
Crash Course in the Theory of Logic

Richmond H. Thomason
Email: rich@thomason.org

Web: http://www.eecs.umich.edu/~rthomaso/

Version 2: 1-05-1998

1. Language

First-Order Logic (FOL) is a framework within which �rst order theories can be devel-
oped. The framework de�nes various syntactic types (i.e., types of expressions,) and provides
rules that specify how simpler expressions can be combined to make more complex ones. The
following syntactic types of expressions are available.

1. Terms

2. Function expressions

3. Predicate expressions

4. Connectives

5. Formulas

6. Quanti�ers

Basic terms include constants (speci�cally, individual constants) and variables (individual
variables).1 If functions are available, there may be complex terms as well as basic terms; if
a is an individual constant and f and g are one-place function symbols, for instance,

f(g(a))

will be a term.
Function expressions are typed according to the number of arguments that they take.

(I.e., FOL, like many programming languages, is not polymorphic.) An n-place function
expression combines with n terms to make a term: so, if f is a 2-place function expression,
x is a term, and f(a) is a term, then

f(x; f(a))

is also a term. The usual versions of FOL do not provide for complex function expressions.
Logicians usually count beginning with 0; 0-place function expressions are allowed, and in
fact these are the same as individual constants.

Predicate expressions combine with terms to make formulas. Like function expressions,
predicate expressions are typed according to the number of arguments that they take. An

1The di�erence between FOL and higher-order logics is that in FOL, only individual variables are available;
variables that are stipulated to stand for functions from individuals to individuals, for instance, are not
allowed in FOL.

n-place predicate expression combines with n terms to make a formula: so, if P is a 2-place
predicate expression, x is a variable, and f(a) is a term,

P (x; f(a))

will be a formula. Note that a 0-place basic predicate expression would be a basic formula.
The usual versions of FOL do not provide for complex predicate expressions.

Connectives combine formulas into more complex formulas. In general, the following
connectives are available in FOL (either as primitives or by de�nition):

1. : (negation, a 1-place connective)

2. ^ (conjunction, a 2-place connective)

3. _ (disjunction, a 2-place connective)

4. ! (the conditional, a 2-place connective)

5. $ (the biconditional, a 2-place connective)

Thus, for instance, if A, B, and C are formulas then so is :[:A ^ [B _ :C]]. It is a crucial

part of the design of the language of FOL that formulas are not to be ambiguous. Therefore,
brackets are used for disambiguation in the application of connectives. An expression like

A _B ^C

could not be a formula of FOL. But (depending on the bracketing conventions, which di�er,
but which always render formulas unambiguous), disambiguated combinations like

A _ [B ^C]

or
[A _B] ^C

would be admissible.
The usual versions of FOL do not provide for connectives that are not basic. This does

not mean, however, that connectives can't be de�ned; a de�ned connective is usually treated
as a metalinguistic abbreviation of (i.e., as a macro for) a complex of primitives. That is,
logicians like to treat de�nitions not as primitives of the object language which can somehow
be eliminated, but as abbreviations in the metalanguage. On this policy, if A! B is de�ned
as :A _B, a formula like `P (a) ! Q(a)' does not appear in the logical language at all,
but is merely another way that we use to describe the formula :P (a) _Q(a). This policy
toward de�nitions should be familiar to computer scientists, since it amounts to treating the
extended language with de�nitions as a \higher level" language that is compiled into the
object language by macro expansion. Often, : and _ are taken as primitive connectives; it
is a theorem that any boolean function can be de�ned in terms of these two, so this set is
expressively complete.

FOL usually has a very limited set of basic quanti�ers; usually either the universal quan-
ti�er 8 or the existential quanti�er 9 is taken to be primitive, and the other is then de�ned.
Quanti�ers combine with variables and formulas to make formulas: you can universally quan-
tify a formula like P (x; y), for instance, in two interesting ways, obtaining either 8xP (x; y)
or 8yP (x; y).

2

The usual versions of FOL do not provide for quanti�ers that are not basic. This does
not mean, however, that quanti�ers can't be de�ned. Though identity can be regarded
as a two-place predicate expression of FOL, it is often singled out as a special expression
with distinctive logical properties. When identity is present, a large number of \numerical"
quanti�ers can be de�ned, like \for at least three," \for exactly two," and \for either at most
three or at least ten." For instance, (9�2x)A is de�ned as 9y9z[A(y=x) ^A(z=x) ^ :y =
z], where y and z are di�erent variables not occurring in A. And (91xA) is de�ned as
(9y)(8x)[A$ x = y].

2. A bit about variables and substitution

In a formula 8xA or 9xA, A and everything in it is the scope of the quanti�er 8x or 9x.
Thus, in P (x) ^ 9xQ(x), the �rst occurrence of x is in the not scope of a quanti�er, but the
second occurrence of x is. A variable x that is in the scope of a quanti�er 8x or 9x is bound
by that quanti�er; variables that are not bound are free. Thus, the �rst occurrence of x
in P (x) ^ 9xQ(x) is free and the second occurrence of x is bound. A formula with no free
occurrences of variables is called a sentence.

Where A is a formula (which may or may not have free occurrences of u), A(t=u) is the
result of substituting occurrences of t for all free occurrences of u in A. Since substitutions
that result in bound occurrences of variables that were not bound in the original formula
are anomalous, this notation presupposes that no such substitutions take place. One way
to make sure that the substitution A(t=u) is legitimate is to assume that t contains no
occurrences of variables that are arguments of quanti�ers in A.

3. Choosing a �rst-order theory

In an application of FOL, a speci�c language is made up out of the above materials.
Suppose, for instance, that you have an application in which there are �ve things that you
want to talk about. Then you might choose a language with �ve individual constants and
no more. And if there are three interesting types of objects and one two-place relation
that is interesting in the domain, you will choose three 1-place predicate constants (basic
predicate expressions) and one 2-place predicate constants. This, then, will yield your �rst-
order theory. The connectives and quanti�ers are always available (and identity is usually
available). And it is always assumed that there are in�nitely many variables. (For logical
purposes, it is necessary to assume that for any formula A you can �nd a variable that
doesn't occur in A.)

4. Macrosemantics

Here is a large-scale picture of semantics, or model theory, that leaves out the details.
Corresponding to each syntactic type, there is a semantic type. Terms correspond to

individuals. (That is, each term refers to a member of the semantic type of individuals.)
Formulas correspond to truth values. (These values can be any two �xed objects; usually, 0
and 1 are used for this purpose.) An n-place function expression will correspond to an n-place
function from individuals to individuals. An n-place predicate expression will correspond to

3

an n-place function from individuals to truth values. An n-place connective will correspond
to an n-place function from truth values to truth values (i.e., to an n-place boolean function.)
Finally, a quanti�er will correspond to a function from sets of individuals to truth values.
(The existential quanti�er, for instance, takes a set of individuals to the value true (i.e., the
value 1) if and only if this set is nonempty.)

5. More semantic detail: models

You can think of a model as a microworld in which a �rst-order language has been
interpreted according to the conventions above. For logical purposes, the most important
part of a model is its domain of individuals. This is a limited set of objects serving as the
range of the quanti�ers, and which supplies references for terms.

In a model of a �rst-order language, each individual constant is assigned some member
of the model's domain. As part of the policy that FOL must be unambiguous, we require
that a unique domain member is assigned to each individual constant; but we do allow
domain members to be assigned to more than one individual constant, or to be assigned
to no individual constant at all. Each n-place function constant is assigned some n-place
function from the domain to the domain. Each n-place predicate constant is assigned some
n-place function from the domain to truth values.

Rules of truth (or of satisfaction) will determine a unique truth value for each formula of
a �rst-order language in any model of that language, relative to an assignment s of values in
the domain to each individual variable. I'll state these rules in a separate section. Meanwhile,
an example should help us to collect our thoughts about models.

6. A little model

The domain of the model consists of three objects, a, b, and c. The �rst of these is
yellow; the rest aren't. The �rst is bigger than the second, the second is bigger than the
third. So we choose a FOL with individual constants a, b, c,2 and with the 1-place predicate
constant P and the 2-place predicate constant R. To complete the model, we need to choose
an assignment of values to variables; we arbitrarity assign the value a to each variable.

The de�ning features of this model are summarized in the following table.

� Domain: D = fa; b; cg

� Assignment of Model Values to Constants:

FOL Constant Value in the Model

a a
b b
c c

P fD1 (a)

R fD2 (ha; bi; hb; ci)

2Don't confuse objects with their names! Typically, names are di�erent from the objects that they name.
So we'd expect the individual constant b to di�er from the object b of the model. (However, the case in
which some of the objects in the domain of the model are names, and where b names itself, is not ruled out.)

4

� Assignment of values to variables: s(x) = a, for all variables x.

In this table, fD
n
(X) stands for the characteristic function of the set X. That is, fD

n
(X) is

the function from Dn (where Dn is the set of all n-tuples of members of D) to f0; 1g such

that fD
n
(X)(x) = 1 if x 2 X, and otherwise fD

n
(X)(x) = 0. (Note: we identify a set from Dn

to the set f0; 1g of truth values with an n-place function from D to f0; 1g; i.e., that is what
an n-place function is. Also note that D1 = D.)

7. Still more semantic detail: semantic rules

A semantic version of substitution can be de�ned on assignments: where s is an assign-
ment of values from the domain D to a set of variables, and one of these variables is x, let
s(d=x) be the assignment that is like s, except that the value of x has been changed to d.
That is, s(d=x)(y) = s(y) if y 6= x, and s(d=x)(x) = d.

Where M is a model involving the assignment s, d is an element of the domain of M, and
x is a variable of the language that M interprets, let M(d=x) be the model that is like M
except that its variable assignment is s(d=x).

Let M be a model with domain D, of a language that contains all the constants and
variables of a term t and formula A. Then M will assign t a member [[t]]M of the domain
and A a truth value, [[A]]M. An induction on the complexity of formulas speci�es how this
assignment works.

1. Basic terms.

[[a]]M is speci�ed as part of the de�nition of M.
[[x]]M = s(x).

2. Complex terms.

[[f(t)]]M = [[f]]M([[t]]M)

3. Basic formulas.

[[P (t1; : : : ; tn)]]M = [[P]]M([[t1]]M; : : : ; [[tn]]M)

4. Complex formulas.

(a) Negations.

[[:A]]M = 0 if [[A]]M = 1, and
[[:A]]M = 1 if [[A]]M = 0

(b) Conditionals.

[[A! B]]M = 1 if [[A]]M = 0 or [[B]]M = 1, and
[[A! B]]M = 0 if [[A]]M = 1 and [[B]]M = 0.

(c) Universal quanti�cations.

[[8xA]]M = 1 if [[8xA]]M(d/x) = 1 for all d 2 D, and
[[8xA]]M = 0 if [[8xA]]M(d/x) = 0 for some d 2 D.

5

Often (in analogy to roots of equations, as when 3 is said to satisfy x2�x�6 = 0) we say
that a model M satis�es a formula when [[A]]M = 1. Generalizing to sets of formulas, we say
that a model M simultaneously satis�es a set T if formulas when [[A]]M = 1 for all A 2 T .

8. Validity and implication

A formula A is said to be valid, k�A, if A is assigned the value 1 (or true) in every model.
And A is said to be satis�able if A is assigned the value 1 in some model. A model M is said
to simultaneously satisfy a set T of formulas if [[A]]M = 1 for all A 2 T . And T is said to be
simultaneously satis�able if there is a model that simultaneously satis�es T .

Finally, a set T of formulas is said to imply a formula A if A is assigned the value 1 (or
true) by every model that simultaneously satis�es T .3

Note that implication is a generalization of validity, in the sense that k�A if and only
if ; k�A. (You might want to prove this, as a way of checking that you understand the
de�nitions.)

9. Proofs

In their simplest form, proofs are records of how to derive a conclusion from axioms by
means of rules of inference. This assumes, of course, that a set of axioms has been presented,
as well as a set of rules of inference.4 So a proof can be de�ned as a list of formulas such that
every entry either (1) is an axiom, or (2) follows from previous entries by a rule of inference.
Such a list is a proof of A, where A is a formula, in case A is the list's last entry.

A major purpose of proofs is to obtain consensus about the consequences of assumptions.
This purpose would be undermined if it were not possible to check mechanically whether
a list of formulas is a proof. Therefore, it is usual to require proofs to be algorithmically
recognizable. This recognizability condition will hold if for any formula A it is decidable
whether A is an axiom, and if for any pair consisting of a �nite list X of formulas and a
formula A it is decidable whether A follows fromX by a rule of inference. Note that this does
not require the set of axioms to be �nite; if we characterize an in�nite set of axioms in terms
of some decidable property of their shapes, proofs from these axioms will be recognizable,
as long as rules of inference remain recognizable.

A formula A is said to be provable in case there is a proof of A. Notation: `` A' is short
for `A is provable.' Sometimes we want to refer explicitly to the axiomatic basis, and say
that `S A, where S is a system of axioms and rules.

Hypothetical proof is a very natural and common reasoning technique, which allows the
reasoner to invoke and discharge assumptions in the course of an argument. (We argue this
way, for instance, in reasoning by cases: in this form of reasoning we begin by dividing the
possibilities into a list of cases, and alternatively assume each of these cases, trying to reason
to the desired conclusion. The cases can be represented by formulas of FOL; if, then, the

3Sometimes, A is said to be a logical consequence of T when T implies A. But here, I'll use `logical
consequence' more generally, for an abstract kind of consequence that could be characterized in any of a
variety of ways.

4An inference is an operator taking a �nite set of formulas (the premisses) and returning a formula (the
conclusion).

6

cases are A and B and the desired conclusion is C, we know that A _B is true, and wish to
conclude C. So �rst we assume A and try to derive C; if this succeeds, we then discharge our
�rst assumption, assume B, and try to derive C. If both hypothetical deductions succeed,
we have proved C.)

The above de�nition of proof can easily be generalized to obtain a simple account of
hypothetical proof. Modeling the hypotheses by a set T of formulas,5 we say that a deduction
from T is a list of formulas such that every entry either (1) is an axiom, or (2) is a member
of T , or (3) follows from previous entries by a rule of inference. Such a list is a deduction of

A from T in case A is the list's last entry. And a formula A is said to be deducible from a
set T of formulas if there is a deduction of A from T .

Note that deducibility is a generalization of provability, in the sense that ` A if and only
if ; ` A. (You might want to prove this, as a way of checking that you understand the
de�nitions.)

10. Abstract properties of the consequence relation

Both the semantic de�nition of implication and the proof-theoretic de�nition of deducibil-
ity are ways of characterizing an intuitive notion of consequence in FOL; the idea is that A
is a consequence of T when A follows from T due to logical considerations alone.

It's useful to look abstractly at some of the general properties that both of these conse-
quence relation share. To do this, let's use j. as an abstract consequence relation. Then j.
will relate a set T of formulas (which may, however, be empty) to a formula A.

Here, then, are a number of general properties. In all cases but one, these are easily
provable from the de�nitions above, whether j. is taken semantically to be k�, or proof-
theoretically as `.

1. Identity.

If A 2 T then T j. A.

2. Transitivity.

If T j. A and T [fAg j. B then T j. B

3. Monotonicity.

If T j. B then T [fAg j. B.

4. Finiteness.

T j. A if and only if T 0 j. A for some �nite subset T 0 of T .

5The set T needn't be �nite; for the same conditions that apply to logical axioms, we might want to
consider an in�nite set of hypotheses satisfying some general conditions. For instance, if we knew that
in�nitely many things satisfy a one-place predicate P , we might be interested in the set

f9�1xP (x); 9�2xP (x); : : : ; 9�nxP (x); : : : g:

7

The only one of these properties that can't be proved trivially for ` or k� is the �niteness of
k�; the proof of this result, which uses an algebraic idea called the ultraproduct construction,
is usually one of the �rst results in a serious textbook in model theory. The rest of the
properties all follow immediately from de�nitions.

Take monotonicity, for instance. Proof-theoretically, it says that if T ` B then T [fAg `
B. To prove it in this form, suppose that T ` B. Then there is a deduction P of B from
T . But, by inspecting the de�nition, we see that P is also a deduction of B from T [fAg.
(Note that it is not required that every member of T be used in a deduction from T .)
Semantically, monotonicity says that if T k�B then T [fAg k�B. To prove it in this form,
suppose that T k�B. Then every model that simultaneously satis�es T also satis�es B. But
clearly, every model that simultaneously satis�es T [fAg also satis�es B; so every model
that simultaneously satis�es T [fAg must satis�es B, so that T [fAg implies B.

There are also a number of less general properties that hold of consequence in FOL, but
that would have to be regarded as properties of FOL, rather than of logical consequence in
general: the fact that if T j. 8xA then T j. A(t=x) is an example. It turns out that even at
this level of detail, semantic and proof theoretic consequence are equivalent in FOL: in fact,
it can be proved that T ` A if and only if T k�A, for all T and A.

8

