
By Michel Klein
Vrije Universiteit

T u t o r i a l : T h e S e m a n t i c W e b

26 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

Let’s start with XML
XML (eXtensible Markup Language) is a specification

for computer-readable documents. Markup means that
certain sequences of characters in the document contain
information indicating the role of the document’s content.
The markup describes the document’s data layout and logi-
cal structure and makes the information self-describing, in
a sense. It takes the form of words between pointy brack-
ets, called tags—for example, <name> or <h1>. In this
aspect, XML looks very much like the well-known lan-
guage HTML.

However, extensible indicates an important difference
and a main characteristic of XML. XML is actually a
metalanguage: a mechanism for representing other lan-
guages in a standardized way. In other words, XML only
provides a data format for structured documents, without
specifying an actual vocabulary. This makes XML univer-
sally applicable: you can define customized markup lan-
guages for unlimited types of documents. This has already
occurred on a massive scale. Besides many proprietary
languages—ranging from electronic order forms to appli-
cation file formats—a number of standard languages are
defined in XML (called XML applications). For example,
XHTML is a redefinition of HTML 4.0 in XML.

Let’s take a more detailed look at XML. The main
markup entities in XML are elements. They consist nor-
mally of an opening tag and a closing tag—for example,
<person> and </person>. Elements might contain other ele-
ments or text. If an element has no content, it can be
abbreviated as <person/>. Elements should be properly
nested: a child element’s opening and closing tags must be
within its parent’s opening and closing tags. Every XML

document must have exactly one root element. Elements
can carry attributes with values, encoded as additional
“word = value” pairs inside an element tag—for example,
<person name=“John”>. Here is a piece of XML:

<?xml version=“1.0”?>
<employees>

List of persons in company:
<person name=“John”>

<phone>47782</phone>
On leave for 2001.

</person>
</employees>

XML does not imply a specific interpretation of the
data. Of course, on account of the tag’s names, the mean-
ing of the previous piece of XML seems obvious to
human users, but it is not formally specified! The only
legitimate interpretation is that XML code contains named
entities with subentities and values; that is, every XML
document forms an ordered, labeled tree. This generality
is both XML’s strength and its weakness. You can encode
all kinds of data structures in an unambiguous syntax, but
XML does not specify the data’s use and semantics. The
parties that use XML for their data exchange must agree
beforehand on the vocabulary, its use, and its meaning.

Enter DTDs and XML Schemas
Such an agreement can be partly specified by Docu-

ment Type Definitions and XML Schemas. Although
DTDs and XML Schemas do not specify the data’s mean-
ing, they do specify the names of elements and attributes
(the vocabulary) and their use in documents. Both are
mechanisms with which you can specify the structure of
XML documents. You can then validate specific docu-
ments against the structure prescription specified by a
DTD or an XML Schema.

DTDs provide only a simple structure prescription: they
specify the allowed nesting of elements, the elements’
possible attributes, and the locations where normal text is
allowed. For example, a DTD might prescribe that every

Languages for representing data and knowledge are an

important aspect of the Semantic Web. And there are

a lot of languages around! Most languages are based on

XML or use XML as syntax; some have connections to

RDF or RDF Schemas. This tutorial will briefly introduce

XML, XML Schemas, RDF, and RDF Schemas.

XML, RDF, and Relatives

person element must have a name attribute
and may have a child element called phone
whose content must be text. A DTD’s syn-
tax looks a bit awkward, but it is actually
quite simple.

XML Schemas are a proposed successor
to DTDs. The XML Schema definition is
still a candidate recommendation from the
W3C (World Wide Web Consortium), which
means that, although it is considered stable,
it might still undergo small revisions. XML
Schemas have several advantages over
DTDs. First, the XML Schema mechanism
provides a richer grammar for prescribing
the structure of elements. For example, you
can specify the exact number of allowed
occurrences of child elements, you can
specify default values, and you can put
elements in a choice group, which means
that exactly one of the elements in that
group is allowed at a specific location. Sec-
ond, it provides data typing. In the example
in the previous paragraph, you could pre-
scribe the phone element’s content as five
digits, possibly preceded by another five
digits between brackets. A third advantage
is that the XML Schema definition pro-
vides inclusion and derivation mechanisms.
This lets you reuse common element defin-
itions and adapt existing definitions to new
practices.

A final difference from DTDs is that
XML Schema prescriptions use XML as
their encoding syntax. (XML is a metalan-
guage, remember?) This simplifies tool
development, because both the structure
prescription and the prescribed documents
use the same syntax. The XML Schema
specification’s developers exploited this
feature by using an XML Schema docu-
ment to define the class of XML Schema
documents. After all, because an XML
Schema prescription is an XML applica-
tion, it must obey rules for its structure,
which can be defined by another XML
Schema prescription. However, this recur-
sive definition can be a bit confusing.

RDF represents data about data
XML provides a syntax to encode data;

the resource description framework is a
mechanism to tell something about data. As
its name indicates, it is not a language but a
model for representing data about “things
on the Web.” This type of data about data is
called metadata. The “things” are resources
in RDF vocabulary.

RDF’s basic data model is simple:

besides resources, it contains properties
and statements. A property is a specific
aspect, characteristic, attribute, or relation
that describes a resource. A statement con-
sists of a specific resource with a named
property plus that property’s value for that
resource. This value can be another re-
source or a literal value: free text, basi-
cally. Altogether, an RDF description is a
list of triples: an object (a resource), an
attribute (a property), and a value (a re-
source or free text). For example, Table 1
shows the three triples necessary to state
that a specific Web page was created by
something with a name “John” and a phone
number “47782.”

You can easily depict an RDF model as a
directed labeled graph. To do this, you draw
an oval for every resource and an arrow for
every property, and you represent literal
values as boxes with values. Figure 1 shows
such a graph for the triples in Table 1.

These example notations reveal that
RDF is ignorant about syntax; it only pro-
vides a model for representing metadata.
The triple list is one possible representa-
tion, as is the labeled graph, and other syn-
tactic representations are possible. Of
course, XML would be an obvious candi-
date for an alternative representation. The
specification of the data model includes
such an XML-based encoding for RDF.

As with XML, an RDF model does not
define (a priori) the semantics of any appli-
cation domain or make assumptions about
a particular application domain. It just pro-
vides a domain-neutral mechanism to de-
scribe metadata. Defining domain-specific
properties and their semantics requires
additional facilities.

Defining an RDF vocabulary:
RDF Schema

Basically, RDF Schema is a simple type
system for RDF. It provides a mechanism
to define domain-specific properties and
classes of resources to which you can apply
those properties.

The basic modeling primitives in RDF
Schema are class definitions and subclass-
of statements (which together allow the
definition of class hierarchies), property
definitions and subproperty-of statements
(to build property hierarchies), domain and
range statements (to restrict the possible
combinations of properties and classes),
and type statements (to declare a resource
as an instance of a specific class). With
these primitives you can build a schema for
a specific domain. In the example I’ve been
using throughout this tutorial, you could
define a schema that declares two classes
of resources, Person and WebPage, and two
properties, name and phone, both with the
domain Person and range Literal. You could
use this schema to define the resource
http://www.w3.org/ as an instance of WebPage
and the anonymous resource as an instance
of Person. Together, this would give some
interpretation and validation possibilities to
the RDF data.

RDF Schema is quite simple compared to
full-fledged knowledge representation lan-
guages. Also, it still does not provide exact
semantics. However, this omission is partly
intentional; the W3C foresees and advo-
cates further extensions to RDF Schema.

Because the RDF Schema specification
is also a kind of metadata, you can use
RDF to encode it. This is exactly what
occurs in the RDF Schema specification

MARCH/APRIL 2001 computer.org/intelligent 27

http://www.w3.org/
name

phone

John

47782

created by

Figure 1. A directed labeled graph for the triples in Table 1.

Table 1. An RDF description consisting of three triples indicating that a specific Web page was created by something
with a name John and a phone number “47782.”

OBJECT ATTRIBUTE VALUE

http://www.w3.org/ created_by #anonymous_resource1
#anonymous_resource1 name “John”
#anonymous_resource1 phone “47782”

document. Moreover, the specification pro-
vides an RDF Schema document that de-
fines the properties and classes that the
RDF Schema specification introduced. As
with the XML Schema specification, such
a recursive definition of RDF Schema
looks somewhat confusing.

XML and RDF are different formalisms
with their own purposes, and their roles in
the realization of the Semantic Web vision
will be different. XML aims to provide an
easy-to-use syntax for Web data. With it,
you can encode all kinds of data that is
exchanged between computers, using XML
Schemas to prescribe the data structure.
This makes XML a fundamental language
for the Semantic Web, in the sense that
many techniques will probably use XML as
their underlying syntax.

XML does not provide any interpretation
of the data beforehand, so it does not con-
tribute much to the “semantic” aspect of
the Semantic Web. RDF provides a stan-
dard model to describe facts about Web
resources, which gives some interpretation
to the data. RDF Schema extends those
interpretation possibilities somewhat more.
However, to realize the Semantic Web

vision, it will be necessary to express even
more semantics of data, so further exten-
sions are needed. There are already some
initial steps in this direction—for example,
the DAML+OIL (DARPA Agent Markup
Language + Ontology Inference Layer)
language, which adds new modeling
primitives and formal semantics to
RDF Schema.

The “Further Reading” sidebar contains
pointers to more detailed explanations of
XML and RDF and lists the URLs of the
official homepages of XML, RDF, and the
Semantic Web Activity at the W3C. Through
those pages, you can find many projects and
applications related to these topics.

28 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

• The pages at www.w3.org/XML and
www.w3.org/RDF contain pointers
to the official definitions of the
languages that I covered in this
minitutorial.

• XML.com (www.xml.com) contains
technical introductions to both XML
and XML Schemas.

• Pierre-Antoine Champin provides
comprehensive tutorial on RDF
and RDF Schema at www710.

univ-lyon1.fr/~champin/rdf-tutorial.
• Robin Cover maintains a compre-

hensive online reference for XML
and related techniques at
www.oasis-open.org/cover.

• The vision of the Semantic Web is
sketched at www.w3.org/2001/
sw/Activity.

• The DAML+OIL extension to RDF
Schema lives at www.daml.org/
2001/03/daml+oil-index.

Further Reading

C o m i n g N e x t I s s u e

Wearable AI
Wearable artificial intelligence allows the use of AI in
situations where computing previously was severely limited,
even from palm computers. Wearable AI also promises to
provide nonintrusive access to intelligent systems. This issue
will spotlight leading research in this cutting-edge field.

Michel Klein is a PhD student at the Infor-
mation Management Group of the Vrije Uni-
versiteit in Amsterdam. His research interests
include ontology modeling, maintenance, and
integration, and representation and interoper-
ability issues of semistructured data. Contact
him at the Faculty of Sciences, Division of
Mathematics and Computer Science, Vrije
Universiteit, De Boelelaan 1081a, 1081 HV
Amsterdam, Netherlands; michel.klein@cs.
vu.nl; www.cs.vu.nl/~mcaklein.

