
Description Logics in Data Management

Alexander Borgida�y

October 4, 1995

Abstract

Description logics and reasoners, which are descen-
dants of the kl-one language, have been studied
in depth in Arti�cial Intelligence. After a brief in-
troduction, we survey in this paper their applica-
tion to the problems of information management, us-
ing the framework of an abstract information server
equipped with several operations | each involving
one or more languages. Speci�cally, we indicate how
one can achieve enhanced access to data and knowl-
edge by using descriptions in languages for schema de-
sign and integration, queries, answers, updates, rules,
and constraints.
Keywords: Description, concept, terminological,

language, subsumption, knowledge representation,
schema, intension, object centered.

1 Introduction

A large class of practical computer applications re-
quires managing a symbolic model of an application
world, which is updated or queried by users. Many
such systems start with the intuition that for describ-
ing some situation, it is useful to think of various
kinds of individuals, e.g., Calculus100, Gauss, re-
lated by relationships, e.g., taughtBy, and grouped
into classes, e.g., COURSE, TEACHER, STUDENT. This
intuition is shared by formalisms such as semantic
data models, object-oriented databases, and seman-
tic networks. Such formalisms support languages for
declaring classes of individuals, using a syntax some-
what resembling the following example:

class ADVANCED COURSE is-a COURSE with

takers [0,40]: GRADS

...

�The author is with the Department of Computer Science,
Rutgers University, New Brunswick, NJ 08903, USA. E-mail:
borgida@cs.rutgers.edu.

yThis research was supported in part by Grant IRI 91-19310
from the U.S. National Science Foundation. A portion of this
paper is based on an invited presentation given at IFIP'92 [18],
and appears with the permission of IFIP and Elsevier Science
B.V., Amsterdam.

(and

COURSE ,

(at-most 10 takers) ,

(all takers GRADS) )

Figure 1: Compositional concept in classic

Such a declaration is intended to express necessary
conditions that must be met by each instance of the
class. For example, in the above case every instance
of ADVANCED COURSEmust also be an instance of class
COURSE, and the takers attribute must relate to it
between 0 and 40 individuals, themselves instances
of class GRADS. Class de�nitions are used to detect
errors, or as a template for data storage decisions,
i.e., as a type declaration in standard programming
languages.
The subject of this paper is yet another family of

formalisms | description logics (DLs) | which are
currently enjoying a surge of interest both as objects
of theoretical study and as tools used in applications,
including ones in industry.

1.1 Description Languages

The fundamental observation underlying DLs is that
there is a bene�t to be gained if languages for talk-
ing about classes of individuals yield structured ob-
jects that can be reasoned with. Figure 1 contains an
example of a typical compositional description, ex-
pressed in the classic language [19]. Its intended
reading would be \Courses with at most 10 takers, all
takers being instances of GRADS". In this descrip-
tion, COURSE and GRADS are identi�ers for concepts
introduced elsewhere, while takers is the name of
a binary relation, intended to relate courses to stu-
dents taking them. There are several things one can
do with such a description, including:

� Reasoning about the relationship of one descrip-
tion to another, treating them as \intensional"
objects. For example, the description in Figure 1
is subsumed by (entails) the description

1



(and COURSE , (at-most 15 takers))

since everything with at most 10 �llers for some
role, also has at most 15 �llers for it. On the
other hand, the description (at-least 12 tak-

ers) can be inferred to be disjoint from the
one in Figure 1, because the required number
of �llers are in conict.

� Recognizing those individuals that satisfy the
description, based on what is currently known
about them. For example, suppose AI100 is an
individual object in the knowledge base, and it is
known to be an instance of the concept COURSE;
in addition, the �llers for the takers role for
AI100 are individuals Calvin and Hobbes, both
of which are instances of GRADS. Then AI100 is
inferred to be an instance of the description in
Figure 1, since all the necessary and suÆcient
conditions of that concept are satis�ed.

As a possible clari�cation of the issues involved,
we provide an analogy for those familiar with logic
programming1. Since descriptions denote concepts or
relationships, it is natural to take their analogues in
logic to be ordinary unary or binary predicates. Con-
sider the following knowledge base of Horn clauses:

ParentOf(liz,andy). Male(andy).

Child( x) :- ParentOf( z, x).

Son( y) :- Male( y), ParentOf( w, y).

Normally, such a system is used to deduce new prop-
erties of individuals, e.g., whether the Son predi-
cate \recognizes" the individual andy. On the other
hand, we might want to reason entirely from inten-
sional information | the rules | ignoring ground
facts. For example, we might be interested in whether
Child( x) is implied by (\subsumes") Son( x). Note
that although we cannot express this question in Pro-
log, theoretically the answer would be \yes", because
the last two clauses are in fact treated as the follow-
ing de�nitions
Child(x) () (9z)ParentOf(z; x)
Son(y) () (9w)Male(y) ^ ParentOf(w; y)
by the semantics of predicate completion in Prolog.
However, if we took seriously the rule for Son as its
de�nition, then asserting Son(fred) ought to allow
us to deduce that Child(fred) | a deduction not
made in current logic programming systems. It is
such reasoning with de�nitions that is the trademark
of description logics.

1This analogy extends an example found in [48]

1.2 Outline

For readers familiar with database management2, the
paper provides a tutorial and survey of how descrip-
tions and their reasoners can enhance the modeling
power of the database (i.e., the kinds of knowledge
about the world that can be stored), facilitate the
user's interaction with it, or support the development
of databases.
For readers conversant with Arti�cial Intelligence,

DLs are descendants of the inuential kl-one system
[22, 23], and have been extensively studied under the
name of \terminological logics". The features and
history of these logics have been surveyed recently
in papers such as [68, 48]. Therefore our aim is to
provide for this audience a novel, systematic look at
the various uses to which DLs are being put for infor-
mation management | a view considerably broader
than that usually assumed in Arti�cial Intelligence3.

We begin by considering the syntax and semantics
of description languages, illustrating the kinds of rea-
soning they are especially suited for. Thereafter, we
present a semi-formal view of an Information System
as a \black box" with several operations, each of them
involving one or more languages. By examining the
possibility of using DLs for each of these languages,
we obtain a systematic survey of their utility.
Throughout the paper we endeavor to summarize

the key points as italicized observations.

2 The Syntax and Semantics

of DLs

Although the original kl-one system supported a
graphical notation for representing de�nitions of con-
cepts, all DLs since the krypton system [25] provide
a formal linear syntax for writing descriptions. To
give the reader a sense of the syntactic variations in
use, here are versions of the description in Figure 1 in
the two other currently most widely used DLs, back
[46] and loom [47], as well as an in�x notation used
in many theoretical papers:

COURSE and at-most(10, takers) and all(takers, GRADS)
(:and COURSE (:at-most 10 takers) (:all takers GRADS))

COURSE u �10 takers u 8takers:GRADS

As proposed Ait-Kaci [1], it is useful to view DLs
as special languages obtained by term composition.
All DLs have (at least) two sorts of terms: concepts

2Such readers are assumed to have elementary familiarity
with propositional and �rst order logic.

3For this purpose, some elementary familiarity with the
functionality of relational databases is assumed.

2



(intuitively, denoting collections of individuals), and
roles (intuitively denoting relationships between indi-
viduals); because functional relationships occur very
frequently, such roles are often distinguished, and will
be called attributes in this paper. Therefore the syn-
tax of DLs consists of rules for creating composite
terms from atomic/primitive symbols | identi�ers
of various sorts | and term constructors. For ex-
ample, suppose prim is considered to be a concept
term constructor, whose argument identi�es a prim-
itive concept, and suppose all and at-most are also
concept constructors, then the following term

and(prim(COURSE),

at-most(20, takers),

all(taughtBy, prim(PROFESSOR)))

is intended to denote those instances of the (primi-
tive) concept COURSE which have at most 20 students
taking them (at most 20 �llers for the takers role),
and are only taught by PROFESSORS. Suppose pro-
fessors have a rank role, whose possible values are
in the set faP,AP,Pg, and suppose we wish to re-
strict the above description to include only courses
taught by tenured professor | i.e., add a restriction
that the composition of taughtBy with rank must be
one of the values AP or P. This can be accomplished
by adding an additional conjunct, built using concept
constructor one-of, which takes as arguments an enu-
meration of values, and role constructor compose,
which denotes role composition:

all( compose(taughtBy,rank) ,

one-of(AP,P))

Table 1 contains a fairly comprehensive list of
domain-independent description constructors, from
[68], which were arrived at empirically, in e�orts to
express the meaning of natural language sentences
and other Arti�cial Intelligence tasks.
One can in fact view DLs as a logical notation

where logical operators were chosen to facilitate the
expression of frequently used conceptual structures,
and related inferences. To highlight this point, con-
sider the alternative of representing descriptions as
unary and binary predicates in Predicate Calculus.
The formula, with free variable �, corresponding to
the description example in this section is

COURSE(�)
^ (9x1 : : : 9x20) takers(�; x1) ^ : : : ^ takers(�; x20)
^(x1 6= x2 ^ x1 6= x3 ^ ::: ^ x19 6= x20)
^ 8r taughtBy(�; r) � PROFESSOR(r)
^8r 8y taughtBy(�; r) ^ rank(r; y) � (y = AP _ y = P)

It is evident that the encoding in predicate logic is less
perspicous, mostly due to the proliferation of vari-
ables and quanti�ers. As a result, it is more diÆcult
to represent information in this notation, and it is less

TERM INTERPRETATION

top-concept �I

nothing ;
and[C,D] CI \DI

or[C,D] CI [DI

not[C] �I n CI

all[p,C] fd 2 �I j pI(d) � CIg
some[p,C] fd 2 �I j pI(d) \ CI 6= ;g
at-least[n,p] fd 2 �I j jpI(d)j � ng
at-most[n,p] fd 2 �I j jpI(d)j � ng
at-least-c[n,p,C] fd 2 �I j jpI(d) \ CI j � ng
at-most-c[n,p,C] fd 2 �I j jpI(d) \ CI j � ng
same-as[p,q] fd 2 �I j pI(d) = qI(d)g
subset[p,q] fd 2 �I j pI(d) � qI(d)g
not-same-as[p,q] fd 2 �I j pI(d) 6= qI(d)g

�lls[p,b] fd 2 dom I j bI 2 pI(d)g

not-�lls[p,b] fd 2 dom I j bI 62 pI(d)g
one-of[b1,...,bm] fbI

1
; : : : ; bI

m
g

TERM INTERPRETATION

top-role �I ��I

identity f(d; d) j d 2 �Ig
role-and[p,q] pI \ qI

role-or[p,q] pI [ qI

role-not[p] �I ��I nRI

inverse[p] f(d; d0) j (d0; d) 2 RIg
restrict[p,C] f(d; d0) 2 pI j d0 2 CIg
compose[p,q] pI Æ qI

product[C,D] CI �DI

trans[p]
S
n�1

(pI)n

Table 1:

3



readable for humans. It is also more diÆcult for theo-
rem provers to recognize the subsets of the above sen-
tences which are amenable to fast but special purpose
reasoning, e.g., checking that at-least(25,takers)
entails at-least(20,takers) is a matter of a single
integer comparison for DL-based reasoners. An inter-
esting distinguishing feature of the syntax of descrip-
tion languages is that they express such statements
without introducing the notion of variable, scoping,
and substitution.
We summarize the preceding in the following ob-

servation

DLs provide languages for building variable-free,
composite terms from primitive identi�ers using term
constructors; these terms denote several sorts of
things, including concepts (sets of individuals) and
roles (relationships, which are usually binary).

2.1 The Logic of Descriptions

We have seen above that an interpretation associates
with every concept description an extent, just like the
interpretation of a unary predicate in FOPC. There
are a number of natural questions that one normally
asks about a description D

� Is D coherent/consistent?: The answer is no if
the denotation of D, DI , is empty for every pos-
sible relational structure I.

� Does D subsume C?: The answer is yes if the de-
notation of C is a subset of the denotation of D,
CI � DI , for every possible relational structure
I.

� Are D and C mutually disjoint?: The answer is
yes if CI \ DI = ; for every possible relational
structure I.

� Are D and C equivalent? The answer is yes if
CI = DI for every possible relational structure
I.

The subsumption relationship, which corresponds
to material implication between predicates and is
symbolized by =) , is usually considered the most
basic one. This is because all DLs have concept con-
structors and and nothing (which denotes the in-
consistent concept with empty extension), so that
incoherence can be detected by asking the question
\D =) nothing?", while disjointness is answered
by \and(C;D) =) nothing?", and equivalence (�)
is mutual subsumption.
In fact, the presence of and and nothing allows

us to view the space of all descriptions (actually, this

space modulo the � relation), partially ordered by
=) , to be a mathematical structure called a \meet
semi-lattice", where every pair of descriptions B and C
has a greatest lower bound | a description that sub-
sumes any other description that is subsumed by both
B and C | namely and(B,C). We emphasize that it
is the entire in�nite space of descriptions that is the
semi-lattice, not just some �nite subset of named de-
scriptions of interest for some particular application
or other.
Although not the norm ([1, 31, 66] are exceptions),

we believe that it is important to pursue this lattice-
theoretic approach as foundational for DLs, if we wish
to treat concepts as structured, intensional objects.
Actually, the DLs encountered in practice usually
form full lattices: there is a most general concept,
top-concept, and there exists a unique least com-
mon subsumer for every pair of descriptions. More-
over, given descriptions B and C such that B =) C,
it is possible to consider the notion of relative com-
plement(s) in this lattice: the maximal description(s)
D such and(C;D) � B.
For example, Figure 2 presents two descriptions,

their greatest common subsumee (meet), least com-
mon subsumer (join), and the relative comple-
ment between the join in (c) and the �rst con-
cept in (a), in a language having constructors
fand,at-most,at-least,all,one-ofg.
The interested reader may consult [31, 66] for con-

ditions under which the semi-lattice is guaranteed to
be a lattice and to have unique relative complements.

The domain of concept terms of a DL together with
the subsumption relation =) , and the and con-
structor (or its equivalent) form a semi-lattice, in
which it is usually possible to also de�ne join and rel-
ative complement operators. These will prove useful
in applications of DLs.

2.2 Reasoning with DLs

Although the original goal of DLs was to provide a
convenient form for expressing the desired knowledge
and inferences of some application, a highly inuen-
tial paper [24], explored the idea that choosing a sub-
set of concept constructors leads to description logics
of more restricted expressiveness, but at the same
time more eÆcient reasoning. As a result, there is
a large body of literature considering various combi-
nations and variations of constructors for which rea-
soning is decidable, or even tractable. We present
in Table 2 just a small sampling of the known re-
sults about the complexity of computing subsump-
tion for various combinations of term constructors.

4



and( prim(COURSE),

at-most(25, takers),

all(taughtBy, one-of(Gauss,Euclid)))

and( prim(COURSE), prim(FUNNY-EVENT)

at-most(20, takers),

all(taughtBy, one-of(Gauss,Marx)))

(a) Two descriptions.

and( prim(COURSE), prim(FUNNY-EVENT),

at-most(20, takers),

all(taughtBy, one-of(Gauss)))

(b) The meet of the two descriptions in part (a)

and( prim(COURSE),

at-most(25, takers),

all(taughtBy, one-of(Gauss,Euclid,Marx)))

(c) The join of the two descriptions in part (a)

all(taughtBy, one-of(Gauss,Euclid,Marx)))

(d) The relative complement of the description in
(c) and the �rst description in (a).

Figure 2: Two descriptions and lattice operations on
them.

The reader may also �nd interesting reference [53],
which describes interesting connections between DLs
and other formalisms. Hence:

The choice of term constructors is tailored to the
expressive purposes at hand, tempered by the desired
computational properties of the resulting reasoner, es-
pecially its decidability.

A �nal note on the implementation of DL rea-
soners may be of interest. There are basically
two approaches to computing the subsumption re-
lationship: One is to manipulate descriptions into
a normal form which eliminates certain redundan-
cies, and which makes explicit implied constraints
(e.g., all(takers,one-of(Ann,Bob)) is augmented
by at-most(2,takers)). As a result, when the time
comes to compare two descriptions, it is possible to
do so by performing relatively few operations, usu-
ally comparing pairs of subterms built with the same
constructor. This technique has been used in the im-
plementation of languages such as kandor, classic,
loom and back.
A second approach is to reduce the question

\Is it the case that C =) D?" to the question
\Is and(C,not(D)) inconsistent?", and then use
theorem-proving techniques to answer the second

question. In particular, the implementation of most
\complete" reasoners | ones that �nd all the in-
ferences sanctioned by the standard semantics | is
based on such an approach. For example, kris uses a
tableaux method with rewrite rules for deciding con-
sistency, which is based on [62, 41].

Having examined the foundations of DLs, we can
now turn to their application to data and knowledge
management.

3 Using DLs for Data Model-

ing

DLs were developed and studied intensively in the
�eld of Knowledge Representation, so it is not sur-
prising that they are particularly adept at represent-
ing the semantics of real world situations { including
data semantics. In particular, semantic data mod-
els [42], and more recently object-oriented databases
(e.g., [43]), have claimed to capture the meaning of
the data more directly by concentrating on entities
(grouped into classes) related by relationships (often
binary).
Suppose we start with a class, such as

class STUDENT is-a PERSON with

studNumber : INTEGER;

level : f1,2,3,4g

In terms of DLs, STUDENT and PERSON are primi-
tive concepts, since individual entities need to be as-
serted as instances of them | a person cannot be
recognized from external properties alone. The above
class declaration then speci�es a constraint | a nec-
essary condition that must apply to all instances of
STUDENT. This constraint can be expressed, using rel-
atively simple constructors, by requiring STUDENT to
be subsumed by the description D �

and(PERSON,

all(studNumber , INTEGER),

at-least(1,studNumber),at-most(1,studNumber) ,

all(level, one-of(1,2,3,4) ) ,

at-least(1,level),at-most(1,level) )

Such a constraint is written in the form
PERSON v D, and its meaning is to limit the rela-
tional structures I used to interpret any other descrip-
tion to those that satisfy the condition PERSONI �
DI .
If the declaration of class STUDENT also speci�ed

that studNumber is a key, we could encode this as
the additional description

5



CONCEPT CONSTRUCTORS ROLE CONSTRUCTORS COMPLEXITY

and,all, same-as | Undecidable [61]
ALCNR (and, or, not, some,
at-least, at-most)

role-and PSPACE [37, 36]

and, not, all, some, or
compose, role-or, inverse,
trans, restrict,top-role

EXP-TIME [60]

and, all, at-most, at-least,
same-as on attributes, �lls,
one-of with integers

Polynomial [21]

Table 2: Some subsumption complexity results

Figure 3: Entity-Relationship Diagram

at-most(1, compose(studNumber,

inverse(studNumber)))

which says that if we look for individuals that have
the same student number as this one, we will �nd at
most one (this particular individual).
The argument that semantic data models, such as

DAPLEX and Entity-Relationship, can be expressed
using relatively limited DLs, as above, has been pre-
sented in several papers, including [32, 11, 30] and
[28]. For example, the later paper models the entity
relationship diagram in Figure 3 by positing classes
STUDENT, ENROLLMENT and COURSE, and adding the
following constraints

ENROLLMENT v

and(
all(st,STUDENT) at-least(1,st) at-most(1,st)
all(crs,COURSE) at-least(1,crs) at-most(1,crs)
all(when,DATE) at-least(1,when) at-most(1,when))

STUDENT v

and(
all( inverse(st) , ENROLLMENT)
at-least(1, inverse(st)) at-most(6, inverse(st)) )

COURSE v

and(
all( inverse(crs) , ENROLLMENT)
at-least(1, inverse(crs)) at-most(300, inverse(crs)) )

while in [30], n-ary relationships (and associated term

constructor) are introduced in order to model directly
relations.

Similarly, [32, 10] and [28] show how the
non-procedural aspects of object-oriented database
schemas such as O2 can be captured using DLs.

Representing the database schema in a suitable,
decidable DL has been argued to have a number of
advantages:

� The greater expressive power of some DLs
(e.g., the presence of negation, disjunction, co-
reference constraints or inverses) makes it pos-
sible to capture important additional aspects of
the data semantics [28].

� By checking whether C =) nothing as a con-
sequence of any particular set of constraints, it
is possible to detect whether or not the global
set of speci�cations in some schema force class
C to be incoherent { i.e., one can help verify the
schema's consistency [32].

� By using the relative complement operator, it is
possible to reduce the redundancy in the schema
presentation, so that every class declaration con-
tains only the minimal additional constraints on
top of the explicitly named parents from which
it inherits [11].

� In object oriented models, the descriptions used
as constraints on primitive class names corre-
spond to types, and in data models such as O2

there is a requirement that sub-classes have more
re�ned type [43]. The subsumption ordering on
descriptions corresponds to type re�nement, and
hence provably correct subsumption algorithms
can be used for type checking [52].

Most signi�cantly, description logics provide the
opportunity to introduce and give names not just to
primitive classes but also to de�ned/virtual classes,
which are essentially views. For example, we can add
to a schema the notion of UNDER ENROLLED CLASS |

6



a course with 5 or fewer takers, by adding the de�ni-
tion

UNDER ENROLLED CLASS
:
=

and(COURSE, at-most(5,takers))

The new and considerable advantage gained in this
case is that the system itself can be charged with
organizing these views into a subclass hierarchy |
a non-trivial task when there are many views. In
particular, given an existing taxonomy of views and
primitive classes, a classi�er program can be used
to �nd the least subsumer(s) and most general sub-
sumees of any new view.

Federated databases [63], and more generally so-
called \co-operative information systems", where in-
formation from several sources is made accessible to
users, form a particularly active area of application
for DLs [4, 30, 64, 13]. A key reason for this is that
in order to make several pre-existing databases co-
operate it is necessary to �rst express and relate their
contents and semantics. As argued above, DLs pro-
vide a richly expressive medium for this task.
For example, [30] uses an expressive DL to relate

the entities and relationships in the schemas of sev-
eral databases using constraints of the form

:
= and

v , in the presence of some (but not necessarily com-
plete) global world knowledge. This information can
then be used once again to detect incoherence and
redundancy in the resulting system (or maybe just
its description).
One approach to federated databases is to inte-

grate the schema of the participating databases. [64]
provides an approach to schema integration which
uses the candide DL as the common/canonical data
model. Among others, a human is charged with the
heuristic task of creating an attribute hierarchy show-
ing the relationships between attributes appearing in
the classes of the various schemata. For example,
given several databases at the university, a designer
might come up with the following hierarchy (where
indentation is used to indicate the tree structure)

TOP-ROLE

person-identifier

person-name

db1-stud-name

db2-full-name

person-number

db2-emp#

db3-socsec#

course-identifier

The (formal and automated) subsumption and dis-
jointness operations on descriptions use this attribute

hierarchy to provide a list of class pairs that appear
to be candidates for comparison, because they are
equivalent, disjoint or overlapping; the system then
o�ers to the human user a variety of operators (in-
cluding Generalize, Specialize, Delete) that can be
used to restructure and integrate the components of
the schema.
Another technique for developing the \right"

schema is proposed in [9], where one starts with in-
dividuals and existing classes, and clusters them into
potentially new classes. The algorithm, related to
the \least common subsumer" notions introduced in
[31], is based on the structure of the class de�nitions,
presented as descriptions

4 Additional uses of DLs in In-

formation Systems

Although DLs are natural candidates for describing
the schema of databases, there are a number of ad-
ditional ways in which descriptions can be used to
help in managing information. To see this, we in-
troduce a somewhat more formal view of Knowl-
edge Base Management Systems (KBMS) | systems
which maintain and reason with models of some ap-
plication domain4. Let us start from Levesque's func-
tional view of a KBMS [45]: The basic idea is to treat
a knowledge base as an abstract object on which one
can perform two kinds of operations: tells and asks.
tells are used to build or modify the model of the
domain being maintained by the KBMS

tell: LTell � KB ! KB

while asks retrieve information

ask: LQuery � KB ! LAnswer

The proper speci�cation of a KBMS and its behavior
therefore requires the de�nition of four things:

� LTell: a language for describing what we know
about the world;

� LQuery: a language for describing questions

that we wish to learn about;

� LAnswer: the language in which answers will be
phrased;

� Query answering: how answers to queries are re-
lated to what has been told to the KBMS.

4Nota Bene: This view is adopted strictly for didactic pur-
poses. Using DLs in a reasoning system in no way commits
the developer to such a view.

7



For example, a reasoner based on First Order Logic
(FOL) could be described by setting LTell = LAsk =
f well-formed formulae of FOLg, LAnswer = fYes,
No, Unknowng, and de�ning the answer to some ques-
tion Q as Yes (respectively No) i� the conjunction of
the facts told the KB so far entail Q (respectively
:Q) according to mathematical logic.
Without loss of generality, and with considerable

gain in convenience, we allow a whole host of tell
and ask operations, each with possibly di�erent as-
sociated languages. Experience with building large
software systems of all kinds, including knowledge
bases, has taught us that it is an error prone pro-
cess. Some ways in which errors can be more easily
detected is to allow named abbreviations, to insist on
identi�ers being declared (so that simple typograph-
ical errors can be detected) and to allow assertions
to be made about the valid and invalid states of the
knowledge base. For this purpose, we distinguish two
special kind of tell operations, declare and con-

strain. In the FOL case, declare would be used to
introduce the predicate names and arities for exam-
ple, while constrain may state so called \integrity
constraints", which would not be used deduce an-
swers, only to detect errors in what the system is
being told.
The reason for introducing the above terminology

is to help make the following point:

Description languages can be used in any of the lan-
guages associated with a KBMS, including LDeclare
LConstrain, LTell, LAsk, and LAnswer. In each of
these situations, the logic associated with the descrip-
tion language(s) in question is used to de�ne what it
means to answer a question.

In retrospect, we have investigated already in Sec-
tion 3 the use of DLs in LDeclare and LConstrain.
We continue with the other languages.

4.1 A database-like KBMS

Suppose that we have speci�ed the schema of a small
university knowledge base, including primitive con-
cepts PERSONS, STU-

DENTS, COURSES, SUBJECTS, SCIENCES, and roles
has-subject, teaches, taughtBy, age and tak-

ers, all but the last of which are (single-valued) at-
tributes. We are now ready to describe the current
state of the world. We will �rst need to tell the
database about new individuals, e.g., introduce a new
individual, Crs431, by invoking an operator:
Crs431 := create-ind().

Information about such individuals is recorded in
the database in two ways: by specifying what classes

they belong to (e.g., \Crs431 is a COURSE"), and
by specifying their inter-relationships through roles
(e.g., \Crs431 is taught by Einstein and is taken
by Anna,..."). For this purpose, we have operations
insert-in and fill-with, which are used as follows:

insert-in(Crs431,COURSE)

fill-with(Crs431,taughtBy,Einstein),
fill-with(Crs431,takers, Anna)

...

Suppose that after several such operations we want
to retrieve some information, by asking a question.
Queries are characterizations of those objects which
satisfy their conditions. We have already seen that
the natural interpretation of descriptions was as spec-
i�cations of sets of individuals: if we want to �nd \All
courses with at least 10 students taking it, taught by
someone who is in a science department", then the
description

and(COURSE,at-least(10,takers),

all(taughtBy,all(in-dept,SCIENCE-DEPT)))

expresses this. The answer to such a query would
be a list of individuals that satis�es the conditions of
the query | i.e., the ones recognized by the query
description. Papers such as [67, 57, 8, 52] and [27]
have investigated the use of DLs as query languages.
DLs are particularly useful for querying knowledge

bases in situations when the user is not entirely fa-
miliar with the contents or structure of the data, or
when they are not entirely sure what question they
should be asking. The second situation arises in data
exploration/mining, which is essentially the activity
of looking for interesting correlations or patterns in
large sets of data accumulated for other purposes.
In such situations, we �nd interesting and novel

applications of the fact that descriptions can be clas-
si�ed in a subclass hierarchy.

� One can detect incoherent queries | ones which
cannot possibly return any individuals because
of the semantics of the database | and allert
the user that this question is ill-formed.

� More generally, in many situations even if a
query is coherent, when it returns an empty
set as answer, it is a \miss". In such cases, it
is reasonable to consider generalizing the query
slightly until a non-empty answer set is obtained.
The lattice of subsuming descriptions provides
the obvious space to search for such generaliza-
tions, and therefore the system can provide a
helping hand in this task, as illustrated in [3].

8



� The description lattice supports the paradigm of
query speci�cation by iterative re�nement, de-
scribed in [67] and [57].

� Data exploration involves asking very many
queries, possibly by teams of people, over an ex-
tended period of time. The DL-based KBMS can
automatically organize this large set of queries
through the subsumption relationship, thereby
allowing users to �nd identical or similar queries
asked in the past, together with their answers
[26]. This is important if the queries may require
a considerably long time to process, or if users
associate comments/observations with queries.
The operation of classifying a given new descrip-
tion with respect to some set of previously en-
countered descriptions is in fact standard in all
DL-reasoners, with various techniques for doing
so surveyed in [48, 69, 7]. But we emphasize that
such a set of classi�ed descriptions forms just a
�nite sub-partial-order of the in�nite lattice of
description terms.

Most modern database management systems pro-
vide a facility for giving names to some queries, be-
cause users frequently refer to them (e.g., they repre-
sent some subset of the data or some reorganization
of it). These named queries are called views in the
database world. Such queries may even be \mate-
rialized" { i.e., their answers are maintained up-to-
date by the KBMS, rather than being evaluated ev-
ery time someone looks at them. To introduce such
views { named and composite concept descriptions {
we can use the KBMS operator declare. Queries as
descriptions are obviously useful for view de�nition,
with the same advantages detailed above. Moreover,
�nding that the current query is subsumed by some
materialized view may provide a new opportunity
for optimization [27], similar to that envisaged for
common sub-expression analysis for relational queries
[40]: one need only test the query predicate on the
individuals in the view. In fact, by using again the
relative complement operation in the lattice of de-
scription, one might �nd a cheaper test to run on the
members of the view.

DLs are naturally suited for expressing queries
(i.e., LQuestion) and for de�ning views (i.e.,

LDeclare). The subsumption relationship can be used
to automatically organize queries and views into an
\is-a" hierarchy through classi�cation, thereby sup-
porting data exploration and query optimization.

Several research issues arise in the use of descrip-
tions for querying databases.

First, although DLs o�er a convenient technique
for modeling the semantics of an application domain
and the semantics of the data, legacy data is usually
present in some existing DBMS (at best, a relational
one). We must therefore address the issue of retriev-
ing the answer from such databases. One approach,
followed in [55, 50], is to model as part of the KB
the relations in the database as well as their relation-
ship to the concepts in the semantic model, and then
build a component that takes a DL query, transforms
it into a query against the DBMS, and returns the
answer. Another approach, suitable in cases when
there is frequent KB access, or for DLs that are not
suÆciently expressive, is to \load" the database into
the DL knowledge base. A straightforward approach
to this is likely to be have unacceptably poor perfor-
mance, and [18] o�ers a way to compile much of the
reasoning of the DL classi�er into a sequence of SQL
queries, thus taking advantage of the bulk processing
o�ered by DBMS.
Second, one must deal with the fact that DLs have

limited expressive power. In fact, [16] shows that
for all DLs considered so far, even undecidable ones,
concepts can essentially be translated to FOL formu-
las with at most 3 variable symbols. One approach,
suggested in [27], is to factor out a \clean" part of
the query (for which subsumption reasoning is per-
formed), and put the rest of the query in an opaque,
\dirty" box. An alternative, pursued by the loom

system, is to implement incomplete subsumption rea-
soning for a very expressive language (which includes
FOL as a sublanguage). In either case, note that the
approximate nature of the subsumption relationship
does not vitiate most of the advantages introduced
earlier in this subsection.

4.2 Using descriptions in tells

Suppose the description language has a construc-
tor such as �lls, which is used in a description like
�lls(age,40) to describe the class of individuals that
have 40 among their �llers for the role age. Then the
operation fill-with(Crs431,takers, Johnny) can
be rephrased
as insert-in(Crs431,�lls(takers,Johnny)). This
suggests that we might allow associating some arbi-
trary un-named description with an individual:

insert-in(New-crs,

and(COURSE,

at-least(25,takers)

all(takers,all(gpa,range(3.1,4.0))

�lls(subject, `AI')

all(taughtBy, �lls(department,ComputerSci)))

)

9



This extension, though at �rst glance quite small,
has far-reaching consequences: it allows the KBMS to
maintain incomplete information about individuals.
For example, in the above case, we do not yet know
the exact identity of the person who will teach the
course, but we can already gather information about
her (e.g., that her department value is Computer-

Sci). More signi�cantly, we can say things about all
(currently unknown) people who will take the course:
they will have gpa in the 3.1 to 4.0 range. This infor-
mation can be used in query processing: when a query
like \Find all courses taught by persons in science de-
partments." is stated, then New-crs can be returned
if question answering includes checking whether the
descriptor of an individual is subsumed by the query.

To assess the signi�cance of this, observe that no
database system can represent the kind of indeter-
minate information provided above about New-crs.
Database management systems can currently only
handle \null values" for atomic facts such as strings
and integers, and they cannot even reason completely
about such null values. In contrast, a system such as
classic can represent facts requiring an unbounded
number of distinct nulls (e.g., something having at
least 15 �llers for a role), and it can still answers
its questions correctly and completely in polynomial
time. (Of course, classic does limit the kinds of
questions one can ask!)

This expressive power of DLs is also related to
a second problematic aspect of databases: so-called
\view updates". Because DBMS translate updates
to views into updates to the base/primitive concepts
from which the views were de�ned, the set of views
that can be updated is extremely restricted. In con-
trast, asserting in a DL that some individual belongs
to a de�ned concept | a view | is maintained as
just another fact about it, and this fact is reasoned
with fully. We therefore have

Using DLs in LTell and using subsumption during
query processing allows one to assert inde�nite infor-
mation in the knowledge base. This supports, among
others, the proper treatment of such traditionally dif-
�cult database issues as null values and view updates.

This aspect of KBMS based on DLs may explain
in part their success in problems dealing with con-
�guration management [54, 70]: con�gurations are
incomplete designs, which are slowly being built up,
yet we want to �nd out about problems with them
before everything is fully known.

4.3 Using descriptions in answers

Traditionally, questions such as \Who teaches New-
crs?" or \What is Johnny's age?" are answered by
displaying some individual value(s), looked up in the
database. The fact that we can associate arbitrary
descriptions with individuals allows us to produce
easily descriptive answers, representing the terms we
have been told or deduced about these values. For
the above questions we might now get answers such
as and(FACULTY,�lls(department,ComputerSci))

or range(19,27).

In fact, this facility is useful not just when there is
incomplete information, but also whenever we don't
want to return lists, because they are too long for
example. It has been argued (e.g., [65]) that in such
situations it is appropriate to provide abstract an-
swers. In the case of DL-based KBMS, this can be
achieved by �nding in the lattice of descriptions the
least common subsumer [31] of the set of individuals'
descriptions, which captures their commonalities.

Finally, in the case of very large schemas or when
users are not fully familiar with the semantics of the
domain they are dealing with, it is useful to provide
intensional answers to queries: these display what
must hold true of any individual (existing or not) that
would satisfy the query [19]. The work of Devanbu
[34] on Software Information Systems provides one
instance where such a facility is useful: when a new
software developer joins a team that has been working
on some very large project over a long period of time,
she may not be aware of the intended structure of the
code, which is expressed by many constraints in the
schema. By asking for intensional answers, the novice
can learn much about this invisible architecture.

We therefore have

Using DLs in LAnswer provides the ability to give
descriptive, abstract or intensional answers, in addi-
tion to enumerations of values.

4.4 Varying the DLs

In order to make it easier for people to learn to use
a DL-based KBMS, some systems (e.g., classic) use
the same syntax (i.e., description constructors) in the
various languages associated with a KBMS. It is how-
ever not necessary to do so. In fact, because of com-
putational costs, it may be desirable to allow di�erent
languages for di�erent operators. This should not be
too surprising: one can view Relational Databases as
KBMS based on First Order Logic, where the LAsk
contains all formulas, but LTell is restricted to atomic

10



formulas (corresponding to inserting and deleting tu-
ples), while LAnswer provides only positive atomic
formulas.
The approach of varying languages has been ad-

vocated in [45, 44, 27], and has been practiced in
systems which use DLs as query languages (e.g.,[57]).

4.5 Descriptions as constraints.

We have seen already that it is useful to asso-
ciate with a primitive concept some necessary con-
ditions that would have to hold of its individual in-
stances. It turns out that such a facility is more
widely useful: we might have de�ned the notion
of UNDER-ENROLLED-CLASS as one with at most 5
takers, but it might be a contingent regulation at
our university that such courses be allowed only
at the senior or graduate level. Such a constraint
might be stated using a constrain-type operator
constrain(<constrained-

set>,<constraint-condition>), where both ar-
guments are descriptions. For example, as a result
of

constrain(UNDER-ENROLLED-CLASS

all(level, one-of(4,5)))

whenever a new course individual is added, if it is
inconsistent with the constraint description associ-
ated with UNDER-ENROLLED-CLASS, an error message
would be generated by the system, and the update
would not be allowed.
Note that this use of a constraint is more lim-

ited than adding a logical implication of the form
\If x is a UNDER-ENROLLED-CLASS then x is also a
all(level, one-of(Senior,Grad)))", because such
an implication could be used for deducing new infor-
mation about individuals, thereby considerably com-
plicating the processing. (This distinction between
\integrity checking" rules and \deductive" rules �rst
appeared in deductive databases.)

4.6 DLs for stating rules.

A more \active" KBMS can be obtained through the
addition of an operation such
as assert-rule(<lhs-descrn>,<rhs-descrn>),
e.g.,

assert-rule(and( COURSE,�lls(topic,AI)),

BORING THING)

This would have the e�ect that any time an indi-
vidual is recognized as a course on AI, it would be
added to the concept BORING-THING. Such rules were

�rst mentioned in connection with the consul sys-
tem [49], and have been heavily used in the loom

system [47], as well as other recent systems such as
[71] and classic, while their semantics has been clar-
i�ed in [38] through the use of \epistemic operators"
dealing with the \knowledge" of the system. They
are less expressive than standard production rules be-
cause their antecedent is often only a single concept
(rather than a relationship between individuals) but
because of their treatment of incomplete information,
rules based on DLs provide other advantages, includ-
ing [71]:

� classi�cation applied to the antecedent (or even
the consequent) of rules can be used to organize
them into a hierarchy; this means that the sys-
tem can help the programmer �nd closely related
rules | a frequent cause of errors in rule-based
programming;

� classi�cation can also help implement the usual
conict-resolution strategy of \apply the most
speci�c rule" by using the automatic classi�er,
rather than relying on the programmer to specify
which rule is more speci�c.

The rules above are not necessarily treated as logical
implication | some systems do not reason with the
contrapositive, nor do they do case analysis (e.g., if
B(x) � D(x) and :B(x) � D(x) then always con-
clude D(a)). One could obviously add rules with dif-
ferent kinds of reasoning strategies: ordinary logical
implication, default rules , etc.
In conclusion,

Descriptions can be used in a natural way to spec-
ify a limited set of conditions and actions for a vari-
ety of rule languages, including integrity constraints,
triggers, defaults, etc. In all such cases, subsumption
can be used to organize large sets of such rules, and
recognition helps in the �ring process.

5 On the generality of the DL

framework

It is important to point out the generality of the
above framework. First, there is no reason to re-
strict the notion of \individual" to mean \object with
intrinsic identity". Therefore, it is entirely possible
to consider mathematical entities (e.g., integers, n-
tuples), programming language values (e.g., arrays,
procedures), composite values (e.g., lists or trees of
others kinds of individuals) as individuals, and have

11



descriptions that denote sets of such individuals. Sec-
ond, there is complete freedom in the choice of term
constructors in the language syntax, and their in-
tended interpretation.
Illustrative of the kind of bene�ts one gains

from this freedom are languages for describing ac-
tions/plans, and expressing temporal concepts. For
example, [12] introduces special concept constructors
for describing classes of temporal intervals. Thus
after(1980) and duration-greater(2,year)

and before(now)

refers to all time intervals beginning after 1980, of
duration at least 2 years, which end before the ref-
erence time interval now. Such temporal concepts
can then be used with constructors sometime and
alltime to describe sets of individuals. For example,
if we abbreviate the above temporal description as �,
then

PROFESSOR and sometime(�,STUDENT)

represents the set of individuals who are professors
now and who were students for a period of at least 2
years between 1980 and now.
We have therefore two more observations:

There is no \universal" set of term constructors.
The term constructors used in a DL may be domain
or even application speci�c.

and

The denotations of concept descriptions need not
be atomic individuals, but could have internal (math-
ematical) structure.

This is extremely liberating: in talking about
courses, there is no obstacle preventing us from
developing a new language, or extending an ex-
isting language, to talk about domain speci�c
things: for example, if every course has an in-
structor and a subject, and there is some sub-
tle inference that needs to be performed with
these, then we could have a term constructor
course(<instructor>,<topic>).(There is a price
of course for inventing new constructors { we need to
specify how to reason with them and implement this
speci�cation!)

6 Complexity vs. expressive-

ness

We have already mentioned the strong interest in the
DL community concerning the decidability and com-
plexity of reasoning with various DLs. The afore-

mentioned complexity results, and the specter of be-
ing caught between the Scylla of tractable but inex-
pressive DL reasoners, and the Charybdis of rich but
computationally intractable languages, has elicited a
variety of responses concerning the design of DLs and
their implementations:

� Limited languages.
Some authors have argued that DL-based sys-
tems need to respond in polynomial time if they
are to be useful as \servers" to other problem
solvers [24, 56]. This led to a class of languages,
including kandor and krypton, which had rel-
atively few constructors, carefully chosen so that
subsumption would be polynomial-time decid-
able. This approach has been critiqued [39] on
the grounds that if some application needs to
make inferences, and the KBMS is not capable
of making them, these inferences will be imple-
mented somewhere else, destroying the concep-
tual coherence of the knowledge base.

� Complete reasoners for intractable languages.
Some researchers [6, 60] feel that as long as the
logic is decidable, it is reasonable to deliver to
the users a system that reasons correctly with
it. The main obstacle faced by this approach is
to make the performance of the system be pre-
dictable, so that users are aware of the forms of
knowledge which can cause exponential explo-
sion in the time or space used by the system.
We remark that certain worst-case complexity
results | such as the result that just by allowing
de�nitions can lead to an exponential blow-up
during processing [51] | are not considered to
be a problem, because the examples are patho-
logical and do not arise in practice.

� Incomplete implementations of logics.
Systems such as loom explicitly acknowledge to
their users that not all inferences sanctioned by
the obvious semantics of constructors are imple-
mented. The diÆculty faced by this approach
is to describe to the user the incompleteness.
As we have seen, operational de�nitions are rel-
atively diÆcult for DLs. Other kinds of se-
mantic speci�cation techniques have been pro-
posed for this purpose, including non-standard
denotational semantics such as those in [58, 21],
or proof-theoretic axiomatizations, such as in
[14, 15, 59].

� Providing an \escape-hatch" in the language. It
is possible to introduce one or more constructors
in the language whose semantics are \opaque"
for subsumption reasoning, but can still be used

12



for recognizing individuals. For example, clas-
sic's test-de�ned concepts are passed a Lisp or
C function in order to recognize individuals, but
are treated as primitives for subsumption. Such
constructors are of course open to abuse, but
they have proven to be extremely useful in prac-
tical applications of the classic system.

� Extensible KBMS architectures. The idea is to
start with a limited language, but when the user
runs into its boundaries, she can have them ex-
panded suÆciently to accomplish the task at
hand. Note that this usually requires only a sub-
set of the inferences entailed by the obvious se-
mantics of the new constructors, but that this
subset might vary from application to applica-
tion. This approach requires a modular archi-
tecture for DL reasoners which is as easy to ex-
tend as, for example, a syntax-directed trans-
lation scheme used in a programming language
compiler. Such extensible architectures are dis-
cussed in [17, 5], and the methodology of provid-
ing extensions is illustrated in [15].

Our conclusions in this section are that

The conicting desires between expressive lan-
guages and complexity of reasoning, although very
real, need not be paralyzing: there is wide variety of
approaches to the problem, with the \predictability"
of the inferences and their timing being of concern to
users.

7 Summary

Description languages provide a variety of construc-
tors for building terms that can be used to express
knowledge about the world. They have found appli-
cations in a variety of areas such as data management,
linguistics [29], programming languages [2], con�g-
uration management [70, 54], and knowledge-based
software engineering [35]. DLs exploit their special-
purpose constructors in order to provide solutions to
such diÆcult problems as view updates and reasoning
with incomplete information. They are therefore an
alternative approach to the standard techniques for
limiting the expressive power of First Order Pred-
icate Calculus (e.g., Horn-formulas), which rely on
the form of the formulas most easily characterizable
using the standard logical connectives (negation, dis-
junction, quanti�ers).
At the same time, the framework of DLs is suÆ-

ciently exible to admit with relative ease the intro-
duction of new description constructors, which can be

application speci�c, as illustrated by such systems as
clasp[33]. This allows DLs to be tailored to better
serve particular applications.
This survey has attempted to show the utility

of DLs in describing the (conceptual) schema of
databases. This paper has argued that, contrary to
popular myth in AI, DLs are useful not only for de�n-
ing \terminology". Descriptions can be used in all
the languages associated with a KBMS: for assert-
ing incomplete information about individuals, for ob-
taining descriptive or intensional answers, for stating
rules and constraints, etc.

Acknowledgments: I am grateful to the members of
the classic team, and especially to Ron Brachman, for
their collaboration.

References

[1] H. Ait-Kaci, A lattice theoretic approach to com-
putation based on a calculus of partially or-
dered type structures., PhD Thesis, University
of Pennsylvania, 1984.

[2] H. Ait-Kaci and A. Podelski, \An overview
of Life", Next Generation Information System
Technology: Proc. 1st Int. East/West Data
Base Workshop, Springer-Verlag LNCS 504,
pp.42{58, 1990

[3] T.W. Anwar, H. Beck and S. Navathe,
\Knowledge mining by imprecise querying: a
classi�cation-based approach", Proc. 8th Con-
ference on Data Engineering', Tempe, Arizona,
February 1992, 622{630.

[4] Y. Arens, C.Y. Chee, C.N. Hsu, and
C. Knoblock, \Retrieving and integrating data
from multiple information systems", Int. J. of
Intelligent and Cooperative Information Sys-
tems 3(1), 1994.

[5] F. Baader and P. Hanscke, \A scheme for in-
tegrating concrete domains into concept lan-
guages", Proc. IJCAI'91, Australia, August
1991

[6] F. Baader and B. Hollunder, \KRIS: Knowledge
representation and inference system", ACM
SIGART Bulletin 2(3), June 1991, 8 { 14.

[7] F. Baader, B. Hollunder, B. Nebel, H-J. Prof-
itlich, \An empirical analysis of optimiza-
tion techniques for terminological representa-
tion systems", Proc. KR'92, October 1992,
Boston, MA.

13



[8] H. W. Beck, S. K. Gala, and S. B. Navathe,
\Classi�cation as a query processing tech-
nique in the CANDIDE semantic data model,"
Proc. Fifth IEEE International Data Engineer-
ing Conference, February 1989, 572{581.

[9] H. W. Beck, T. Anwar, and S. B. Navathe,
\A conceptual clustering algorithm for database
schema design", IEEE Trans. on Knowledge
and Data Engineering, 6(3), June 1994, pp. 396{
411.

[10] S. Bergamaschi and B. Nebel, \Automatic
building and validation of complex object
database schemata supporting multiple inheri-
tance", Applied Intelligence, 4(2), 1994, pp.185-
204

[11] S. Bergamaschi and C. Sartori, \On taxonomic
reasoning in conceptual design", ACM Trans.on
Database Systems 17(3), pp. 385{442, 1992.

[12] C. Bettini, \A family of Temporal Terminologi-
cal Logics", Advances in Arti�cial Intelligence:
3rd Congress of IA*AI, Springer Verlag LNCS
No.728, 1993.

[13] J.M. Blanco, A. Illarramendi, A. Goni, \Build-
ing a Federated Relational Database System:
An Approach using a Knowledge-Based Sys-
tem", Int'l J. of Intelligent and Cooperative In-
formation Systems, vol. 3, no. 4, 1994, pp. 415-
455

[14] A. Borgida, \From type systems to knowledge
representation: natural semantics speci�cations
for description logics," Int. J. of Intelligent and
Cooperative Information Systems 1(1), 1992.

[15] A. Borgida, \Towards the systematic develop-
ment of terminological reasoners: clasp recon-
structed", Proc. Conf. on Principles of Knowl-
edge Representation (KR'92), Boston, MA, Oc-
tober 1992.

[16] A. Borgida, \On the relationship between De-
scription Logic and First Order Logic Queries",
Proc. Conf. Information and Knowledge Man-
agement, Gaithersburg, MD., 1994, pp.219-225.

[17] A. Borgida and R. Brachman, \ Customiz-
able classi�cation inference in the ProtoDL de-
scription management system", Proc. Conf. In-
formation and Knowledge Management, Balti-
more, MD, November 1992, pp.482{490.

[18] A. Borgida and R. Brachman, \Loading data
into description reasoners", Proc. ACM SIG-
MOD Conf. on Data Management, 1993, Wash-
ington, DC, pp. 217 { 226.

[19] A.Borgida, R. J. Brachman, D. L. McGuin-
ness, and L. A. Resnick \CLASSIC: a structural
data model for objects," Proc. 1989 ACM SIG-
MOD International Conference on Management
of Data, June, 1989, pp. 59{67.

[20] A. Borgida, and P. Devanbu, \Knowledge base
management systems using description logics,
and their role in software information systems",
Information Processing 92 (Vol.3), pp.171{181,
Elsevier Science Publishers, 1992.

[21] A. Borgida, and P.F. Patel-Schneider, \A se-
mantics and complete algorithm for subsump-
tion in the classic description logic", J. of Ar-
ti�cial Intelligence Research, 1994, pp.277{308.

[22] R. J. Brachman, \A structural paradigm for
representing knowledge," Ph.D. Thesis, Har-
vard University, Division of Engineering and
Applied Physics, 1977. Revised version pub-
lished as BBN Report No. 3605, Bolt Beranek
and Newman, Inc., Cambridge, MA, May, 1978.

[23] R. J. Brachman and J. G. Schmolze, \An
overview of the KL-ONE knowledge represen-
tation system," Cognitive Science, 9(2), April{
June, 1985, pp. 171{216.

[24] R. J. Brachman and H. J. Levesque, \The
tractability of subsumption in frame-based de-
scription languages," Proc. AAAI-84, Austin,
TX, August, 1984, pp. 34{37.

[25] R. J. Brach-
man, R. E. Fikes, and H. J. Levesque, \Kryp-
ton: a functional approach to knowledge rep-
resentation," IEEE Computer, Vol. 16, No. 10,
October, 1983, pp. 67{73.

[26] R. Brachman, P.Selfridge, L.Terveen,
B.Altman, A. Borgida, F. Halper, T.Kirk,
A.Lazar, S.McGuiness, L.Resnick, \Knowledge
representation support for data archaelogy",
Int. J. of Intelligent and Cooperative Informa-
tion Systems 2(2), June 1993, pp.159{186.

[27] M.Buchheit, M. Jeusfeld, W. Nutt, and
M. Staudt, \Subsumption between queries in
object-oriented databases", Information Sys-
tems 19(1), pp.33-54, 1994.

14



[28] D. Calvanese, M. Lenzerini, and D. Nardi, \A
uni�ed framework for class-based representa-
tion formalisms", Proc. Conf. on Principles of
Knowledge Representation (KR'94), Bonn, Ger-
many, 1994, pp.109{120.

[29] B. Carpenter, The logic of typed feature struc-
tures: applications to uni�cation grammars,
logic programs, and cosntraint resolution, Cam-
brige University Press, 1992.

[30] T. Catarci and M. Lenzerini, \Representing
and using interschema knowledge in coopera-
tive information systems", Int. J. of Intelligent
and Coorperative Information Systems 2(4), pp.
375{398, Decembe 1993.

[31] W. Cohen, A. Borgida, and H. Hirsh, \Com-
puting least common subsumers in description
logics", Proc. of AAAI'92, San Jose, CA., May
1992.

[32] L. Delcambre and K. Davis, \Automatic vali-
dation of object-oriented database structures",
Proc. IEEE Data Engineering Conference, Los
Angeles, CA., pp.2{9, 1989.

[33] P. Devanbu and D. Litman, \Plan-based termi-
nological reasoning," Proc. Conf. on Principles
of Knowledge Representation (KR'91), Boston,
MA, 1991.

[34] P. Devanbu, R. Brachman, P. Selfridge, and
B. Ballard, \LaSSIE: A knowledge-based soft-
ware information system", Communications of
the ACM,34(5), May 1991.

[35] P. Devanbu and M. Jones, \The use of descrip-
tion logics in KBSE systems", Proc. 17th Int.
Conf. on Software Engineering, Sorrento, Italy,
1994.

[36] F. Donini, M. Lenzerini, D. Nardi, andW. Nutt,
\Tractable concept languages", Proc. IJCAI'91,
Australia, August 1991, pp. 458-463.

[37] F. Donini, M. Lenzerini, D. Nardi, andW. Nutt,
\The complexity of concept languages", Proc.
KR'91, Boston, MA., 1991, pp. 151-162.

[38] F. Donini, M. Lenzerini, D. Nardi, A. Schaerf,
and W. Nutt, \Adding epistemic operators to
concept languages", Proc. KR'92, Bonn, 1992,
pp.342-353.

[39] J. Doyle, and R. Patil, \Two theses of knowl-
edge representation: language restrictions, tax-
onomic classi�cation, and the utility of repre-
sentation services", Arti�cial Intelligence 48(3),
April 1991, pp.261{298.

[40] S. Finkelstein, \Common expression analysis in
database applications", Proc. ACM SIGMOD
Confernce, Orlando, FL, 1982, pp.235{245.

[41] B. Hollunder, W. Nutt, and M. Schmidt-
Schauss, \Subsumption algorithms for concept
description languages", Proc. 9th ECAI, Stock-
holm, Aug. 1990, pp.348-353.

[42] R. Hull and R. King, \Semantic database mod-
eling: survey, applications, and research is-
sues", ACM Computing Surveys 19(3), Septem-
ber 1987, pp.201{260.

[43] R. Lecluse and P. Richard, \Modeling com-
plex structures in Object-Oriented Databases",
Proc. ACM PODS Conference, Philadelphia,
PA, 1989, pp. 360{367.

[44] M. Lenzerini and A. Schaerf, \Concept lan-
guages as query languages", Proc. AAAI'91, pp.
471-476.

[45] H. Levesque, \Foundations of a functional ap-
proach to knowledge representation", Arti�cial
Intelligence 23(2), 1984, pp. 155{212.

[46] K. von Luck,B. Nebel, C. Peltason, and
A. Schmiedel, \The anatomy of the BACK Sys-
tem", KIT (Kunstliche Intelligenz und Textver-
stehen) - Report 41, Technical University of
Berlin, Jan. 1987.

[47] R.M. MacGregor, \A deductive
pattern matcher", in Proceedings AAAI-87, St.
Paul, Minnesota (1987) 403{408.

[48] R.M. MacGregor, \The evolving technology
of classi�cation-based knowledge representation
systems", in Principles of Semantic Networks:
Explorations in the Representation of Knowl-
edge, John Sowa editor,Morgan-Kaufman 1991.

[49] W. Mark, \Rule-based inference in large knowl-
edge bases", Proc. AAAI'80, August 1980.

[50] E. Mays, C. Apte, J. Griesmer, J. Kastner. \Or-
ganizing knowledge in a complex �nancial do-
main", IEEE Expert, 1987, pp.61{70.

[51] B. Nebel, \Terminological reasoning is inher-
ently intractable", Arti�cial Intelligence 43,
1990, pp.235-249

15



[52] B. Nebel and C. Peltason, \Terminological
reasoning and information management", in
D. Karagianis editor, Information Systems
and Arti�cial Intelligence: Integration Aspects,
Springer-Verlag, 1991, pp.181{212

[53] B. Nebel and G. Smolka, \Attributive descrip-
tion formalisms and the rest of the world", in O.
Herzog, C. Rollinger (eds), Text understanding
in LILOG, Springer Verlag, Berlin, 1991.

[54] B. Owsnicki-Klewe, \Con�guration as a con-
sistency maintenance task," in W. Hoeppner,
(ed), Proc. of GWAI-88, Springer Verlag, 1988,
pp. 77{87.

[55] J. Pastor, D. McKay and
T. Finin, \View-concepts: knowledge-based ac-
cess to databases", Proc. CIKM-92, Baltimore,
MD, 1992, pp. 84{91.

[56] P. F. Patel-Schneider, \Small can be beauti-
ful in knowledge representation", Proceedings
IEEE Workshop on Principles of Knowledge-
Based Systems, Denver, Colorado (1984) 11{16.

[57] P.F. Patel-Schneider, R.J. Brachman, and
H.J. Levesque, \ARGON: knowledge represen-
tation meets information retrieval," Proc. First
Conf. on Arti�cial Intelligence Applications,
Denver, CO, December, 1984, pp. 280{286.

[58] P. F. Patel-Schneider, \A four-valued semantics
for terminological logics", Arti�cial Intelligence
38 (1989) 319{351.

[59] V. Royer, J. Quantz, \Deriving inference rules
for terminological logics", in Logics in AI,
Proc. of JELIA'92, D. Pearce, G.Wegner (eds),
Springer Verlag, 1992, pp.84{105.

[60] K. Schild, \A correspondence theory for termi-
nological logics | preliminary report", Proc.
IJCAI'91, Sydney, Australia.

[61] M. Schmidt-Schauss, \Subsumption in KL-
ONE is undecidable", in Proceedings KR'89,
Toronto, Canada, May 1989, 421{431.

[62] M. Schmidt-Schauss, and G. Smolka, \Attribu-
tive concept descriptions with complements",
Arti�cial Intelligence Journal, 48(1) pp.1{26,
1991

[63] A. Sheth and J. Larson, \Federated Database
systems for managing distributed, heteroge-
neous, and autonomous databases", ACM Com-
puting Surveys 22(3), pp.183-236, 1990.

[64] A. Sheth, S. Gala, and S. Navathe, \On auto-
matic reasoning for schema integration", Int. J.
of Intelligent and Cooperative Information Sys-
tems, 2(1), pp. 23{50, 1993.

[65] C-D Shum and R. Muntz, \Implicit repre-
sentation of extensional answers", in L. Ker-
scheberg editor, Proc. Second Int. Conf. on Ex-
pert Database Systems, Benjamin Cummings,
1989, p.497-522.

[66] G. Teege, \Making the di�erence: a sub-
traction operation for description logics",Proc.
Conf. on Principles of Knowledge Representa-
tion (KR'94), Bonn, Germany, 1994, pp.540{
550.

[67] F. Tou, M. Williams, R. Fikes, A. Henderson,
T. Malone, \RABBIT: An intelligent database
assistant", Proc. AAAI'82.

[68] W. A. Woods and J. G. Schmolze, \The KL-
ONE family," Computers and Mathematics with
Applications 23(2-5), Special Issue on Semantic
Networks in Arti�cial Intelligence.

[69] W. A. Woods, \Understanding subsumption
and taxonomy: a framework for progress", in
Principles of Semantic Networks: Explorations
in the Representation of Knowledge, John Sowa
editor,Morgan-Kaufman 1991.

[70] J. Wright, E. Weixelbaum, K. Brown, G. Veson-
der, S. Palmer, J. Berman, and H. Moore,
\A knowledge-based con�gurator that supports
sales, engineering, and manufacturing at AT&T
Network Systems", Proc. Conf. Industrial Ap-
plications of AI(IAAI93) pp.183{193, 1992.

[71] J. Yen, R. Neches, and R. MacGregor, \CLASP:
integrating term subsumption systems and
production systems", IEEE Transactions on
Knowledge and Data Engineering, 3(1), pp. 25-
32, March, 1991.

16


