
Programming
with

Logic and Objects

Michael Kifer
Stony Brook University

Outline

• Introduction: About FLORA-2
• F-logic
• HiLog
• Example of an application of FLORA-2
• Transaction Logic (if time permits)

Introduction

What’s Wrong with
Classical Programming with Logic?

• Precisely that it is based on classical logic:
– Essentially flat data structures (relations with

structs)
– Awkward meta-programming
– Ill-suited for modeling side effects (state

changes, I/O)

What is FLORA-2?
•• FF-LLogic tRARAnslator (the next generation)

– FLORA-2 programs are translated into XSB & executed by the XSB tabling
inference engine

• Language for knowledge-based applications
– Declarative – much more so than Prolog
– Object-oriented (frame based)

• Overcomes most of the usability problems with Prolog
• Practical & usable programming environment based on

– F-logic (Frame Logic) ≡ objects + logic (+ extensions)
– HiLog – high degree of truly declarative meta-programming
– Transaction Logic – database updates + logic

• Builds on earlier experience with implementations of F-logic:
FLORID, FLIP, FLORA-1 (which don’t support HiLog &
Transaction Logic)

• http://flora.sourceforge.net

Applications of FLORA-2

• Ontology management (Semantic Web)
• Information integration
• Software engineering
• Agents
• Anything that requires manipulation of

complex structured (especially semi-
structured) data

Other F-logic Based Systems
• No-name system (U. Melbourne – M. Lawley) – early 90’s; first

Prolog-based implementation
• FLORID (U. Freiburg – Lausen et al.) – mid-late 90’s; the only

C++ based implementation
• FLIP (U. Freiburg – Ludaescher) – mid 90’s; first XSB based

implementation. Inspired the FLORA effort
• TFL (U. Valencia – Carsi) – mid 90’s; first attempt at F-logic +

Transaction Logic
• SILRI (Karlsruhe – Decker et al.) – late 90’s; Java based
• TRIPLE (Stanford – Decker et al.) – early 2000’s; Java

ü FLORA-2 – most comprehensive and general purpose of all
these

F-Logic

Usability Problems with Flat Data Representation

555-66-7777212-987-1111Bob Public222-33-4444

444-55-6666212-987-1111Bob Public222-33-4444

555-66-7777212-987-6543Bob Public222-33-4444

444-55-6666212-987-6543Bob Public222-33-4444

333-44-5555516-345-6789Joe Public111-22-3333

333-44-5555516-123-4567Joe Public111-22-3333

222-33-4444516-345-6789Joe Public111-22-3333

222-33-4444516-123-4567Joe Public111-22-3333

ChildPhoneNNameSSNPerson

Person = (SSN,Name,PhoneN) (SSN,Name,Child)

SSN Name

Typical result of translation from the E-R diagram:

Problem: redundancy due to dependencies

Normalization That Removes Redundancy

Bob Public222-33-4444

Joe Public111-22-3333

NameSSN

212-135-7924222-33-4444

212-987-6543222-33-4444
516-123-4567111-22-3333

516-345-6789111-22-3333

PhoneNSSN

555-66-7777222-33-4444

444-55-6666222-33-4444
333-44-5555111-22-3333

222-33-4444111-22-3333

ChildSSN

Person1 Phone

ChildOf

But querying is still cumbersome:

Against the Against the originaloriginal relation relation –– complex:complex:
SELECT G.PhoneN
FROM Person P, Person C, Person G
WHERE P.Name = ‘Joe Public’ AND

P.Child = C.SSN AND C.Child = G.SSN

Get the phone#’s of Joe’s grandchildren.

Against the Against the decomposeddecomposed relations relations –– even more so:even more so:

SELECT N.PhoneN

FROM ChildOf C, ChildOf G, Person1 P, Phone N

WHERE P.Name = ‘Joe Public’ AND P.SSN = C.SSN AND

C.Child = G.SSN AND G.SSN = N.SSN

O-O approach: rich types and better query language

Schema:
Person(SSN: String,

Name: String,
PhoneN: {String},
Child: {Person})

- No need to decompose in order to eliminate redundancy

Query:
SELECT P.Child.Child.PhoneN
FROM Person P
WHERE P.Name = ‘Joe Public’

– Much simpler query formulation

Set data types

Path expressions

Basic Ideas Behind F-Logic

• Take complex data types as in object-oriented
databases

• Combine them with logic
• Keep it clean – no ad hoc stuff
• Use the result as a programming/query language

F-Logic Features

• Objects with complex internal structure
• Class hierarchies and inheritance
• Typing
• Encapsulation
• Background:

– Basic theory: [Kifer & Lausen SIGMOD-89], [Kifer,Lausen,Wu JACM-95]
– Powerful path expression syntax: [Frohn, Lausen, Uphoff VLDB-84]
– Semantics for non-monotonic inheritance: [Yang & Kifer, ODBASE 2002]
– Meta-programming + other extensions: [Yang & Kifer, ODBASE 2002]

F-logic: simple examples

Object description:

john[nameà‘John Doe’, phones->>{6313214567, 6313214566},
children->>{bob, mary}]

mary[nameà’Mary Doe’, phones->>{2121234567, 2121237645},
children->>{anne, alice}]

Structure can be nested:

sally[spouse -> john[address -> ‘123 Main St.’]]

Single-valued attribute

Set-valued attribute

Object Id

Examples (contd.)

ISA hierarchy:

john : person - class membership
mary : person
alice : student

student :: person - subclass relationship

Examples (Contd.)

Methods: like attributes, but take arguments

P[ageAsOf(Year)àAge] :--
P:person, P[bornàB], Age is Year–B.

Queries:

?-- john[bornàY, children->>C],
C[bornàB], Z is Y+30, B>Z.

John’s children who were born when he was over 30.

Examples (Contd.)

Type signatures:

person[born => integer,
ageAsOf(integer) => integer,
name => string,
children =>> person].

Can define signatures as facts or via deductive rules;
Signatures can be queried.
Type correctness has logical meaning (as “runtime” constraints).

Syntax
• ISA hierarchy:

• O:C -- object O is a member of class C
• C::S -- C is a subclass of S

• Structure:
• O[MàS] – scalar (single-valued) invocation of method
• O[M->>S] – set-valued invocation of method

• Type (signatures):
• Typeobj[Meth => Resulttype] – a scalar method signature
• Typeobj[Meth =>> Resulttype] – signature for a set-valued method

• Combinations of the above: \/, /\, negation, quantifiers

•• O,C,M,O,C,M,TypeobjTypeobj, ... , ... –– usual first order function terms, e.g., usual first order function terms, e.g.,
john, john, AsOfAsOf(Y), (Y), foofoo(bar,X).(bar,X).

More Examples
Browsing ISA hierarchy:

?- john : X.
?- student ::Y

Virtual (view) class:
X : redcar :- X:car, X[color -> red].

Schema browsing:
O[attrs(Class) ->> A] :-

(O[A -> V; A ->> V]), V:Class.

Parameterized classes:
[]:list(T).
[X|L]:list(T) :- X:T, L:list(T).

E.g., list(integer), list(student)

Rule defines method, which
returns attributes whose

range is class Class

Semantics
Herbrand universe: HB – set of all ground terms
Interpretation: I = (HB,I->,I->>,∈,<)

where < : partial order on HB
∈ : binary relationship on HB
I-> : HB → (HB → HB)

I->> : HB → (HB → powersetOf(HB))

I |= o[m->v] if I->(m)(o) = v
I |= o[m->>v] if v ∈ I->>(m)(o)
I |= o:c if o ∈ c
I |= c::s if c < s

• Won’t discuss typing

partial

partial

Proof Theory

• Resolution-based
• Sound & complete w.r.t. the semantics

Inheritance in F-logic

Elephant[coloràgrey]

fred
royalElephant[coloràwhite]

clyde

Should conclude:Should conclude:
fred[coloràgrey]
clyde[coloràwhite]

Overriding

The Problem with Rules

• Inheritance is hard to even define properly
in the presence of rules.

a

b

[m -> v]

c[m -> w] :- a[m -> v]c

[m -> v]

inherited

defeated??

[m -> w]

derived

Several other
non-obvious cases exist

Inheritance (Contd.)

• Hard to define semantics to multiple inheritance
+ overriding + deduction; several semantics
might be “reasonable”

• The original semantics in [Kifer,Lausen,Wu
JACM-95] was quite problematic

• Problem solved in [Yang&Kifer ODBASE 2002]

HiLog

HiLog

• Allows certain forms of logically clean
meta-programming

• Syntactically appears to be higher-order, but
semantically is first-order and tractable

• Has sound and complete proof theory
• [Chen,Kifer,Warren JLP-93]

Examples of HiLog

Variables over predicates and function symbols:
p(X,Y) :- X(a,Z), Y(Z(b)).

Variables over atomic formulas:
call(X) :- X.

HiLog in FLORA-2 (e.g., method browsing):
O[unaryMethods(Class) ->> M] :--

O[M(_) -> V; M(_) ->>V], V:Class.

john[believes ->> ${mary[likes ->> bob]}]

Meta-variables

Reification
[Yang&Kifer ODBASE 2002]

Applications

Applications

• Web information extraction agents (XSB, Inc.’s
prototype; FLORA-1)

• Info integration in Neurosciences (San Diego
Supercomputing Institute; FLORA-1)

• Ontology management (Daimler-Chrysler; FLORA-2)
• CASE tool (U. Valencia; FLORA-2)
• Stony Brook CS Grad Program Manager (FLORA-2)

SBCS Graduate Program Manager
• Need to keep track of lots of special cases

• MS, PhD status over time; with/without support
• Types of support over time (RA/TA/fellowships, permanent/temporary)
• PhD examinations (with history of failures, conditions); N/A to MS
• Teaching history
• Advisors over time

• TA assignments
• 35+ courses
• 70 TAs; ~50 guaranteed, ~50 wannabees (waitlist)

– Preferences/skills
– English proficiency test results, etc., etc.

• Need complex aggregate reports
•• Very complicatedVery complicated

– Hard to figure out the right database schema (still evolving)
– Data highly semistructured

SBCS Grad Manager (Contd.)

• Was hard-pressed: didn’t have the time to do it
in Java/JDBC (also: maintenance would have
been a serious problem afterwards)

• FLORA-2 was ideal for this:
• Objects don’t need to have exactly the same structure
• Changes of object schema (usually) don’t require

changes to old rules/queries – low maintenance overhead

• Took only 2 weeks for initial version including
data entry and debugging FLORA-2 itself!
– Had some fun doing the otherwise boring job

Student Data – Highly Semi-structured
_#1 : student
[last -> ‘Doe', first -> ‘Mary', email -> ‘marydoe@yahoo.com’,
joined -> fall(1999), graduated -> futuredate,
advisor ->> _#(_#1)[who -> johndoe, since -> fall(1999)],
support ->> {_#(_#1)[type ->ra, since -> fall(2001)],

#(#1)[type -> ta, until -> spring(2001)] },
status ->> {_#(_#1)[type->phd, since->spring(2002), remarks->'part time'],

#(#1)[type->phd, until->summer2(2000)],
#(#1)[type->ms, since->fall(2000), until->fall(2001)] },

quals -> _#(_#1)[passed -> date(2000,10), history ->> data(2000,5)],
defense -> _#(_#1)[passed -> futuredate],
female,
domestic,
taught ->> { _#(_#1)[course->cse529, semester->fall(2000), load -> 0.5],

#(#1)[course->cse310, semester->fall(2000), load -> 0.5],
#(#1)[course->cse305, semester->spring(2001)] },

canteach ->> {cse332,cse336,cse333,cse230,cse528}
].

Variations in structureCan be missing

Anonymous oid

Hackery to improve
indexing

Course Data – Also Semistructured

cse505 : course[
name -> 'Computing with Logic',
offerings ->> {

_#[semester -> fall(2001),
instructors ->> {cram},
enrollment -> 15,

],
_#[semester -> fall(2002),

instructors ->> {warren},
enrollment -> 25,
need_grad_ta -> 0.5
]

}
]. Variation in

structure

Course Data (Contd.)
cse334 : course[

name -> 'Introduction to Multimedia Systems',
crosslisted ->> ise334,
offerings ->> {

_#[semester -> fall(2001),
instructors ->> {tony, rong},
enrollment -> 182,
waiting -> 0,
need_grad_ta -> 2,
need_ug_ta -> 3,
ug_ta ->> {

‘John, Public (jp@aol.com)',
‘Blow, Joe (jblow@ic.sunysb.edu)'

}
]

}
]

Variation in
structure

Instructor Data

ted:lecturer[name->'Ted Teng'].
robkelly:lecturer[name->'Rob Kelly'].

ari:faculty[name -> 'Ari Kaufman', section587 -> 19].
skiena:faculty[name -> 'Steve Skiena'].
kifer:faculty[name -> 'Michael Kifer', section587 -> 9].

Variation in
structure

Main Meta-Query
%% Sorted report main entry. Arguments:
%% PrintMethod (what info about students to print)
%% SortSpec (how to sort output)
%% QuerySpec (which students to retrieve)
Class[#sprintquery(PrintMethod,SortSpec,QuerySpec)] :-

L = collectset{Var | (O:Class)@students,
%% Bind Query/SortSpec to the same oid
SortSpec = sortSpec(Path,O,Val),
QuerySpec = querySpec(O,QueryCond),
Path,
QueryCond,
Var = Val-O

},
keysort(L,SortedL)@prolog(),
Class[#printlist(PrintMethod,SortedL)],
length(SortedL,Count)@prolog(basics),
format('Total ~w count: ~w~w’, [Class, Count])@prolog().

Call to prologprolog
module

Call in studentsstudents
module

Use of
reification

Pragmatics
• Very flexible module system

– Can load programs into modules on-the-fly
– Can create modules at run time and put a program into it
– Prolog environment with its own module system is viewed as a

set of “prolog modules”
– FLORA-2 can call Prolog modules and Prolog can call

FLORA-2 modules

• Anonymous OIDs (also useful in RDF and the like)
• Input/Output – use Prolog’s
• Prolog cuts – non-logical, but useful

Transaction Logic

Transaction Logic

• A logic of change
• Unlike temporal/dynamic/process logics, it

is also a logic for programming (but can be
used for reasoning as well)

• In the object-oriented context:
– A logic-based language for programming object

behavior (methods that change object state)
• [Bonner&Kifer, TCS 1995 and later]

What’s Wrong with Logics of Change?

• Designed for reasoning, not programming
• E.g., situation calculus, temporal, dynamic, process logics

• Typically lack such basic facility as subroutines
• None became the basis for a reasonably useful

programming language

What’s Wrong with Prolog?

• assert/retract have no logical semantics
• Non-backtrackable
• Prolog programs with updates are the

hardest to write, debug, and understand

Example: Stacking a Pyramid
stack(0,X).
stack(N,X) :-- N>0, move(Y,X), stack(N-1,Y).

move(X,Y) :-- pickup(X), putdown(X,Y).
pickup(X) :-- clear(X), on(X,Y), retract(on(X,Y)), assert(clear(Y)).
putdown(X,Y) :-- wider(Y,X), clear(Y), assert(on(X,Y)), retract(clear(Y)).

Action:
?– stack(18,block32). % stack 18-block pyramid on top of block 32

Note:
Prolog won’t execute this very natural program correctly!

Syntax

• Serial conjunction, ⊗
• a ⊗ b – do a then do b

• The usual /\, \/, ¬, ∀, ∃ (but with a different
semantics)

• a \/ (b ⊗ c) /\ (d \/ ¬e)

• a ß b ≡ a \/ ¬b
• Means: to execute a must execute b

Semantics

• The basic ideas
– Execution path ≡ sequence of database states
– Truth values over paths, not over states
– Truth over a path ≡ execution over that path
– Elementary state transitions ≡ propositions that cause a

priori defined state transitions

Semantics

a b

a ⊗ b

a /\ b

a, b

Semantics

The semantics makes updates logical

actionaction
PostPost--conditionconditiontrue

false

If actionaction is true, but postconditionpostcondition false, then
actionaction ⊗ postcondition postcondition is false on p.

In practical terms: updates are undone on backtracking.

path p

Proof Theory

• To prove φ, tries to find a path, π, where φ is true
• => executes φ as it proves it (and changes the

underlying database state from the initial state of π
to the final state of π)

Pyramid Building (again)

stack(0,X).
stack(N,X) :-- N>0 ⊗ move(Y,X) ⊗ stack(N-1,Y).

move(X,Y) :-- pickup(X) ⊗ putdown(X,Y).
pickup(X) :-- clear(X) ⊗ on(X,Y) ⊗ delete(on(X,Y)) ⊗ insert(clear(Y)).
putdown(X,Y) :-- wider(Y,X) ⊗ clear(Y) ⊗ insert(on(X,Y)) ⊗ delete(clear(Y)).

?– stack(18,block32). % stack 18-block pyramid on top of block 32

• Under the Transaction Logic semantics the above program
does the right thing

Constraints
• Can express not only execution, but all kinds of

sophisticated constraints:

?– stack(10, block43)

/\ ∀X,Y ((move(X,Y) ⊗ color(X,red)) => ∃ Z(color(Z,blue) ⊗ move(Z,X)))

Whenever a red block is stacked, the next block stacked must be blue

• Has been shown useful for process modeling
(Davulcu et. al. PODS-97, Thesis 2002, Senkul et. al.
VLDB-02)

Reasoning

• Can be used to reason about the effects of
actions [Bonner&Kifer 1998]

Integration into FLORA-2

• FLORA-2 provides
– btinsert{Template | Query}
– btdelete{Template | Query}
– bterase{Template | Query}
– And other “elementary” updates that behave

according to the semantics of Transaction Logic

• FLORA’s “,” then serves as ⊗ and “;” as \/,
which allows us to build larger and larger
transactions

Pragmatics

• FLORA-2 also provides non-logical updates
that are similar, but more powerful to
Prolog’s

• Logical updates + Prolog cuts
– can be used to implement “partial commit” of

transactions
– have perfect sense in databases, but

(unfortunately) not in Transaction Logic

Conclusion

• FLORA-2
≡ F-logic + HiLog + Transaction Logic + XSB
≡ Logic + Objects + Meta-programming

+ State changes + Implementation

Future Work

• XSB: has a number of problems that spoil the
party
– Limitations on cuts (will be fixed in the future)
– Problems with updates
– Bad interaction between tabling and updates

• FLORA-2:
– Interfaces to databases, C, Java
– Additional features: encapsulation, various

optimizations

