressiveness—tractability tradeoff that relates
the expressiveness of a representation language with the cost of computing classification
within that language. This principle is clearly valuable since it helps users and implemen-
tors understand the expressive benefits and the worst-case computational costs of several
representation languages. However, this principle describes only the worst-case theoretical
impact of one class of representational constructs (concept-definition constructs) on one type
of FRS operation (classification). Many additional principles are needed to cover other rep-
resentational constructs, other FRS operations, other theoretical performance besides worst
case, actual performance in addition to theoretical performance, and other criteria besides
performance and expressiveness. More specifically:

o Classification is only one of many operations that FRSs compute. Some FRSs do not
even compute classification. We must know the impact of different representational
constructs on other operations such as computing inheritance, storing and retrieving
slot values, and production-rule inference within an FRS.

e Expressiveness—tractability analyses have not considered representational constructs
such as metaclasses, facets, and inheritance across multiple links. Although not all
of these constructs will affect the classification operation, they will certainly impact
some FRS operations. In general we should know the effects of every representational
construct on the performance of every FRS operation.

o Worst-case theoretical results are not always representative of the average case, and
theoretical results are not always constraining in practice. Theoretical principles con-
cerning average-case behavior of various FRS operations are generally lacking. En-
gineering principles concerning choices of data structures and algorithms are even
fewer.

o Performance and expressiveness are not the only factors to consider when choosing
a representation. Two representations might have equal expressive power, but one
might be much more succinct for a particular application. In addition, there is a
tradeoff between the run-time flexibility of the FRS (the degree to which knowledge
that the FRS maintains can be altered at run time as opposed to the time of definition),
and the performance of the FRS. Also, the modularity of an FRS implementation is
affected by the choice of representational constructs and the implementation of those
constructs. Other factors concern the effort involved in implementing a particular
feature, and the frequency with which that feature is used in different applications; a
feature that is difficult to implement but that is hardly ever used should probably be
disregarded. We need much more knowledge about the costs and benefits of different
FRS features with respect to all of these factors.
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3 THE FAMILIES OF FRAME KNOWLEDGE REPRE-
SENTATION SYSTEMS

This section provides a very brief overview of implemented frame representation systems of
the past and present. An ideal treatment of the evolutionary relationships between FRSs
would differ from the treatment presented here in several ways. ldeally we would like to
know the general characteristics of each family, as well as how and why a given system
differs from its parent(s): what shortcomings did an author discern in the parent system,
what differences did the author introduce in the child FRS to remedy these shortcomings,
were these modifications successful, and what were the costs of these changes in terms of
the metrics listed in Section 2?7 Unfortunately, space restrictions preclude a full treatment
of these issues, and, more importantly, authors rarely document these aspects of their work
systematically. This practice not only obscures the intellectual history of frame representa-
tion, but it makes principles of FRSs more difficult to derive.

Therefore this section lists the one or two most influential parents of a number of FRSs,
either as identified by the FRS author, or as ascertained by the author of this paper with a
high degree of certainty. I have been unable to make this determination for many systems.
General literature references for particular FRSs are presented in this section of the paper
only; later sections provide some references to support specific points.

Figure 1 shows several FRS families. The UNITS family originated at Stanford University
in the late 1970s. Its members include the UNIT Package [89, 93], STROBE [88, 90, 91],
CLASS, RLL [35, 34], CYCL [47, 49, 48], ARLO [37], THEO [57], JOSIE [60], OPUS [28], and
the commercial systems KEE [42] and KAPPA.

The KL-ONE family originated at Harvard University in the early 1970s. Its members
include KL-ONE [15], NIKL [41, 6, 76], KANDOR [65], KL-TWO [98], K-REP [52], KREME
[2], BACK [67, 99], MUNIN, SPHINX, KRIS [4], MESON, SB-ONE [43], KRYPTON [13], LoOM
[101, 40, 51], and CLASSIC [12, 14, 69]. See [76, 51, ?] for historical overviews of the KI-ONE
family.

The SRL family originated at Carnegie-Mellon University in the early 1980s. Its mem-
bers include SRL [31], FRAMEKIT [64], PARMENIDES [86], and the commercial system
KNOWLEDGECRAFT.

The FRL family originated at MIT in the mid 1970s. Its members include FRL [71, 70],
HPRL [44, 72], and GOLDWORKS.

Several other FRSs do not exist within a larger family. They include PROTEUS [73, 68],
FROBS [58], OZONE [45], KRL [7, 46, 8], BB* [32], LOOPS [94, 17], KB [23], SNePS [84, 85],
RHET[3, 56], TELOS [59], PARKA [24], ALGERNON [18, 19], FRAPPE [25], Conceptual Graphs
[92], MOPS, ART, and NEXPERT.

11



Unit Package

KEE Strobe RLL
OPUS Kappa Class CycL ARLO THEO

JOSIE
SRL

FRL /\
/\ CRL/K nowledgeCraft FrameKit

HPRL Goldworks ‘

KL-ONE PARMENIDES

NIKL

KANDOR KL-TWO SPHINX KREP LOOM

KRYPTON

) T

BACK KRIS CLASSIC KingKong SB-ONE

MUNIN KRS

Figure 1: The Unit-Package, SRL, FRL, and KL-ONE families of frame representation
systems.
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4 FRAMES

Typically, FRSs define two different types of frames: class frames® represent a class or set
of things, a general concept, or an abstraction. Examples: the class of all computers, the
set of all computers manufactured by IBM, the concept of a father, or of a mother. Instance
frames® represent individual things — concrete entities that exist in the world. Examples:
the particular computer that I am using to type in this sentence, the person who is my
father. Different researchers have different views as to the semantics of class and instance
frames, and moreover they have defined a variety of other types of frames. This section
explores the diversity of frames themselves.

4.1 Link Terminology

Before proceeding with a detailed discussion of frames, this section establishes a standard
and comprehensive terminology for referring to the relationships among class and instance
frames in a taxonomic hierarchy. Virtually every family of FRSs has its own terminology.
The use of redundant and conflicting terminology has hampered communication among
knowledge-representation researchers, and has confused researchers in other areas of com-
puter science who often assume that different terms must describe different concepts. 1
propose the following terminology, which I developed in the spirit of the presentation by
Russinoff [73]. Footnotes translate my terminology to that used by previous researchers.

We are interested in naming the relationships that exist between class frames and instance
frames. If a class frame (' is linked directly above a class frame (5 in the hierarchy, then
we say that C; is a direct-super of Cy, and that C5 is a direct-sub of Cq; * we call the link
itself a super—sub link. If a class frame C' is linked directly above an instance frame I then
we say that C' is a template of I, and that I is an instance of C. > We define the all-supers
relation to be the transitive closure of the direct-supers relation, and we define the all-subs
relation to be the transitive closure of the direct-sub relation (therefore Cy is an all-sub of
Cy if Cq is a direct-sub of Cy, or if (7 is a direct-sub of any all-sub of C3). 6 Similarly, we
say that an instance frame [ is in the all-instances of a class C' if I is an instance of C' or
an all-sub of C, in which case we would say that C is in the all-templates of I. 7

Finally, we say that A is a parent of B if A is either a direct-super or a template of B
(in which case B is a child of A). We define ancestor as the transitive closure of the
parent relation, and descendant as the transitive closure of the child relation. Table 1
summarizes this terminology, and also presents a notation that I have developed to express
these relationships more succinctly.

2Synonyms: concept (KL-ONE), collection (CYCL), specialization (UNIT Package), frame (KANDOR),
set, schema, generic (FRL), template, node.

®Synonyms: individual (KL-ONE, STROBE, FRL), individual object (CYCL), instantiated frame.

*Synonyms: superclass and subclass (KEE), parent and child (PROTEUS), superC (KL-ONE).

®Synonyms: member-parent-of and member-of (KEE), type-of and instance-of (PROTEUS), individuates

13



Notation | Meaning
Cy > (9 | Class (' is a direct-super of class C5 Parents
C > I | Class C is a template of instance 1

C1 < (5 | Class (7 is a direct-sub of class Cy Children
I< C Instance [ is an instance of class C'

C1 > (59 | Class (' is an all-super of class (s Ancestors
C > I | Class (' is an all-template of instance [

C1 <« (9 | Class (1 is an all-sub of class Cy Descendants

I << (C | Class [ is an all-instance of class C

Table 1: Notation and terminology for describing inheritance relations.

4.2 The Diversity of Frames

Some FRSs employ only a single type of frame rather than both class and instance frames.
NIKL provides for class frames only, because its authors consider NIKL’s mission to support
the definition of concepts and the relations between them, not to facilitate reasoning about
individuals.® THEO also defines only one type of frame, because its authors believe that the
distinction between classes and instances is sometimes not well defined.

Every other FRS includes at least class and instance frames, but some systems employ the
following additional types of frames:

¢ Metaclasses — PROTEUS utilizes frames called metaclasses to define sets of
PROTEUS classes — every PROTEUS class is an instance of the metaclass called CLASS.
Users can define other metaclasses as direct-subs of the metaclass CLASS. For example,
we could define a metaclass called Computer Family of which VAX_Family (a class)
is an instance. CLASS is the class of all classes, or synonymously, the set of all sets.
LOOPS also employs metaclasses, as does CYCL: every CYCL frame is an instance of
either the frame Collection or the frame IndividualObject; the former types of
frames are classes and the latter are instances. Thus the frame Collection is really
a metaclass that is equivalent to the CLASS of PROTEUS. In CYCL, only class frames
(instances of Collection) can have instances, direct-supers, or direct-subs, whereas
only instance frames (instances of a class frame) can have parts.

¢ Indefinites — The UNIT Package and the CLASS FRS employ indefinite frames to
represent instances whose identities are unknown (similar to the notion of skolem
constants). Indefinites allow a user to say that two individuals are the same without
knowing their identities [93].

(KL-ONE).

®Synonyms: superclass and subclass (PROTEUS).

"Synonyms: member (PROTEUS).

8NIKL does define “individual” class frames as classes that have only a single member — but classes
nonetheless. To reason about individual objects a user must employ an additional system, for example
KL-TWO [98] combines NIKL with a propositional reasoning system called RUP [54].

14



¢ Descriptions — These frames are variablized classes that are employed in the UNIT
Package to represent goals in planning problems [93]. CLASS also has indefinites.

¢ Prototypes — KRL, RLL, and JOSIE employ prototype frames to represent informa-
tion about a typical instance of a class, as opposed to the class itself and as opposed
to actual instances of the class. In these systems instance frames inherit default
information from prototype frames rather than from class frames (see Section 6).

¢ SlotUnits — In CYCL, slotUnits® are frames that encode information about slots
themselves (see Section 5).

¢ SeeUnits — CYCL employs seeUnits as “footnotes” or annotations for other frames.
They can hold constraints on slot values, dependency information (such as what in-
ference stored a value in a slot), and epistemological information (who believes a slot
value to be true).

¢ CompactUnits — KEE’s compact Units are instance frames that consume less storage
and are faster to access than are normal instance frames. A compactUnit must have
only one template frame (normal KEE instances can have multiple templates), and
the compactUnit must have exactly the same set of slot definitions as its template
(in KEE, users can define new slots in an instance frame that were not defined in the
template of that frame). LOOM has a similar mechanism; its CLOS instances can
provide a more efficient implementation of instance frames.

4.3 Discussion

Few KR principles exist to guide our understanding of the preceding features. Generally
speaking, each feature adds expressiveness and potential succinctness to an FRS by allow-
ing us to more faithfully render a complex epistemological landscape. Yet we have little
knowledge of the performance costs or benefits of these features, of the effort required to
implement them, of their effect on system modularity, of the frequency with which they are
used, or of the optimal data structures and algorithms for implementing them.

CompactUnits provide faster performance with less expressiveness and flexibility than nor-
mal instance frames, but we do not know how much more performance, nor exactly why
restricting an instance to a single template is required to provide this speedup. Presumably
it allows a fixed mapping from a slot name to a location in an array. Are the same im-
plementation techniques used in the KEE and LOOM implementations, and if not, exactly
how do the speedups compare? Are the changes required to implement compactUnits fairly
localized, or are they spread throughout the FRS code?

Metaclasses, prototypes, seeUnits, descriptions, and indefinites extend the expressiveness of
FRSs, and in ways not considered in past expressiveness—tractability analyses. Lenat and
Guha provide a detailed discussion of the types of knowledge that metaclasses can represent
[47, p57]. But once again, we do not have a clear picture of the costs of these constructs.

®Synonyms: relation frames (OPUS, JOSIE).
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And even their expressiveness benefits are not that clear: when are defaults provided by
prototypes preferable to class-based defaults? Nado and Fikes argue that prototypes more
clearly separate information about class members from information about the class itself
[60]. Schoen reports (personal communication, 1991) that little use was made of indefinite
frames in CLASS, whereas description frames were used.

Some insight on an engineering issue comes from the PARMENIDES system. All of the
FRSs in the UNIT Package family implement classes and instances in essentially the same
manner. In contrast, PARMENIDES implements classes and instances quite differently un-
der the assumptions that many more instances than classes will exist in most KBs, and
that instances will be accessed more frequently than classes will. PARMENIDES classes are
implemented as association lists, whereas instances are implemented as adjustable arrays.
Thus instances are more compact than are classes, and instances are faster to access since
no search through an association list is required. However, this approach limits the run-
time flexibility of PARMENIDES: although new slots can be created at run time by adding
elements at the end of the adjustable array, in order to remove or modify slot definitions
the user must restart the FRS to rebuild the knowledge base. Also, we have no data on
exactly how much of a performance gain this technique yields.

5 WHAT’S IN A SLOT

Every frame consists of a set of slots, which usually represent properties or attributes of the
object or concept represented by the frame.'® Slots are also used to represent binary rela-
tions between their containing frame and another frame. The very simplest model of slots
gives every slot a name (such as Manufacturer), and a value!! — such as Data_General.

Researchers have embellished this simple model in a number of ways. Almost all systems
specify a few other attributes for each slot besides its value, such as a slot datatype (de-
scribed in more detail in Section 5.4), and restrictions on the allowable values for the slot
(Section 5.5). Some researchers generalized this notion to allow slots to have arbitrary
properties called facets, of which name, value, datatype, and value restriction are the usual
complement. Other typical facets that we find are: a comment, a measure of belief such as
a MYCIN-like certainty factor (used in CYCL), an explanation or justification that specifies
what other slot values the current value was inferred from (used in CYCL and in THEO), a
non-value (used to represent negation in ALGERNON), a description of what agent believes
this slot value (used in CYCL), attached procedures, default values, and a specification of
an inheritance mechanism for that class (see Sections 8 and 6).

THEO uses an even more general notion of slots: facets themselves can have facets, to any
level — THEO allows an arbitrarily deep nesting of slots within slots within slots. Thus
we could define a Comment subslot within the Manufacturer slot of the Computer frame.
We could also create a subslot of Comment, perhaps to record the name of the user who

10The KL-ONE family of FRS calls slots roles because a slot such as Manufacturer names the entity that
“plays the role of” a manufacturer for a given computer.

180t values are called fillers in KL-ONE-speak and entries in CYCL-speak.
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created the comment. As well as facilitating the attachment of meta-information, THEO
uses subslots extensively to cache information derived by a variety of inference mechanisms.
For example, imagine that a user has queried the value of Frank.Children. If no local
value were found, one of the THEO inference mechanisms would cause it to attempt to
obtain the value from Frank.Daughters if it could determine (from consulting the slotUnit
of Children) that the Daughters relation is a specialization of the Children relation.
THEO would locally cache within the Frank frame some of the information computed in the
process of answering this query. For example, it would cache the fact that Daughters is a
specialization of Children within the subslot Frank.Children.Slotspecs.

The JOSIE system provides a way of viewing slot values as classes, that allows a wider set of
assertions to be made about slot values. That is, if the values of a slot comprise a set, this
mechanism lets us treat that set like a class, and use the JOSIE class-definition language to
make assertions about that set. Section 6.1 elaborates on this idea.

OZONE takes yet another approach: slots are partitioned into separate groups called spaces.
Fach frame typically has three spaces called the system space (these slots list the name
of the frame and the parents of the frame), function space (these slots contain attached
procedures), and the variable space (used for most user-defined slots). Spaces provide two
major benefits: they define separate name spaces for defining different types of slots, for
example to prevent name clashes between system slots and user slots; they also facilitate
incremental loading of frame contents from secondary storage (see Section 7) — system-
space slots can be loaded independent of slots in other spaces.

FRSs also vary as to whether users can introduce new slots into an instance frame that
did not exist in its template. KEE allows this but the KL-ONE family does not, under the
interpretation that because a class frame strictly defines what it means to be an instance
of some concept, introducing new slots into an instance frame would violate the definition
of the concept.

5.1 Slot Notation

This section presents a notation for defining paths through complex frame structures that
is an adaptation of the CYCL notation [47]. This notation should prove useful both in
expositions and in declarative frame query languages.

To refer to the wvalue of the Manufacturer slot of the Computer frame we
write Computer.Manufacturer; to refer to the value of its Comment subslot we

write Computer.Manufacturer.Comment. Note that since the value of a slot
is simply a distinguished subslot, Computer.Manufacturer.value is equivalent to
Computer.Manufacturer. Now imagine that we wish to refer to the number

of employees of the manufacturer of the VAX-11/780. Manufacturer is a bi-
nary relation that names a frame which describes the manufacturing corpora-
tion. To refer to the Number Of Employees slot of that frame indirectly, we write
VAX-11/780.Manufacturer->Number 0f Employees. Note the difference between this spec-
ification and the specification VAX-11/780.Manufacturer.Number 0f Employees. The for-
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mer refers to a slot within the frame Digital whereas the latter refers to a subslot of the
slot VAX-11/780 .Manufacturer. THEO uses a list notation for the former type of reference
only: (Vax-11/780 Manufacturer Number O0f Employees).

5.2 SlotUnits

Several FRSs contain a type of frame that the authors of CYCL call a slotUnit. A slotUnit
is a frame that holds definitional information about a single slot that describes the use of
that slot throughout a KB. A slotUnit might specify the domain and range of a slot S (the
domain of Manufacturer is the set of frames in which it makes sense to use this slot —
the class Manufactured Objects), and the range of this slot describes its allowable values
(instances of the class Corporations).

Lenat’s experience in CYCL was that it was often desirable to represent a wide variety
of information about slots. For example, CYCL (as well as FRAMEKIT and STROBE) use
slotUnits to store inverse definitions. The slotUnit for the Manufacturer slot might record
that the inverse of the Manufacturer relation is the Manufactures relation. Thus, when we
record that Digital is a value of Vax-11/780.Manufacturer, CYCL will automatically add
the value Vax-11/780 to Digital.Manufactures. More generally, automatic maintenance
of inverse links is equivalent to enforcing the constraint:

VG [GeFS=FeG.S5™Y

where §~! is obtained from the slotUnit S as S.inverse. Although slotUnits provide a place
to store general information about slots, note that some information about a slot must be
stored in frames containing that slot. For example, although the slotUnit will specify a
domain and range for a slot such as Manufacturer, additional value (range) restrictions that
are defined at a class such as Japanese _Computer must be stored in the Japanese Computer
frame because they are specific to that class. We might want to constrain the Manufacturer
of every Japanese Computer to be an all-instance of Japanese _Corporation.

Within the Units family, the idea of slotUnits arose in both RLL and OPUS, and is also used
in THEO. SRL and FRAMEKIT use slot Units only for slots that represent a binary relation
between two frames. The KL-ONE family creates a hierarchy of slot definitions called a
role hierarchy, however, each slot definition in the role hierarchy is not implemented as a
frame, but with a special data structure. The role hierarchy allowed a user to define role
differentiations — roles whose potential values are by definition a subset of the potential
values of another role. Thus, in KL-ONE we can define CPU_Manufacturer to be a role
differentiation of Manufacturer because the allowable values of the former are a subset
of the allowable values of the latter. Given this definition, if Motorola was a value of
SUN-3.CPU Manufacturer, the system could infer that Motorola must also be a value of
SUN-3.Manufacturer, given the subset relation between the two slots. Note that inheritance
within a slotUnit hierarchy can be used to encode role differentiations.
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5.3 Own Slots, Member Slots, and Bookkeeping Slots

KEE distinguishes what its developers call member slots from own slots, as do FRAMEKIT
and FROBS. Member slots reside only within class frames. They describe properties of
instances of that class, and are inherited by children of that class. Own slots, in contrast,
can reside within either class or instance frames. Own slots are not inherited by children of
a class frame ' because these slots represent properties of only the class represented by C',
and not its children. (If own slots were employed in a FRS that used metaclasses, the own
slots of a class C' should be inherited from the template of C' (a metaclass) since own slots
describe a frame as an instance.)

As an example, an own slot Fastest within the class Computers that named the fastest
known processor should be defined as an own slot because it describes a property of the set
of all computers, not a property of the instances of that set. But Manufacturer should be
a member slot of Computers because it denotes a property of every individual computer.

In a similar vein, CYCL defines bookkeepingSlots to be slots that describe a frame F itself
rather than the concept that F represents; for example, bookkeepingSlots might be used to
record the name of the user who created F), and the time of creation.

5.4 Slot Data Types

Most FRSs model slot values as sets (such as CYCL, KEE, and the KL-ONE family). Other
systems (such as THEO, OZONE, and the UNIT Package) treat slots as lists of values, the
difference between sets and lists being that in lists the order of elements is preserved and
duplicate values are allowed. LOOM treats slot values as ordered sets: duplicates are not
allowed, but order is significant. Interestingly, virtually no FRS allows the user to explicitly
select a slot datatype from among a variety of data types such as sets, ordered sets, lists, and
bags. FExceptions to this rule are K-REP, which provides both sets and bags; PARMENIDES,
which provides two groups of slot-access functions that treat slots as sets and lists, respec-
tively; and PROTEUS, which allows the user to specify whether a slot is single valued or
multivalued. Sets have the advantage over lists of simplifying the logic of frames and of
having a well-defined subsumption relation.

Some systems allow the user to specify the datatypes of the individual values in the set
or list, for example the UNIT Package allows datatypes of atom, boolean, integer, interval,
lisp, number, string, table, text, or unit; KEE provides a similar set of datatypes.

Although not thought of as a datatype, LOOM allows the user to specify whether query
operations on specific slots have open or closed-world semantics. CLASSIC provides similar
control over the slots in specific instance frames.
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5.5 Slot Value Constraints

Researchers have defined mechanisms for specifying constraints on the values of individual
slots, and between the values of two different slots. These constraints are viewed as necessary
conditions that must hold of the slots to which they are attached. A slot in an instance
frame £ is inherited from the all-templates of F. Typically the constraints present at a
particular class C' consist of those inherited from the supers of C', plus additional constraints
defined locally at C'. ' must be a more specific class than its direct-supers, therefore we
expect its value constraints to be more stringent. In this section we discuss the different
types of constraints that different FRSs allow.

These constraints are typically used for two purposes by FRS. First, when new values are
assigned to a slot the FRS verifies that the values satisfy the constraints — if they are
violated then an error is signaled. The second use of these constraints is for classification,
which is discussed in Section 9. The KL-ONE family treats constraints as definitional in
nature: the constraints on the slots of a class C' specify necessary and sufficient conditions
for what it means to be an instance of that class. That is, if a concept is a predicate, the
constraints form the operational definition of that predicate.

5.5.1 Constraints on Individual Slot Values

KL-ONE value restrictions allow us to constrain the range of a slot such that its values may
only be the names of all-instances of a particular class within the KB. More precisely, value
restrictions specify that every value of a slot 5 in a frame F’ must name another frame that
is an all-instance of a class frame C: Vz[z € F.S O 2z << ('] (henceforth we will omit
the quantifier and simply write .5 << (). For example, we might constrain the range of
Computer.Manufacturer to be an all-instance of the class Corporations.

KL-ONE employs number restrictions'? to specify upper and lower bounds on the number
of values that a slot can have at one time. Both value restrictions and number restrictions
are found in most FRSs.

KEE defines a fairly complex language of valueclass specifications that can be used to spec-
ify value restrictions. The syntax of valueclass primitives in the KEE language and their
meanings are as follows:

e (MEMBER.OF class) or class — this specification is equivalent to a KL-ONE value
restriction: when applied to slot S of frame F it specifies that F.S << class.

o (SUBCLASS.OF class) — every F.S must be an all-sub of class (F.5 < class)

e (ONE.OF atoml .. atomN) — every F.5 must take on one of the explicitly specified
values (F.5 € {atoml,..,atomN})

128ynonym: cardinality restrictions (KEE).
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e (NOT.ONE.OF atoml .. atomN) — every F.S cannot take on one of the specified
values (1.5 ¢ {atoml,..,atomN})

e KEE-INTERVAL — every F.5 must lie within the interval specified over some ordered
type such as the integers (low < F.5 < high)

o (MEMBERP fn) — every F.5 must satisfy the predicate defined by the LISP function
fn (TRUEP(fn(F.9)))

The preceding primitives can be combined using the following compositional operators:

e (NOT.IN vcspec) — every F.S must not satisfy the valueclass specification vcspec

o (UNION vcspecl .. vcespecN) — every F.S must satisfy one of the given valueclass
specifications
o (INTERSECTION vcspecl .. vcspecN) — every F.S must satisfy all of the given

valueclass specifications

KEE also has cardinality restrictions like those of KL-ONE. CLASSIC has enumerated types
like those specified using the KEE ONE.OF operator, and requires each enumerated type to
be an existing instance frame. FRAMEKIT provides a mechanism similar to KEE’s MEMBERP
operator: value restrictions can be specified as LISP S-expressions that FRAMEKIT evaluates
on candidate slot values.

LOOM allows several additional types of constraints. As well as having an analog of the KEE
MEMBER.OF operator, a LOOM operator can specify that only some value of a slot must be
an all-instance of a given class (rather than all values). Constraint expressions can also be
formed that compare slot values to constant expressions using operators such as “=". LOOM
also allows the user to write arbitrary slot constraints using the LOOM query language.

5.5.2 Constraints Between Slot Values

As well as specifying absolute constraints on the value of a single slot, it is often desirable to
specify a relationship that must hold between the values of two slots. For example, imagine
that we wish to define a class frame that represented a horizontally integrated computer
manufacturer. Such a corporation would manufacture the memory chip, the processor chip,
and the disk controller used for their computer (we assume that each is described in a sepa-
rate frame). In all instances I of such a class the values of I.Memory_Chip->Manufacturer
and I.Processor Chip->Manufacturer and I.Disk Controller->Manufacturer must be
the same.

The KL-ONE family of FRSs can express such constraints using role value maps [15] (called
role constraints in NIKL [76]). These constraints allow users to specify that either an equal-
ity or a subset relationship must hold between the values of two slots. Since the slots
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themselves might exist in different frames (as in the preceding chip example), the KL-ONE
implementation uses pointers to explicitly identify the two sequences of slot compositions
(or role chains) that are involved in the relationship.

Role value maps are a special case of a more general constraint mechanism in KL-ONE called
structural descriptions [15]. Whereas role value maps specify either an equality or a subset
relation between the values of two slots, structural descriptions allow the user to specify an
arbitrary relation between the values of two slots. This relation itself must be described as
another KL-ONE frame — if the user wished to constrain the value of one slot to be less than
the value of another slot, the required less-than predicate must be described in a KL-ONE
frame [15]. The user specifies a structural description by creating KL-ONE links between
the predicate frame and the slots (role chains) that the constraint relates. This approach
to specifying constraints is fairly clumsy and yields constraints that are very difficult to
understand; the LOOM query language can be used to specify similar types of constraints,
but is much more readable.

5.6 Discussion

One of the few performance studies in the FRS literature is that by Mitchell et al [57], who
studied the effect of their caching mechanism (as well as other learning mechanisms) on the
performance of THEO. In one experiment, a series of 300 queries were made to a KB of family
relationships, with caching enabled during all queries. Queries early in the series took on
the order of 10 seconds, whereas queries later in the series took on the order of .5 seconds,
showing that the accumulation of cached information did improve performance. This study
would be improved if it presented data for the same series of queries with caching completely
disabled, so as to control for the cost of performing caching in the early queries. That is,
we wish to know not only that the system performs faster as it caches more information,
but that on average it performs faster than if caching is not used. Such data is given in an
abbreviated form later in the paper for a different set of experiments.

Both facets and seeUnits (see Section 4.2) allow us to annotate slot values, but their relative
merits remain to be determined. Perhaps by embedding annotations within the associated
slot structure using facets that we achieve a locality of reference that increases performance.
The meta information that they provide yields an increase in FRS expressiveness.

Some of the functionality provided by slotUnits could also be achieved by attaching pro-
cedures to a slot, or by storing the information in facets. SlotUnits have the advantage of
providing a more succinct representation for commonly required information about slots;
attached procedures suffer the additional disadvantage of being less declarative. In addition,
when using slotUnits, information about slots is treated as a first-class entity within the
FRS in the following respects. We can arrange slotUnits in a generalization hierarchy to use
the benefits of inheritance in describing slots. Information about slots is represented glob-
ally in slots of the slotUnit, rather than locally (and perhaps redundantly or inconsistently)
as facets in every frame that the slot is used in, and therefore a given slot has the same
semantics throughout a KB, which increases the understandability and maintainability of
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the KB. Finally, we can employ existing subsystems of the FRS (such as its query language)
to manipulate information in slotUnits.

Similar comments apply to valueclass specifications since rules or attached procedures could
be used to implement equivalent capabilities. Researchers have devised a special language
that provides a succinct, declarative means of encoding commonly required classes of con-
straints. In the KL-ONE family, the declarative semantics of these constraints form the basis
for classification. Fox et al note [31] that enforcing valueclass restrictions can slow down a
running system significantly (although we are not told how significantly), so SRL provides
a way of disabling value-restriction checks — they are typically enabled only during system
development and debugging.

6 INHERITANCE

Inheritance is an inference mechanism in which beliefs about a frame in a taxonomic hier-
archy are acquired from its parents in the hierarchy. This section explores the inheritance
mechanisms present in a variety of FRSs to answer such questions as: When does the com-
putation of inheritance occur in different FRSs? Can conflicts arise when a frame inherits
information from multiple parents, and if so, how can these conflicts be resolved? What
different semantic modes of inheritance exist? And finally, exactly what information is
manipulated during inheritance?

6.1 What Information is Inherited?

Generally speaking, when we define a slot 5 in a class frame (', inheritance causes all
children of C' to contain the slot 5. That is, to users it will appear that every child of C
contains a slot named 5 that has the same datatype and value constraints as does the 5
in .13 The intended semantics of this operation are that if a certain attribute or relation
applies to a class of objects, or to a concept, then that attribute or relation must apply to
every child of that class or concept, with at least as strict value restrictions as applied to
the class or concept.

A fundamental distinction between FRSs is whether or not child frames acquire slot values
during inheritance. Systems in the the UNITS family, and the SRL family, do allow the
inheritance of slot values. The semantics of this operation is that when a slot value is
defined in a class frame, we would like the FRS to assume by default that the same value
holds in a child of that class, unless the user explicitly stores a local value in the slot of the
child. For example, when we define 32 as the value of the Word_Size slot in the VAX Family
frame, we wish that value to be the default value of this slot in all children of VAX Family.
This inference is a form of default reasoning.

Another variation is that some FRSs allow inheritance of properties across other types of

13 An exception is own slots, which are never inherited by child frames (see Section 5.3).
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relations than the instance or super—sub relations. For example, in OZONE, PARMENIDES,
CycCL, HYPERCLASS, FRAMEKIT, and SRL, a user could define inheritance across a part
relation so that the parts of an object would inherit information from the containing object.
SRL and CYCL users employ a slotUnit to describe how inheritance is computed for each
relation. The slotUnit specifies what slots are inherited across that relation (for example,
the owned-by slot might be inherited across the part relation since we expect the owner of
an object to also own all of the parts of that object). In SRL this mechanism also allows
users to specify a mapping of slot values across a relation, for example, if the relation
previous-activity associates frame activityl with frame activity2, we could specify
that the value of activityl.finish time is mapped to the value of activity2.start_time

[31].

The JOSIE ability to treat slots as classes allows other types of inheritance relationships
[60]. This facility would allow us to assert that Digital manufactures all members of the
Vax family — that the values of a given slot Digital. Manufactures include all members of
a class Vax _Family. It allows us to assert that the values of a given slot in a given frame
are a subset of the values of some other slot in some other frame. And we can assert
that all of the computers manufactured by Digital are manufactured in the United States
Digital.Manufactures.Location=USA.

Inheritance in most of the KL-ONE family of FRSs does not include slot values because the
notion of a default conflicts with the definitional view of concepts in the KL-ONE family (see
Section 9.2). Thus, systems such as KL-ONE, NIKL, and KRYPTON cannot define default
values. The JOSIE system distinguishes necessary defaults — those for which no exceptions
exist — from defaults that can be overridden.

6.2 Semantic Modes of Inheritance

The semantics of some slots requires a different interaction between default values and
local values than that described in the previous section, where local information overrides
inherited information. Therefore, some FRSs allow the user to specify one of several different
modes of inheritance for slots. The KL-ONE and SRL families do not provide multiple types
of inheritance, whereas the UNIT Package, KEE, and PROTEUS do — and each defines a
somewhat different set of inheritance types. In KEE users define a slot inheritance mode by
setting the value of a special facet that is defined for each slot. KEE supports the following
inheritance modes to determine the observable value of a slot S in a child frame C' (C.5)
given the value of S in a parent frame P (P.5), and the value of S that is stored locally in
C (C.9):

e OVERRIDE.VALUES — Local values override inherited values so that:
C.S={if (C.5==NULL) then P.5 else C.5"}

e UNION — Local values are unioned with inherited values:

C.S=PSuU C.5

e RUNION — Same as UNION but the order of the slot values is reversed.
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e SAME.VALUES — No differing local values allowed: C.5 = P.S
e UNIQUE.VALUES — Inheritance is blocked completely: C.S5 = C.5’

e MINIMUM — Minimum of local and parent values (a MAXIMUM mode exists also): C.9 =
min(P.S,C.5")

e METHOD — Used for attached procedures

e UNION.EACH.VALUE — Analogous to UNION except that the slot value must be a list,
and individual elements of the lists are unioned

e VCSIMPLIFY — Used to simplify inherited slot constraints

OVERRIDE.VALUES is the mode found in most FRSs, but the other modes do have utility.
For example, bookeepingSlots (see Section 5.3) should use the UNIQUE.VALUES mode since
information about a frame (such as the name of its creator) should not necessarily be
inherited by the children of that frame.

6.3 Conflicts in Inheritance

Early systems such as the UNIT Package allowed a frame to have only a single parent in
the inheritance hierarchy. Later systems such as KEE, CYCL, SRL, and the KL-ONE fam-
ily allow a node to have multiple parents, and therefore to inherit information from more
than one parent. The KL-ONE family does not allow multiple parents to provide conflicting
information to their children — this situation would be declared an inconsistency by the
classifier (see Section 9). Most FRSs that do allow inheritance of conflicting attributes pro-
vide different mechanisms to resolve potential conflicts. FROBS allows the user to explicitly
specify which parent the value should be inherited from, thus specifying the “context” from
which the value should be taken. By default the STROBE inheritance mechanism uses the
first value that it finds in a breadth-first search of the child frame’s ancestors, but the user
can specify a depth-first search on a per-slot basis. FRAMEKIT allows the user to specify
best—first or depth—first search, or an exhaustive search in which the final inherited value
is the union of all values encountered during the search. OZONE allows user-defined search
functions.

Conflicts in inheritance become an even greater problem when a RS computes inheritance
over multiple relations (such as the part relation discussed in Section 6.1). Now conflicts
can occur over multiple relations, in addition to the conflicts from multiple parents over the
super—sub relation. SRL users can specify the order in which links are to be searched from
a given frame.

6.4 Time of Inheritance

Different FRSs compute slot inheritance at different times. In systems that perform fetch-
time inheritance, inheritance occurs at the time an application program requests the value
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of a slot — the inheritance system climbs the inheritance hierarchy searching for a value
to inherit (used by the UNIT Package and KEE, for example). The inherited value is then
returned to the application, but is never physically stored at the child frame. Conversely, in
systems that perform assertion-time inheritance,'* when a parent frame is defined or altered
or classified, inherited slot information is physically copied to all child frames (also used by
the KL-ONE family). In many systems that compute inheritance at assertion time (such as
NIKL), if a user wishes to change a slot definition in a parent frame, the user must reload
the entire KB because the system is unable to incrementally update the cached information.

THEO combines these two approaches by allowing users to specify that inherited slot infor-
mation should be cached in child frames at fetch time (RLL and CLASS provided a similar
caching mechanism). THEO also records justifications that describe the dependencies be-
tween the cached value and the slots it was derived from, so that cached values can be
removed in response to changes in the values that they depend on. PARMENIDES users
can specify for every slot whether inheritance is to occur at fetch time or at assertion time.
When a user changes the definition of a PARMENIDES slot that is inherited at assertion time,
the system immediately propagates the new slot definition to all children of that frame —
but information defined locally at a child frame is not overwritten.

6.5 Discussion

Assertion-time and fetch-time inheritance have different speed and space requirements,
which are not understood, and they also have different run-time flexibility. Schoen made
an initial step towards understanding this tradeoff by measuring that in a system that
performs fetch-time inheritance, each additional direct-super encountered during an inher-
itance search slowed down inheritance by an additional 17%, assuming 8 slots per class
frame [81, p203]. By performing inheritance at assertion time, the authors of NIKL elim-
inate the need for fetch-time searches up the inheritance hierarchy. But they force the
user to reload the entire KB when a class definition changes, thus decreasing the run-time
flexibility of these definitions, and providing an approach that probably will not scale up to
very large KBs (neither of which disadvantages are noted in a recent assessment of NIKL
[78]). Since Schmolze and Mark have stated that a major goal of implementing NIKL was
to improve upon the speed of KL-ONE [78], we would expect to find a thorough evaluation
of exactly what improvements were made to NIKL, and of the speedup obtained through
each improvement. Instead, this paper is an example of vague, imprecise analysis of an
implemented FRS. The most detailed timing measurement we are given is: “Overall, the
NIKL system was an order of magnitude faster than KL-ONE.” [78, p9]. What contributed
to this speedup? “This decision to trade off more space for less time has borne out well,
given the current economics of computation and the needs of most applications” [78, p9].
We should like to know exactly how space was traded for time, and we should be given
rigorous experimental data that convinces us that part of the speedup was not due to the
use of faster hardware. Another secret of the performance improvement is explained as
“hashing and other fast schemes were used when possible” [78, p9] — in other words, we

M Called propagationin PARMENIDES.
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have no idea what the “other fast schemes” are, or exactly how any of these schemes were
implemented.

PARMENIDES also performs inheritance at assertion time, but it recomputes inheritance
when new assertions are made about classes — providing more flexibility but requiring a
more complex implementation. We are not told how complex the implementation is.

Similar to slot Units and valueclass restrictions (see Section 5.6), multiple inheritance modes
could also be implemented with attached procedures, but a special language provides a
succinct, declarative means of encoding common operations. We lack information about
how useful multiple inheritance modes are in practice, or the costs of implementing them.
They would surely complicate the computation of subsumption were they introduced into
the KL-ONE family.

Similarly, inheritance across multiple link types could be implemented through rules or
attached procedures, but may have benefits of succinctness and declarativeness. The ability
to explicitly establish an ordering for link searches in SRL is similar to a metarule facility,
thus providing an additional type of expressibility. However, rules are such an obvious
competitor to this approach that a more detailed analysis is needed. Is it preferable to use
inheritance for inference over instance and super—sub relations, and rules for other types of
inference, or is inheritance preferable for all these forms of inference?

Although a production-rule facility could provide many of the same inferences as described
in this section (more precisely, a default-rule facility), another key reason to prefer the
inheritance mechanisms described in this section is that they optimize the performance of
this special type of inference. Using rules to implement inheritance would require backward-
chaining searches through a large rule base to compute inherited values — unless some type
of compilation were used. The super—sub links in a taxonomic hierarchy can be viewed as
a way of compiling rules into chains that support a particular set of inferences. Systems
that compute inheritance at run time still search these rule chains, whereas systems that
compute inheritance at assertion time have even compiled out the searches along rule chains.

The publications that described alternative ways of resolving conflicting inherited infor-
mation (such as breadth-first, depth-first, and exhaustive search through the ancestors of
a frame) do not report how acceptable the inferences produced by these methods are in
practice, nor the computational costs of these methods.

A number of researchers have investigated theoretical aspects of inheritance in network-
based KR systems [97, 96, 83, 74]. Although these researchers have obtained interesting
results, their utility with respect to the FRSs discussed in this paper is unclear because
their research was in the context of toy problems and has not been proven to generalize to
real-world problems of the sort addressed by the FRSs discussed herein. In addition, their
basic model of inheritance intimately involves a type of relation called IS-NOT-A that is not
used by any of the FRSs discussed in this paper; it is not clear how easy it will be for either
model to accommodate the other.
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7 PERSISTENT KNOWLEDGE BASES

If FRSs are to be employed to build and manage large knowledge repositories, they must
provide sophisticated facilities for transferring frame knowledge bases between virtual mem-
ory — where all processing of frame information takes place — and persistent secondary
storage. Such facilities should use modern database techniques such as transactions to pro-
tect data from corruption by events such as operating system crashes or hardware failures.
Currently, the standard FRS approach to saving KBs in persistent form is for the user to
explicitly execute an operation that saves an entire KB to disk storage. This approach
does not scale as KB size increases because the time required for the save operation is
proportional to the size of the KB, not to the number of updates made since the KB was
saved last. The standard approach to moving frame data into virtual memory is to load an
entire KB into memory before processing begins, which again takes time proportional to
the size of the KB rather than to the amount of information that will be accessed. These
simplistic approaches to loading and saving frame KBs will become less and less palatable
as KBs increase in size. It is not the idea of keeping substantial amounts of frame data in
virtual memory that is antiquated — in fact the trends in the database community toward
main-memory databases support this basic model. Rather, FRSs must be more selective
about what data is transferred between virtual memory and persistent storage to these
transfers faster. This section reviews a number of approaches to the storage and retrieval
of persistent frame KBs.

THEO and CLASS provided an early mechanism for managing large KBs. Frames in a single
KB are partitioned into separate files that can be saved or loaded independently; the system
automatically tracks which frames belong in which files. LOOM provides a similar facility: it
can automatically save all classes, instances, relations, or methods within a KB to separate
files. THEO and CLASS manage only a single frame name space. In contrast, KEE, STROBE,
ARLO, and LOOM provide a multiple KB facility. In a single session, users of these systems
can load one or more KBs into virtual memory, where each KB has a separate frame name
space, and can be saved to secondary storage (or deleted) independently of the other KBs.

Frames in different KBs may reference one another, so that frame F; in K By could be a
child of frame F5 in K By.

In SB-ONE, ARLO, and K-REP, KBs themselves are linked in a hierarchy; all of the frames
defined in a knowledge base K also appear to the user to be defined in all children of K.
The authors of K-REP describe this facility as analogous to the COMMON LISP package
system.

The UNIT Package and RLL employed variants of an early frame storage management scheme
that provided demand paging of frames [89, p69][87]. These techniques were developed to
allow KB size to exceed virtual-memory size on machines of 1970s vintage that had limited
(18 bit) address spaces. IFrames are read into virtual memory when first accessed, and
are saved back to disk on a least-recently used basis during LISP garbage collections. One
limitation of this approach is that the data stored on secondary storage is not protected
from corruption. OZONE used similar techniques, but its slot spaces were used to distinguish
slots that were read on demand from system slots that were always memory resident (such
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as slots containing parent-link information).

A recent paper by Mays et al [53] describes storage management facilities for K-REP that
are a leap beyond the preceding capabilities. They interfaced K-REP to an object-oriented
DBMS to support a versioned KB that can be updated by multiple users via transactions.
In addition, Ballou et al interfaced PROTEUS to the ORION object-oriented DBMS [5],
Abarbanel and Williams coupled KEE to a relational DBMS [1] to produce KEE Connection,
and Peltason et al interfaced BACK to a relational DBMS [67]. McKay et al have developed
an Intelligent Database Interface (IDI) [55] with essentially the same architecture as KEE
Connection, although they have improved upon a number of the details of the Al/database
coupling, for example, the IDI includes an intelligent cache of database information, and it
can automatically obtain schema information from the database.

A final point of variability concerns the form in which KBs are stored persistently. Most
KI-ONE descendants store KBs as a set of LISP forms (expressions) that, when executed,
recreate the KB in virtual memory. One such form would both define a new concept, and
then reclassify it into the KL-ONE hierarchy. Thus, all existing members of the KL-ONE
family reclassify every concept every time a KB is loaded — the results of classification
are not saved persistently. In contrast, most other systems store KBs as data files that
contain a more direct representation of the virtual-memory form of the KB, and that are
not processed by the LISP evaluator during loading.

7.1 Discussion

A multiple KB facility is invaluable for users and applications that access many different
KBs over the long term, but who access few KBs on a day-to-day basis, because it allows
them to load only the KBs that they require at a given time. Users also benefit who update
only a subset of the KBs that they have loaded, and therefore need only save a subset of
the frames that they have loaded. Multiple name spaces are useful for operations such as
simultaneously processing both a KB and a copy of that KB, which will necessarily contain
many frames with the same name. COMMON LISP packages obviate the need for a multiple
KB facility to a large degree since packages provide separate name spaces. But package
systems do not provide a way of renaming all symbols to another package, as is required
for a KB rename operation. Packages also negate a motivation of OZONE spaces, namely
providing separate name spaces for user and system slots.

The paper by Mays et al is notable in providing the best, most precise description of
implementation techniques in the FRS literature. Otherwise we have little information
about the implementation techniques employed for the capabilities in this section.

We have essentially no knowledge of the performance of any of the techniques discussed
in this section, such as the cost of providing inheritance among KBs themselves, or the
performance of the storage management facilities. An exception is the work by McKay et
al, which does give some performance measurements. Since performance is a key property of
a storage system, it is virtually impossible to evaluate the relative merits of these alternatives
(e.g., Ballou et al versus Mays et al) without comprehensive performance data. Even with
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such data, a comparison will be difficult since, for example, the Ballou and Mays groups
utilized different underlying DBMSs — STATICE and ORION — and therefore it will be
difficult to determine how much of the performance depends on the DBMS itself.

8 OBJECT-ORIENTED AND ACCESS-ORIENTED
PROGRAMMING

Some FRSs contain an object-oriented programming (OOP) facility [33], or an access-
oriented programming (AOP) facility [95], or both. As noted in [95], these two programming
paradigms are duals of one another.

8.1 Object-Oriented Programming

The UNIT Package provided support for OOP that was developed further in KEE and
STROBE. A user of the UNIT Package could attach a LISP function (or method) to either
a frame or a slot. Users could invoke a method by sending a message to that frame or
slot. For example, we would attach a method called If-Deleted to a frame by creating
a slot within that frame called If-Deleted, and storing the definition of a LISP function
in that slot. We could send a message to that method by calling a UNIT Package function
called UNITMSG whose parameters include the name of the slot and the name of the method.
Methods are associated with slots in a similar fashion (they are stored in a facet of the
desired slot). Methods are inherited along the generalization hierarchy.

The OOP facilities of STROBE and KEE differ in several respects. Like the UNIT Package,
STROBE searches up the generalization hierarchy for a method to execute when a message
is sent. But in addition to executing the first method found in this search, the user can
specify that STROBE execute all of the methods found in the ancestors of the frame to
which the message was sent — in either parent—child or child—parent order. In this way
frames can acquire specialized behaviors in addition to the general behaviors they inherit
from their ancestors. In addition, if no method definition is found via inheritance, STROBE
will attempt to perform datatype rerouting: the message is sent to the frame that describes
the datatype of the slot to which the original message was sent. Thus the user can describe
how all slots of a given datatype should respond to a particular type of message.

KEE provides a sophisticated mechanism whereby methods can by modified by inheritance
such that methods defined in frames high in the hierarchy can be altered by the children of
those frames. Specifically, every method consists of four sections called main code, before
code, after code, and wrapper code. The before code and after code sections of a method
define LISP code that is executed before and after the main code section, respectively, and
which is inherited using union inheritance (see Section 6.2). The before code present in
frame [’ is the concatenation of the before code defined in F and the before code defined in
the parents of F. Main code is inherited using override inheritance, so that locally-defined
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main code overrides parental main code. The wrapper code section defines code that is
wrapped around the concatenation of a frame’s before code, main code, and after code.

8.2 Access-Oriented Programming

Access-oriented programming is more prevalent in FRSs than is OOP, and is used in sys-
tems such as the UNITS family, KL-ONE, LOOM, the SRL family, FROBS, and OZONE. An
AQOP facility allows the programmer to associate programmatic annotations with data,
such that the annotations are automatically executed when different classes of operations
are performed on the data (in a FRS, these data are slot values). The annotations can be
dynamically attached to and removed from the data, and the existence of the annotations
is transparent to programs that are not explicitly attempting to manipulate the annota-
tions (i.e., to programs that are only attempting to manipulate the data). Usually the
annotations are LISP procedures, but in THEO, for example, annotations can be PROLOG
rules.

One common type of annotation function is invoked when a user requests the value of the
slot; the function computes the value of the slot and returns the value to the user in a
transparent fashion — as if the value were stored in that slot. Another common type of
annotation function is invoked when a user modifies the value of a slot. The annotation
function might update other slots, or perhaps external databases, whose values depend on
the modified slot.

In FRAMEKIT for example, a user can annotate a slot by storing LISP functions in facets
called If-Needed, If-Accessed, If-Added, and If-Erased. The If-Needed function
will be invoked if a user attempts to get the value of the associated slot, and if that slot
currently has no value; if the slot does have a value then the If-Accessed function (if
any) will be invoked instead. The If-Added function will be invoked when the user adds
a new value to a slot, and the If-Erased function will be called when the user erases the
value of a slot. PARMENIDES provides for additional annotations called Pre-If-Set and
Post-If-Set that are invoked before and after a new value is added to a slot, respectively.
SRL — the ancestor of both of these systems — has a more general mechanism. An SRL
annotation is itself described by a frame that specifies such things as: by what type of slot
operation the annotation is to be invoked by (e.g., a get or a put operation); whether the
annotation should be invoked before or after that slot operation is performed; and what
“effect” the annotation has — does it alter the value returned by the slot operation, does
it have a side effect that does not alter the returned value, or should the slot operation be
completely blocked from occurring?

Other FRSs allow similar types of annotations: STROBE allows annotations that are exe-
cuted upon creation and deletion of frames and slots, and before and after modification of
and access to slot values. KL-ONE allows attached procedures to be invoked before and after
the KB operations Individuate, Restrict, Create, and Remove. FFRSs that do not support
AOQOP include NIKL, KRYPTON, and PROTEUS.
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8.3 Discussion

The authors of STROBE and SRL note that the use of AOP can impose a fairly heavy
computational cost [88, 31]. However, no publication contains actual measurements of the
performance cost. Both systems allow users to disable this facility [88, 31]. And in STROBE,
the mechanism is usually disabled [79]. The authors of STROBE and of SRL state that the
major component of the cost is performing inheritance searches to check for the existence of
annotations whenever a slot value is accessed — this search must be performed even for slots
that have no annotations in case inherited annotations exist. Smith and Carando suggest
an optimization to avoid repeating these searches when the same slot is accessed multiple
times, which is to cache a null value for the annotations locally within a slot when a search
vields no annotations. This approach is used by THEO. Another approach would be for the
FRS to automatically record in the slotUnit for slot S whether or not 5 is ever annotated
anywhere in the KB; for slots that are unannotated, this global information could provide
significant savings. We have no other knowledge about implementation techniques for OOP
or AOP, nor about the frequency with which these capabilities are needed in applications.

9 CLASSIFICATION

9.1 Overview

Intuitively, one class (or concept) definition A subsumes a second class definition B if the
concept that A represents is more general than is the concept that B represents. For
example, the class man subsumes the class father since all fathers are men. We can describe
subsumption more precisely in set-theoretic terms. The extension of a concept is the set
of instances of that concept that exist in the world. A subsumes B if the extension of A
(written |A|) is a proper superset of the extension of B:

A>B= |Al D> |B]

For example, the set of all fathers is a proper subset of the set of all men. Members of the
KL-ONE family automatically compute whether one class frame subsumes another, based
on the definitions of the slots that comprise those classes. The computation of subsumption
is the basis of classification. The operation positions a frame A into its proper position in
the inheritance hierarchy. Positioning A as a direct-super of B is proper if and only if A is
the most specific subsumer of B, that is, if there exists no concept definition €' such that A
subsumes C' and C subsumes B. A realizer (also called a recognizer) positions an instance
frame in the hierarchy. The realizer finds the most specific concept A in the KB such that
the instance is in the extension of A.

The definition of a concept ' consists of two parts: a list of concepts that are more general
than ', and a list of conditions that differentiate C' from those ancestor concepts. These
conditions are a variant of the slot value restrictions discussed in Section 5.5. For example,
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in KL-ONE we would define a father as an all-sub of man that has at least one value in
the child slot. At first glance classification may seem redundant since every class defini-
tion already contains information about the placement of the concept in the inheritance
hierarchy — the definition of father explicitly notes that it is an all-sub of man. Clas-
sification is needed because these definitions may not be precise (or even consistent) in a
global sense. For example, the definition of father tells us that father is more specific
than man, and therefore that father belongs below man in the taxonomy. But the defini-
tion does not explicitly tell us that man is the most specific subsumer of father, because
father might be subsumed by other concepts that have been defined relative to man. As an-
other example, the class Husband might be defined as an all-sub of Married Person, whose
Wife slot is restricted to store values of type Woman. Husband may not belong directly
below Married Person in the hierarchy. A KB describing royalty might define a concept
called Royal Husband to take into account the fact that royal children sometimes marry.
Royal Husband is defined as an all-sub of Married Person whose Wife slot is restricted
to take values of type Female (an ancestor of Woman). In this KB, a classifier would link
Husband as a direct-sub of Royal Husband rather than of Married Person.

In a sense the original specification that Husband is an all-sub of Married Person is treated
as advice that should be refined by the classifier. FRSs outside the KL-ONE family as-
sume that all subsumption relationships are given by the user at class definition time, and
therefore that no additional relationships remain to be discovered.

The basis of classification lies in comparing the intensional concept definitions that give
necessary and sufficient conditions for membership in a class. That is, the KL-ONE family
of FRSs interpret the slot value restrictions for a given class € as defining necessary and
sufficient conditions for recognizing an instance of C'. We infer that Royal Husband sub-
sumes Husband by comparing the definitions of their Wife slots. In practice, this precise
definitional view of concepts breaks down when we attempt to define necessary and suffi-
cient conditions for natural kinds such as the concept of a fish. We cannot list necessary and
sufficient conditions for what it means to be a fish because the concept is so complex, and
so imprecise. Therefore, the KL-ONE family allows users to define a concept as primitive if
it is impossible to specify necessary and sufficient conditions for membership in that class
— the definition of a primitive concept specifies necessary conditions only. Primitive status
tells a FRS that the definition of the class cannot be expressed within the existing language
of definitions, and therefore that the subsumption relation cannot be computed between
two primitive concepts. However, classifiers can compute the subsumption relation between
two concepts that are defined as all-subs of the same primitive concept (e.g., between two
nonprimitive all-subs of Fish). See [14, p420] for a more detailed discussion of primitive
versus defined concepts.

FRSs that employ classification are often called terminological reasoners because they main-
tain relationships between a set of terms — class or concept definitions. The KL-ONE-style
emphasis on term definition — on the manipulation of structured descriptions — led to a
system architecture that separates the subsystem that manipulates terms, from the sub-
system that manipulates assertions with respect to those terms. This distinction arose
in KRYPTON and is maintained in KRYPTON’s successors. The TBox (terminologic box)
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Figure 2: The hierarchy of expressiveness and complexity relationships that have been
proven among different KR languages. Languages lower in the figure are less expressive and
allow less expensive computation of subsumption.

subsystem is responsible for computing subsumption and classification, for computing in-
heritance of slot value restrictions, and for managing the hierarchy of class definitions. The
ABox (assertion box) subsystem is responsible for managing instances: for processing asser-
tions about instances, for performing realization (recognizing when an instance instantiates
some concept), and for performing query processing.

A more expressive representation language allows a user to define more complex restric-
tions on slot values, and thus to define more complex relationships among concepts. The
complexity of computing whether concept A subsumes concept B is a function of the size
of the definitions of A and B, and of the sizes of concepts referenced by the definitions of A
and B. More precisely, a number of theoretical results have been obtained concerning the
computational complexity of subsumption. Levesque and Brachman obtained the first such
results [50] by proving the complexity of (computing subsumption in) two related concept
definition languages, called F£ and FL~, that differed by a single terminological construct.
See Figure 2. The complexity for the simpler language, F£~, was O(n?), whereas the cost
for FL£ was co-NP hard. This result was startling because a small change in the represen-
tation language yielded a large change in complexity. FL is a subset of the language used
in KL-ONE, which language therefore must be at least co-NP hard. The KL-ONE classifier
[77] ran in polynomial time because it was incomplete — it overlooked certain subsumption
inferences.

Nebel proved that the complexity of a language f,CN, comprising a subset of the BACK
language, is also co-NP hard [61]. FLNis a different extension of Levesque and Brach-
man’s language FL~. Schild proved that computing subsumption is undecidable in a very
expressive terminological language [75] that I call F£5. Patel-Schneider considered a less
expressive language (FL£7¢) than did Schild — a language that in turn is a subset of the
languages of NIKL and LOOM — and he proved that language to be undecidable [66]. Nebel
later reexamined the FL language, and proved that the cost of computing subsumption in
the context of a larger base of terminology, rather than for two isolated definitions (as in
all previous results considered), is co-NP complete. This last result takes into account the
costs of traversing super—sub links in the hierarchy.
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The principle that these results yield is that the more expressive a representation language
is, the higher is the cost of computing subsumption in that language. Because of the central
role subsumption plays in the KL-ONE family (it is an intimate part of the definition of
new concepts and of problem solving), these results have animated researchers in the KIL-
ONE community to seek alternative ways of handling this tradeoff between expressive power
and computational cost. They have concluded that the solution requires some combination
of less expressive representation languages, and subsumption algorithms that are either
incomplete or unsound or both, to yield faster classification.

9.2 Discussion

Although many researchers view classification as the central operation in FRSs, the role of
the classification operation is far from clear. Classification plays a central role in the KIL-ONE
family of FRSs, and KR researchers have devoted a vast amount of effort to understanding
the theoretical properties of the classification operation. Many KR researchers have come
to believe that classification must necessarily play a central role in every FRS. For example,
Schmolze and Mark write, “The contribution of KL-ONE was to recognize that the ad hoc
manner in which frames could be related to each other made it extremely difficult (1) to build
large knowledge bases (because the relationships soon became incomprehensible to human
knowledge base builders), and (2) to reliably characterize the competence of the system’s
reasoning mechanisms (because the interpretation of relationships usually depended on
procedures written by the application programmers). KL-ONE’s solution was to make the
organization of these frames ... the responsibility of the system, not the programmer.” [78,
p5] (which responsibility is implemented through classification).

But in fact, no systematic study validates the claim that classification decreases the time
required to engineer or maintain large knowledge bases. Furthermore, I estimate that the
majority of industrial strength FRS applications have been constructed from FRSs that do
not classify. All of the commercialized F'RSs are descendants of the UNIT Package family, the
FRL family, or the SRL family, and none of these families employ classification. Therefore,
it is plausible to believe that FRSs that do not classify have seen more widespread use
in real-world applications than have FRSs that do classify. In addition, Lenat and his
colleagues are successfully using the CYCL FRS, a member of the UNIT Package family,
to construct what is probably the largest knowledge base ever built [48]. T do not say
that a FRS that classifies could not be successfully commercialized, but simply that none
have been, and that we should therefore question the practical utility of systems within the
classification paradigm. The empirical success of FRSs that do not classify is compelling
evidence that classification is neither a necessary nor a sufficient quality of a successful FRS.
Therefore, KR, researchers must sharpen and justify their hypothesis about the degree to
which classification is required in a FRS. Rather than viewing classification as the focal
point of all KR research, it is merely one of many FRS capabilities whose tradeoffs must be
understood.

Virtually all of the theoretical results in KR research have been achieved within the classi-
fication paradigm, whereas more practical results have been obtained outside the classifica-
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tion paradigm. We might ask how relevant the theoretical results within the classification
paradigm are to the design of FRSs that do not classify. This section examines the role of
classification in FRSs from a broad perspective to assess what is known about this operation
and what is not, and to ask how these two paradigms of knowledge representation might
be combined.

9.2.1 Performance

Section 9.1 summarized a substantial body of work on the theoretical worse-case cost of
computing subsumption. However, despite years and years of theoretical work, the literature
contains only a single empirical study of classification [38]. Furthermore, no one has asked
for which (if any) of the tasks in which it is employed, classification is too slow. Is it a
limiting factor in KB housekeeping, or query answering, or problem solving? Each of these
tasks might have different performance requirements, and different strategies might be used
to overcome the limits imposed by using classification in these tasks.

For example, if the main problem is in KB housekeeping, are FRSs too slow during KB load-
ing, or during interactive creation of single classes, or during instance realization? Consider
that when current FRS implementations load a KB containing N frames, that they perform
N classification operations. Therefore, the speed of KB loading could be greatly increased
if KB-save operations saved all computed super—sub relationships, eliminating the need for
classification during KB loading. This approach may require the development of algorithms
that reclassify a concept whose definition has changed. A number of FRSs assume that
changes to concept definitions are made directly in the KB data file using a text editor,
precisely because that file does not record subsumption relationships. The entire KB must
then be reloaded. This approach is extremely awkward for large KBs with many changing
concept definitions.

Consider also that for the task of KB housekeeping, classification need not be an interactive
operation, but could proceed in the background as the user worked on other tasks (Doyle and
Patil also make this point [22]). To guarantee sound inference, all background classification
operations must complete before the first query or problem-solving operation is invoked.
Doyle and Patil also suggest that this condition could be relaxed — that in some cases it
may be acceptable for problem solving to begin before subsumption relationships between
all pairs of classes in the KB are known. Furthermore, consider that some applications
employ classification for KB housekeeping only, because they perform specialized forms of
inference, and therefore have very informal requirements as to when KB housekeeping must
complete.

I next argue that the significance of the theoretical results concerning the complexity of
classification have been seriously overstated by authors who assert that classification is
intractable. I refer to the results that for a concept-description language L, the cost of
computing subsumption between two concepts defined in L is co-NP hard. I do not refer to
languages for which subsumption is undecidable. Subsumption for a language L is co-NP
hard for the concepts C; and Cs that are to be compared, with respect to the size of the
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definitions of C'; and C5. Let us call those sizes Ny and N,. I argue that Ny and Ny will not
generally increase without bound as applications increase in complexity. As applications
scale up I posit that KBs will contain more concepts, but that the complexity of individual
class definitions will remain about the same as it is today. Therefore, for languages that are
decidable, we can probably view classification as a constant time computation with respect
to application size because the complexity of computing subsumption is independent of the
number of concepts in a KB, Ng.

However, Nebel showed that the complexity of computing classification (as opposed to
subsumption) is co-NP complete with respect to N¢ [62]. As Nebel notes, however, that
result is dependent on the assumption that the depth of the taxonomic hierarchy is not
small (e.g., logarithmic) with respect to N¢ — an assumption that I expect would be
violated in practice for virtually all applications. In my experience, the depth of the concept
hierarchy tends to remain essentially constant as large applications become even larger,
perhaps because once a KB designer arrives at an adequate conceptualization of the domain,
they simply integrate new classes and instances into that existing conceptualization (class
hierarchy). My claims are of course unproven, and should be treated as hypotheses to be
investigated empirically. Woods makes related arguments in [100, p86].

The recent study by Heinsohn et al [38, 39] validates these claims to a degree by showing that
the cost of classification in real-world KBs is approximately quadratic. They performed a
series of experiments involving six members of the KL-ONE family (BACK, CLASSIC, KRIS,
LooM, MESON, and SB-ONE) in which they measured the time required by each FRS to
classify six real-world KBs developed in different applications at different institutions, as
well as a series of larger, randomly generated KBs that had similar characteristics to the
real-world KBs (e.g., average number of roles and direct-supers per class). Their conclusion
was that classification time for these KBs was quadratic in the number of concepts. They
were able to demonstrate exponential classification times for small, hand-generated KBs
that were expressly designed for worst-case behavior.

The Heinsohn et al study also provides hard evidence for the importance of elucidating
engineering principles and implementation techniques for FRSs. The variation in the time
required by different FRSs to classify the same KBs in Heinsohn et al’s experiments varied
tremendously. In one experiment, CLASSIC outperformed KRIS by a factor of 800. Across a
range of KBs, the relative speeds of the different FRSs was virtually unchanged. Thus, some
implementations clearly utilized more advanced methods than others, but no publications
describe these techniques in detail.

9.2.2 How is Classification Used?

We have already noted that classification is used for at least three different tasks in FRS
applications: KB housekeeping, query answering, and problem solving. What we do not
know is the frequency with which these different operations are used within different types
of applications. Are all of these operations central to the workings of every application, or
are some used only peripherally? For example, natural language applications probably use
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KB housekeeping and query answering most often; medical diagnosis applications probably
use KB housekeeping and problem solving; whereas a qualitative reasoner might use KB
housekeeping only.

Doyle and Patil state that in a major biomedical KB constructed using NIKL, two thirds of
the concepts in this KB were primitive concepts, and therefore unclassifiable. They conclude
that “KL-ONE-style languages significantly restrict their languages in order to speed up an
operation applicable to only a small fraction of concepts” [21, p25]. Speed aside, we must ask
whether the framework of intensional concept definitions based on necessary and sufficient
conditions is useful in application domains that are dominated by natural-kind concepts,
and what fraction of domains have this property.

We must also question the current use of classification in problem solving. First, many
classification tasks are heuristic in nature [16] — often we can only provide approximate
procedures for nondefinitional classification of entities. Indeed, a good many expert systems
do just this. Furthermore, experience with expert systems suggests that if classification is
to be used for general and potentially intractable problem solving, it is not wise to build
classifiers that are atomic, opaque bodies of code. Users are likely to want to bring heuristic
domain knowledge, control knowledge, and preferences to bear on classification (to increase
its efficiency, for example), which is impossible using current classifiers. Doyle and Patil
make a similar point when they suggest that we should relax the requirement that every
invocation of a classifier should provide sound and complete classification of a concept
with respect to every other concept in the KB. Rather, the classifier should rationally
balance its expenditure of computational resources against the preferences of the user and
the requirements of the problem. Furthermore, users who seek expert classifications often
require an explanation of the problem-solving process, which existing classifiers cannot
produce.

9.2.3 Combining the Paradigms

FRSs that do and do not classify embody two different paradigms of KR that are prac-
ticed by different communities of KR researchers. Some researchers who work within the
classification paradigm feel that FRSs of the other paradigm are “merely programming sys-
tems” — that they lack formal (or informal) semantics, that their taxonomic hierarchies
suffer from a lack of discipline, and that the programming mechanisms supported by these
systems (such as multiple inheritance, defaults that can be canceled, and access-oriented
programming) are so complex that they render KBs and associated problem-solving pro-
grams hopelessly complex and hard to understand. Conversely, some researchers outside
the classification paradigm feel that FRSs that classify are not programming systems —
that the representational restrictions required to permit a derivation of formal semantics
constrain these systems so much as to make them useless for complex applications.

One practical principle of classification is that FRSs that perform classification differ from
FRSs that do not in systematic ways due to constraints that the computation of subsump-
tion imposes on a FRS. One way to view this principle is that, just as we can increase
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the speed of subsumption by decreasing the expressiveness of the language, providing the
capability to compute subsumption at all also requires language restrictions.!® Classifying
FRSs do not provide inheritable default values that can be canceled because the notion of
cancellation conflicts with the notion of necessary conditions. That is, classification implies
the comparison of definitions, and definitions are true by necessity, not by default [10]. The
notion of definition also implies that a child frame cannot inherit conflicting information
from its parents since conflicting definitions would indicate an inconsistency in a KB. FRSs
that classify do not provide metaclasses, seeUnits, facets, nor own slots and member slots.
Classifying FRSs do not provide multiple inheritance modes (see Section 6) because each
additional mode complicates the computation of subsumption. Classifying FRSs do not
provide slot data types other than the set, such as the list, because it is not clear how to
compute subsumption between two lists. Classifying FRSs typically provide neither access-
oriented nor object-oriented programming because it is impossible to compute subsumption
between two LISP programs (in classifying FRSs that do provide AOP/OOP, use of these
features renders concepts unclassifiable).

I assert that because FRSs outside the classification paradigm have had such significant
empirical success, and because classification has yielded so many theoretical results, that
attempts should be made to synthesize the two paradigms to produce FRSs that have the
best characteristics of both. Two alternative strategies might be used to approach this
problem. The first is to investigate formal semantics for operations not currently supported
within the classification paradigm, such as multiple modes of inheritance.

The second approach is to include additional expressiveness through nondefinitional slots
that describe incidental properties of a class. The classification paradigm assumes that
all slots of a given concept are definitional in that they are part of the specification of
necessary conditions for what it means to be an instance of that concept. I suggest that
by annotating slots as to whether they describe definitional or incidental attributes, and by
having the classifier ignore incidental slots, we can provide greater expressiveness within the
classification paradigm. For example, although a necessary condition of maleness is that
the Y-chromosome slot have at least one value, we might want to record that the default
weight of males is 150lb without making a definitional statement, and to allow a specific
inheritance mode and conflict-resolution strategy to apply to this default. The separation
of definitional from nondefinitional information may allow the two paradigms of knowledge
representation to be unified.

LooM and CLASSIC take steps in this direction. LOOM allows nonconflicting default infor-
mation to be encoded in concert with concept definitions; CLASSIC allows default informa-
tion to be encoded as rules. In both systems, this default information is ignored by the
classifier. In addition, LOOM allows the user to define constraints that must hold for a given
slot, but that are nondefinitional, i.e., are ignored by the classifier.

Another major difference between the two paradigms is the interpretation they ascribe to
universally quantified formulas. Consider the concept of a red ball — a ball whose color is

> Traditionally, the word “expressiveness” has been used within the KR community to refer to the com-
plexity of a definition. I use it here in the more general sense of the ability to represent richer types of
definitional or nondefinitional knowledge, e.g., through facets or metaclasses.
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red:
V 2(RedBall(z) = Ball(z) A Color(x,red))

Such definitions are manipulated in four distinct ways by FRSs: in subsumption, in real-
ization, in constraint checking, and in assertion.

A member of the KL-ONE family would encode such universally quantified information as
a concept definition; it can compare such definitions to classify the Red-Ball concept, and
it could recognize instances that satisfy this definition during realization. In contrast, the
KEE FRS could encode this information as a value constraint on the color slot that could
be used for checking if a particular frame that is asserted to be an instance of the Red-Ball
class actually has a color of red. KEE could also encode this information as a default so
that for every instance of the Red-Ball class, inheritance asserts that the value of the color
slot is red.

Brachman made a similar point when he contrasted what he called assertional FRSs (e.g.,
KEE), from those that manipulate descriptions [9]. However, Brachman did not identify all
four interpretations of universally quantified information, nor did he note that all four uses
of such information can be required in certain situations. That the KL-ONE family cannot
deduce that if we know a ball is a red ball, then its color is red, seems rather surprising.
Newer members of the KL-ONE family can of course deal with assertional information, but
such information must be stored by the A-Box, not the T-Box. Therefore, to employ a given
piece of universally quantified information both definitionally and assertionally, it must be
stated twice.

In summary, universal quantifications have several interpretations. They can be compared,
matched against ground formulas for recognition and checking, and instantiated. No FRS
can currently put universally quantified information to all these uses, although for every
interpretation, there exists an FRS that employs it.

10 SUMMARY

FRSs are a surprisingly large and a surprisingly diverse group of information-management
systems. Over 50 FRSs have been constructed by KR researchers. Three main families of
FRSs have emerged: the SRL family, the KL-ONE family, and the UNIT Package family.

This paper surveyed the diversity of FRSs by examining the architectural variations that
different system designers have explored for the frame, the slot, the knowledge base, access-
oriented programming, and object-oriented programming.

Common to virtually all FRSs are the class frame and the instance frame. Other frame
types include the following. Metaclasses represent classes of classes. Prototypes represent
typical class instances. SlotUnits store global information about slots. SeeUnits act as
annotations for other frames. CompactUnits are a variation of instance frames that require
less storage and can be accessed more quickly than normal instance frames. Descriptions
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are variablized frames that represent goals in planning problems. Indefinites are similar to
skolem constants in that they represent instance frames of unknown identity.

In the simplest model of a slot, it has a name and a value. Many systems add arbitrary
additional facets to the slot, of which a datatype and a value restriction are typical. In
some cases, facets themselves can have facets, to an arbitrary depth. If we view a set of slot
values as a class, we gain the ability to make powerful assertions about that set. Own slots
contain information about the frame that they reside in, whereas member slots describe
the properties of instances of a class frame. BookkeepingSlots describe an actual frame
rather than the thing that the frame represents. FFRSs employ a number of different slot
datatypes, such as sets, ordered sets, lists, and single values. Constraints on slot values
can be written in a range of languages. The constraints can apply to individual slots or
can relate the values of a collection of slots. The constraints are generally used to detect
unallowed values, or can serve a definitional role that forms the basis of classification.

Knowledge bases are collections of frames that are often stored in a single file. In some
cases, KBs can be arranged in a hierarchy so that frames present in a given KB are also
visible in its children. Many KB-storage mechanisms are simplistic because they require
time proportional to the size of the KB to either save the KB persistently, or to load a
KB into memory. More desirable would be if the time were proportional to the number of
KB updates or to the amount of the KB that is accessed, respectively. Several researchers
have begun to address these issues by exploring ways of interfacing FRSs to relational and
object-oriented database systems.

FRSs employ the classification operation to compare the definitions of two classes to deter-
mine which is more general. Each member of the KL-ONE family uses a somewhat different
language to encode concept definitions. Many theoretical studies have addressed the com-
putational complexity of computing the subsumption relationship. For the class-definition
languages that have been studied, the following relationship has always held: the more ex-
pressive the language, the higher the computational cost of computing subsumption within
that language.

This survey makes apparent the fact that a large space of alternative FRS designs exists
because as a designer plans a new FRS, they must decide what model(s) of the frame to
employ, what model(s) of the slot to employ, and so on. FRS design principles should guide
an FRS designer in making the optimal set of decisions with respect to their intended class of
applications. These design decisions have a number of ramifications. They affect the worst-
case theoretical complexity, the average-case theoretical complexity, and the real-world
performance of a variety of FRS operations — from computing subsumption to altering slot
values to computing slot inheritance. They affect the expressiveness and succinctness of the
representation language, determining which nuances of the application can be encoded in
the FRS, and how compact and understandable that encoding is. They affect the runtime
flexibility of the FRS — the type of changes that can be made to a KB without requiring
that time be spent reloading the KB (complex applications require frequent KB changes
to class definitions and instances). They affect the modularity of the FRS; certain FRS
features are highly interdependent, thus affecting the ease with which the system can be
maintained and extended. They also affect the effort required to implement the FRS, since
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some features and some engineering techniques are more costly to program than others.

This paper has shown that, unfortunately, few design principles exist to guide an FRS
designer as to how particular design decisions will impact the preceding qualities of the
resulting system, and what tradeoffs exist among alternative design choices. First and fore-
most, we must understand the scope of the FRS design space. This paper defines the FRS
design space by surveying the features present in a large set of FRSs. This paper has closely
examined the design principles that do exist. When possible, we have discussed the tradeoffs
and interactions among different FRS features. We found that past research has yielded lit-
tle understanding of the alternative engineering techniques that can be used to implement
different FRS capabilities because authors rarely discuss the engineering techniques that
they employ. Engineering decisions intimately affect many of the preceding FRS qualities.

The paper examined classification in detail. Many FRSs treat classification as central to
their operation, and a large number of theoretical studies have investigated the computa-
tional costs of classification. The paper questions the central importance of classification
by noting that neither the UNIT Package nor the SRL families of FRSs employ it all, and
that the use of classification constrains the other features that can be present in an FRS.
Research on ways to remove these constraints could prove quite fruitful. Furthermore, we
argue that the theoretical results concerning the computational costs of subsumption may
have been exaggerated. There is no evidence that the worst-case predictions will hold as
applications scale up, and there is empirical evidence that real-world KBs do not require
exponential time for classification. Finally, classification is used in a variety of tasks, and
it is not clear for what tasks (if any) the speed of classification is supposed to be rate lim-
iting. We considered alternative ways of decreasing the dependence of each of these tasks
on classification, and suggested that classification may be completely inappropriate for one
of these tasks.

The field of KR has the potential for entering a mature phase of great progress if we can
capitalize on the wealth of research results that have accumulated over the past 20 years.
This paper should help to unite many fragmented realms of FRS research to provide a solid
foundation for future research.
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