
A semantics approach for KQML {

a general purpose communication language for software agents �

Yannis Labrou
Computer Science Department

University of Maryland, Baltimore County
Baltimore MD 21228

email: jklabrou@cs.umbc.edu
voice: (410) 455-2667
fax: (410) 455-3969

Tim Finin
Computer Science Department

University of Maryland, Baltimore County
Baltimore MD 21228

email: �nin@cs.umbc.edu
voice: (410) 455-3522
fax: (410) 455-3969

Abstract

We investigate the semantics for Knowledge Query Manipu-
lation Language (KQML) and we propose a semantic frame-
work for the language. KQML is a language and a pro-
tocol to support communication between software agents.
Based on ideas from speech act theory, we propose a se-
mantic description for KQML that associates descriptions
of the cognitive states of agents with the use of the lan-
guage's primitives (performatives). We use this approach to
describe the semantics for the basic set of KQML performa-
tives. We also investigate implementation issues related to
our semantic approach. We suggest that KQML can o�er
an all purpose communication language for software agents
that requires no limiting pre-commitments on the agents'
structure and implementation. KQML can provide the Dis-
tributed AI, Cooperative Distributed Problem Solving and
Software Agents communities with an all purpose language
and environment for intelligent inter-agent communication.

1 Introduction

Let us picture a company where employees keep calendars
in their personal computers. A database keeps information
on the employees, such as names, o�ces, phone numbers.
Another database may register conference rooms, with addi-
tional information regarding capacity, availability, scheduled
activities and so on. One may want to build a system that
can schedule group meetings in the company, according to
the availability of employees and locations. The well-known
approach is to built an application from scratch, so that one
application holds all necessary information and knowledge.
The alternative would be to use the existing applications.
Doing that, would require: 1) the applications to be able
to comprehend each other's knowledge stores, despite dif-
ferences in implementation languages and knowledge repre-
sentation schemes, and 2) the applications to communicate
with each other and dynamically make queries, answer them,

�This work was supported in part by the Air Force O�ce of Scien-
ti�c Research under contract F49620-92-J-0174 , and the Advanced
Research Projects Agency.

assert or remove facts from their knowledge stores, in short,
to interact intelligently.

This example is an instance of the larger problem of pro-
viding for an environment where software agents may e�ec-
tively communicate and exchange knowledge and informa-
tion. Addressing this problem is the primary goal of the
ARPA Knowledge Sharing E�ort (KSE) [23]. KSE is an ini-
tiative to develop the technical infrastructure to support the
sharing of knowledge among systems [22]. Its goal is to de-
velop new systems by selecting components from libraries of
reusable modules and assembling them together. One of the
key areas identi�ed by KSE was that of protocols for commu-
nication between separate knowledge-based modules, as well
as between knowledge-based systems and databases. The re-
sult was Knowledge Query Manipulation Language (KQML)
(see [1, 2, 14] for documentation on KQML) a message for-
mat and a message-handling protocol to support run-time
knowledge sharing and interaction among agents.

Interaction is more than an exchange of messages. Issues
associated with it, are: models of agents (beliefs, goals, rep-
resentation and reasoning), interaction protocols (an inter-
action regime that guides the agents) and interaction lan-
guages (languages that introduce standard message types
that all agents interpret identically). KQML is intended to
be a universal interaction language, that supports communi-
cation through explicit linguistic actions. Our focus in this
paper is the formal description of the semantics of the lan-
guage. Although the language is partly designed and in use,
it lacks a formal semantics, and its current description [2]
is based on natural language descriptions of its primitives
called performatives. We believe that a formal semantics is
necessary for the unambiguous de�nition of the language,
and its appropriate use. Furthermore, the semantic descrip-
tion is related to implementation issues.

Research communities with a potential interest in such
a language are those of Distributed Arti�cial Intelligence
(DAI1) ,the sub�eld of AI concerned with concurrency in
AI computations, (Cooperative) Distributed Problem Solv-
ing, that studies how a loosely coupled network of problem
solvers can work together to solve problems that are beyond
their individual capabilities [12], and Multi Agent Systems,
concerned with coordinating behavior among a collection of
(possibly pre-existing) autonomous intelligent agents. The
rising demand for software agents that can interoperate [16],
and for intelligent agents that can take advantage of the

1For an introduction to the issues that DAI is concerned with, see
[4] and [15].

enormous resources of today's Internet (like Etzioni's Inter-
net softbots [13]) provide a proving ground for a communica-
tion language. KQML can be used in any environment where
software agents need to communicate something more than
pre-de�ned and �xed statements of facts and provides for
dynamic run-time interaction, so that intelligent agents can
combine their e�orts, or make use of other agents' abilities,
in order to achieve their goals.

In the remainder of this paper we will begin by provid-
ing a brief introduction to speech act theory which under-
lies our approach to de�ning the semantics of KQML. We
will then associate KQML messages with speech acts and
present a general semantic framework for KQML. Following
this framework, we will give the semantics for a small set of
KQML performatives. In the �nal two sections of the pa-
per we discuss the impact of our analysis on some software
implementation issues and discuss the kinds of applications
which are appropriate for KQML.

2 Speech act theory and speech act semantics

Speech act theory is a high-level theoretical framework de-
veloped by philosophers and linguists to account for human
communication. It has been extensively used, formalized
and extended within the �elds of Computational Linguistics
and AI as a general model of communication between arbi-
trary agents. As such, we believe that speech act theory can
provide us with a framework for the semantics of KQML,
a language focused on the communication between software
agents. Speech act theory is primarily concerned with the
role of language as action. The following three distinct ac-
tions can be identi�ed in a speech act: (1) a locution, i.e.,
the actual physical utterance (with a certain context and
reference), (2) an illocution, i.e, the conveying of the speak-
ers intentions to the hearer, and (3) the perlocutions, i.e.,
actions that occur as a result of the illocution. For example,
\I order you to shut the door" is a locution, its utterance is
the illocution of a command to shut the door and the per-
locution may be (if all goes well) that the hearer shuts the
door. An illocution is usually considered to have two parts:
an illocutionary force and a proposition. The illocutionary
force classi�es speech acts into the following classes2 : 1)
assertives, that are statements of facts, 2) directives, that
are commands, requests or suggestions, 3) commisives, e.g.,
promises, that commit the speaker to a course of action,
4) declaratives, that entail the occurrence of an action in
themselves3 , and 5) expressives, that express feelings and
attitudes.

There is no consensus in the literature regarding the se-
mantic approaches for speech acts but no matter what one
may consider as speech act semantics, it is necessary to make
reference to the cognitive states of the agents that use them.
After all, speech acts are supposed to be the result of agents'
e�orts to act upon the world and/or other agents. The
representation of and reasoning about the states of agents
and the world and how agents' actions a�ect them is a pre-
requisite for any semantic approach. There is a plethora
of approaches regarding the abstractions (models) used for
capturing and describing such states, depending on one's
motivations. They range from informal references to propo-
sitional attitudes, like \believe" or \want", as in Searle's
early work [25] where speech acts are used in the context of
the investigation of reference and other Philosophy of Lan-

2variations of this classi�cation appear also in the literature
3as in \I name this ship the Titanic"

guage issues, to strict formalisms, as in the work of Cohen
and Levesque [6, 8, 7] that de�ne a formal model of the cog-
nitive state of an agent and then use it to interpret speech
acts as actions that are derived, guided and controlled in the
context of the cognitive states of the related agents. Camp-
bell [5] uses predicates (that stand for epistemic operators),
and propositions to describe mental states associated with
speci�c speech acts (like warning or bargaining). Cohen
and Perrault in their plan-based theory of speech acts [9] use
a believe modal operator based on Hintikka's ideas about
propositional attitudes, knowledge and belief [20]. Singh is
interested in modelling agents in terms of beliefs and inten-
tions [26] and uses this description to provide a semantic
approach for speech acts [27], enhancing the usual model-
theoretic framework with modal operators for the primitive
concepts of intention and know-how. The common denom-
inator of most of the formal semantic approaches is the
possible-world model that has an axiomatization in terms
of modal logic (for an introduction to the possible worlds
model and the issues related to it see [21]).

We adopt Searle's description (approach) for speech acts
[25, 24]. A speech act may be described asF(P) where F is
the illocutionary force indicator and P is the propositional
content of the illocutionary act4. Searle suggests the follow-
ing seven components of the illocutionary force:

1. The illocutionary point is a fundamental primitive no-
tion. The illocutionary points are: assertive, directive,
commisive, declarative, and expressive. The illocution-
ary point of a type of illocutionary act is achieved if the
act is successful. The illocutionary point of a promise
to do act P (commisive), is for the speaker to commit
himself to doing P and the illocutionary act will be
successful if the promise is to be kept in the future.

2. The degree of strength of the illocutionary point can
distinguish between \shut the door!" and \could you
please close the door?" that are both directives, but
the �rst is a command and the second is a plea.

3. The mode of achievement suggests the special ways or
set of conditions under which the illocutionary point
has to be achieved in the performance of the speech
act. A command may require a position of authority
on behalf of the speaker; use of this authority may
be necessary in issuing the utterance and eventually
achieving the illocutionary point.

4. The propositional content conditions impose what can
be in the propositional content P for a speci�c force F.
For example, a speaker can not promise that a third
agent will do something.

5. The preparatory conditions are conditions that should
hold for the successful performance of an illocutionary
act. In the case of a promise, such conditions might be
that whatever was promised is in the hearer interest
and the hearer in fact wanted him to issue the promise.

6. The sincerity conditions relate to the psychological (or
cognitive) state of the agent. Agents have beliefs, in-
tentions and desires. The propositional content of the
illocutionary act should be identical to the proposi-
tional content of their psychological state.

4The truth might be a little more complicated because P can by a
proposition plus syntactic features and a context for the utterance.

7. Finally, the degree of strength of the sincerity condi-
tions suggests the existence of a degree of strength in
the expression of the psychological state of the speaker.
\Requesting" and \begging", do not suggest the same
level of desire for something to occur.

3 KQML and speech act theory, as a context for its
semantics

KQML is intended as a general purpose communication lan-
guage for the exchange of information and knowledge be-
tween software agents. Here is an example of a KQML mes-
sage:

(tell :language prolog
:ontology Genealogy
:in-reply-to q1
:sender Gen-1
:receiver Gen-DB
:content ``father(John,Alice)'')

In KQML terminology, \tell" is a performative5 (see Ta-
ble 1 for more KQML performatives). Performatives ex-
plicitly suggest the illocutionary force. The value of the
:content slot is an expression in some \computer inter-
preted" language6 , in other words it is the propositional
content of the illocutionary act (technically, the illocution-
ary act is the \delivery" of a KQML message). The other
parameters (keywords), introduce values that provide a con-
text for the interpretation of the propositional content and
at the same time hold information to facilitate the process-
ing of the message. In this example, \Gen-1" is stating to
\Gen-DB" (these are symbolic names for applications), in
Prolog, that \father(John,Alice)". This is a response to the
KQML message (illocutionary act) identi�ed by \q1". The
ontology7 named \Genealogy" may provide additional infor-
mation regarding the interpretation of the content.

We will use the term semantics to refer to: 1) everything
that provides for an unambiguous interpretation of the per-
formative, viewed as an illocutionary force indicator, 2) the
perlocutionary e�ects, i.e, how agents' states change after
sending or receiving a KQML message, and 3) criteria that
suggest when the illocutionary point of the performative is
satis�ed.

Searle broke down the illocutionary force into seven com-
ponents (presented in Section 2). Next, we examine those
components that are of interest to us, and how they relate
to our e�ort to provide meaning to performatives. The per-
formative's illocutionary point and degree of strength are ax-
iomatically de�ned by the designers (in our current analysis
we ignore the degree of strength). Table 1 shows the illo-
cutionary points for the performatives of this presentation.
The sincerity conditions and their degree of strength are of
no immediate interest, because we assume that all agents are
sincere to the best of their ability. The propositional content
conditions assure that agents do not make promises about
other agents, they do not respond to queries not directed to
them, etc. They are enforced by the conversation policies
(more about them in the Section 6.1) and the application

5term �rst coined by Austin [3], to suggest that some verbs can be
uttered so that they perform some action (later, it was decided that
all verbs may be considered as performatives)

6In the full version of KQML (not presented here), the content
may also be a KQML message itself.

7An ontology is a repository of semantic and primarily pragmatic
knowledge over a certain domain. Ontologies are part of the Shared
and Reusable Knowledge Bases Group of the KSE.

programmer8. The mode of achievement refers to estab-
lishing certain relationships between speakers and hearers
that make certain illocutionary acts, meaningful. The mode
of achievement is set by the \organizational" hierarchy or
interaction protocol that the agents may use in their inter-
action. In Contract Net [28] , the fact that some agents
act as managers and others as potential contractors, creates
a context for the negotiation [11] , through bidding, that
characterizes the protocol. The preparatory conditions are
viewed as preconditions on the cognitive state, for an agent
to use a performative.

For the perlocutionary e�ects we provide suggestions for
the states of the sender, after sending a message and for the
receiver, after processing it (presented as postconditions).
The objective is to help with the interpretation of the per-
formative, by suggesting the desired e�ects of its use, and
to link (and restrict) the possible responses that will be ac-
ceptable follow-ups to the sender's action, by establishing
preconditions for the possible response.

Finally, we need to know when the illocutionary point
of a performative is eventually satis�ed, e.g., a query is sat-
is�ed when it is answered appropriately. Other illocution-
ary acts are satis�ed just by being uttered, such as telling
(tell), and others, like asking (ask-if and other query per-
formatives), require a further exchange of messages, i.e., a
\conversation". Thus, we provide satis�ability (completion)
condition, that indicate the state of a�airs after the comple-
tion of the speech act (performative).

4 A framework for the semantics of KQML

The central idea is to formally de�ne cognitive states for
agents, use them to describe the performative, the precon-
ditions, postconditions and satis�ability conditions, men-
tioned before, and associate those states with the use of the
performatives. We use expressions in First Order Predicate
Calculus (FOPC), to do that. In these expressions we use
operators that have a reserved meaning (the operators will
be identi�ed by predicates). The use of such operators, to
describe mental states of agents that use speech acts, can be
found in approaches as diverse as Campbell's [5] and Singh's
[27]. The operators used in this presentation are:

1. Bel, as in bel(A,P) which has the meaning that P is
true for A. P is an expression in the native language
of A's application. We will further refer to this op-
erator in Section 7. For now, it su�ces to say that
P \exists" in the agent's knowledge base (or virtual
knowledge base).

2. Know, like the following two operators, refers to the
cognitive state of the agents9. Know(A,P) expresses a
state of knowledge awareness on behalf of A, about P.

3. Want, as in want(A,P), to mean that agent A desires
the event (or state) described by P, to occur.

4. Intend, as in intend(A,P), to mean that A has every
intention of doing P.

8It is necessary for the programmer to guarantee that an applica-
tion does not use bizarre propositional contents for a certain perfor-
mative, due to their pragmatic nature. Since KQML is opaque to the
content of the message, there is no way to guarantee that, for instance,
an agent does not promise that \the time is 12:30PM". However, the
conversation policies will ensure that if agent A poses a query to agent
B, B will respond only to A and A will receive responses to this query,
only from B.

9As such, all three could be termed as epistemic operators.

Name Illocutionary Meaning
point

tell assertive A states to B that A believes the content to be true
deny assertive A states to B that A does not believe the content true
ask-if directive A wants to know what B believes regarding the truth status of the content
ask-all directive A wants to know all B's responses that would make the content true of B

(the response will be a collection of expressions)
stream-all directive like ask-all, but the responses are to be delivered one by one
eos declarative end of a stream of responses to an earlier query
error assertive A states to B that B's message was not processed by A
sorry assertive A states to B that B's message was processed by A, but no reply can be provided

Table 1: Performatives mentioned in this presentation, for sender A and recipient B.

Roughly, know, want and intend stand for the psychologi-
cal states of knowledge, desire and intention, respectively.
Only for the bel predicate, it is the case that P is an expres-
sion in the agent's implementation language. For all other
three operators, P is an expression that combines other op-
erators, and stands for an event or a state of a�airs. For
example, it is correct to say \know(A,bel(B,foo(a,b)))" (if
B \speaks" Prolog) but not \know(A,foo(a,b))". One can
ask if (and how) those operators are implemented in an ap-
plication. The short answer is that only the bel operator
has to have a concrete meaning (that depends on the appli-
cation language or knowledge representation language and
scheme), and the others prescribe a state of a�airs for the
agent that is associated with the use of the language. The
use of a speci�c performative suggests an associated state
for the speaker, as in assuming when one asks X, that he
wants to know X.

The semantics are implemented through the conversa-
tion policies to be provided by the KQML developers, and
the handler functions, to be provided by the application pro-
grammer 10. The conversation policies indicate what perfor-
matives can follow the utterance of a certain performative,
so that agents can have meaningful conversations. The con-
versation policies are an integral part of the semantics and
are consistent with the preconditions, postconditions and
completion conditions, to be introduced for the performa-
tives. For example, when an ask-if is uttered, it can only
be followed (see Figure 1) by a tell or deny11 which, in re-
turn, can only be uttered as a response to an \asking". Fig-
ure 1 gives an example of the conversation policy for the
small subset of KQML performatives introduced here. It
as part of an Augmented Transition Network speci�cation,
with the constraints and relating actions missing. Details
about the implementation and functionality of conversation
policies (along with details for the structure and construc-
tion of KQML speaking agent) can be found in Section 6.
The handler functions are de�ned in order to process mes-
sages received by an application and should be consistent
with the semantics described here. Handler functions are not

10The software architecture of a KQML speaking agent is shown in
Figure 2 and more details about it are given in Section 6.
11A sorry or an error may also occur.

application dependent, but rather language dependent12 , in
the sense that all applications using the same language share
the same handler functions.

5 Semantics for KQML performatives

The general semantic description of a KQML performative
has the following six constituents:

1. A natural language description of the performative's
intuitive meaning.

2. An expression in our logic that describes the illocu-
tionary act. For all practical purposes, this is a formal
representation of the natural language description.

3. Preconditions that indicate the necessary state for an
agent in order to send a performative and for the re-
ceiver to accept it and process it.

4. Postconditions that describe the states of agents after
the utterance of a performative (for the sender) and
after the receipt (but before a counter utterance) of a
message (by the receiver)13.

5. Completion conditions for the sender that indicate the
�nal state of the sender, after possibly a conversation
has taken place and the intention suggested by the
performative that started the conversation, has been
ful�lled.

6. Any natural language comments that we might �nd
suitable to enhance the understanding of the perfor-
mative.

If there are non-null preconditions for the receiver, this will
mean that the performative can only be some-kind of re-
sponse to the use of another performative that established

12For an application written in Prolog, a handler function to handle
ask-if messages, looks like this:
handle(ask-if,Content):-
(call(Content) {>
(reply to message with(tell,Content));
(reply to message with(deny,Content))).
where reply to message with interacts with the conversation module,
that implements the conversation policies, to provide the appropri-
ate values for the other message parameters and �nally deliver the
response.
13After the receiver replies, a new cycle of preconditions and post-

conditions gets started.

those preconditions14 . No preconditions are necessary for
the receiver of a performative that starts a conversation (see
Pre(B) for the query performatives, such as ask-if, ask-all,
stream-all).

In a conversation, the postconditions for the sender of
a message should be a subset of the preconditions for the
receiver of the message that may follow (compare Post(A)
for ask-if and Pre(A) for tell).

When no conversation is necessary after the utterance of
a performative, completion (satis�ability) conditions are a
subset of the postconditions. Such performatives are satis-
�ed just by being successfully uttered and processed by the
intended recipients.

In the rest of this section we give the semantic descrip-
tions for the eight performatives in Table 1. In these de-
scriptions A is the sender, B is the receiver and X is the
propositional content. All expressions mentioned as precon-
ditions, postconditions and completion conditions, are the
minimum necessary for our speci�cation of KQML.

� ask-if(A,B,X)

1. A wants to know what B believes regarding the
truth status of the content.

2. want(A,know(A,Y)),
where Y may be one of the following:
bel(B,X), bel(B,NOT(X)), NOT(bel(B,X))
(this means that Pre(A) could also be stated as:
want(A,know(A,bel(B,X))) OR
want(A,know(A,bel(B,NOT(X)))) OR
want(A,know(A,NOT(bel(B,X)))))

3. Pre(A): want(A,know(A,Y))
(optionally, NOT(know(A,Y)) should also hold)
Pre(B): NONE15

4. Post(A): intend(A,know(A,Y))
Post(B): know(B,want(A,know(A,Y)))

5. Completion(A): know(A,Y)

6. Not believing something is not necessarily the
same as believing its negation, although this may
be the case for certain systems.

� ask-all(A,B,X)

1. A wants to know all of B's responses that make X
true of B. X is an expression with variables and A
wants all the expressions that are true for B and
have values for these variables16 .

2. want(A,know(A,Y)),
where Y is bel(B,Y 0) and Y

0 is a �nite collection
of Y1, Y2, ... Each Yi is an instance of X with
values for the variables in X, identi�ed by the

14To provide an example, consider the situation that A asks B the
time and B responds 12:00PM. From our point of view, two speech
acts take place (so two messages with the appropriate performatives
have to be exchanged), the asking and the response to the asking. A
precondition for B to respond would be that A asked him and for B
that he still wants to know the time. For A to pose the question,
there is a precondition that A wants to know the time (and possibly
that A does not know the time already).
15For expository purposes we have made the simplifying assumption

that agents know what other agents know, so they only ask them
questions that they can answer. We have to do that for the sake of
completeness of the subset we present here. In the full KQML version,
there are ways for agents to learn what other agents can answer.
16the variables for which A wants values, are speci�ed by the :aspect

parameter in the KQML message

ask-if

IMPORTing message stateEXPORTing message state

tell

tell

sorry

error

deny

ask-all

stream-all

tell

tell

eos

S

S1

S3

S2 S4 pop

pop

popSR SR1 SR2

R R1

S :

R :

SR :

R

SR

R

R

Figure 1: A simple example of an ATN to parse sequences
of KQML messages.

:aspect parameter and each Yi appears once in
this collection (the collection might be empty).

3. Pre(A): want(A,know(A,Y))
(optionally, NOT(know(A,Y)) should also hold)
Pre(B): NONE

4. Post(A): intend(A,know(A,Y))
Post(B): know(B,want(A,know(A,Y)))

5. Completion(A): know(A,Y)

6. An ask-if would be appropriate to ask \is it past
5 o'clock?" and an ask-all would be more suit-
able to ask \what time it is?". It is not necessary
that when X has free variables, an ask-all should
be used. An ask-if with content foo(X,Y) makes
perfect sense (for PROLOG \speaking" agents),
if one wants to know if there exist X such that
foo(X,Y) is true. But if the same expression is
used with an ask-all, one expects something like
[foo(a,b),foo(a,c)]. The use of ask-all assumes
that the application's language provides built-in
features for collections (such as a list in our PRO-
LOG example).

� stream-all(A,B,X) Everything mentioned for ask-all
holds for stream-all, too. A is interested in a series
(possibly in�nite) of statements of facts, as a response.
The only di�erence is in the expected delivery format
of the response. Either because the sender can not
(or does not want to) process collections or due to re-
ceiver's inability to provide collections, the elements
of the would be collection are to be delivered one by
one (using tell since they are statements of facts for B).
This performative also allows for responses to be deliv-
ered one at a time, as they are computed, thus permit-
ting \pipelining" and e�cient handling of very large,
or even in�nite, collections. The eos performative is to
be used to mark the end of this multi{response (this
is for A's bene�t).

� tell(A,B,X)

1. A states to be that A believes the content to be
true.

2. bel(A,X)17

17This interprets tell as an assertive. If interpreted as a directive,
it should be want(A,know(B,bel(A,X))).

3. Pre(A): bel(A,X) , know(A,want(B,know(B,Y)))
A does not lie and B is interested in knowing.
Y is any of the Y's mentioned in ask-if, ask-all,
stream-all.
Pre(B): intend(B,know(B,Y))

4. Post(A): know(A,know(B,bel(A,X))) (optional)
Post(B): know(B,bel(A,X))

5. Completion(A): know(B,bel(A,X))

6. The completion condition holds, unless a sorry or
error suggests B's inability to acknowledge prop-
erly the tell.

� deny(A,B,X) Everything mentioned about tell holds
for deny, if bel(A,X) is replaced with NOT(bel(A,X)).

For the next two performatives, we will need three extra
predicates. We consider three stages in the handling of a re-
ceivedmessage. First, it is physically received (something we
implicitly assume throughout the analysis18), second, pro-
cessed, in the sense that it is a valid KQML message and
will be delivered to the application for processing, and third,
delivered to the application (technically, a handler function
takes over) and the application will reply to that accordingly.
We will use the predicates receive, process and respond,
for those 3 stages, respectively. The predicates refer to the
stages when completed and reference of each of one of those,
assumes that the prior stages have occurred. Reference to
the message being handled is made through Id (speci�ed in
the :reply-with parameter), and Id refers to the message
as a whole.

� error(A,B,Id)

1. A states to B that is not going to process the
KQML message identi�ed by Id.

2. NOT(process(A,Id))

3. Pre(A): receive(A,Id)
Pre(B): NONE

4. Post(A): know(A,know(B,NOT(process(A,Id))))
Post(B): know(B,NOT(process(A,Id)))

5. Completion(A): know(B,NOT(process(A,Id)))

6. An agent might respond with an error if either
he cannot successfully parse it as a KQML mes-
sage, or the message is not an acceptable one, in
the context of a \conversation" between the two
agents.

� sorry(A,B,Id)

1. A states to B that although he processed the mes-
sage, he has no response to provide.

2. NOT(respond(A,Id))

3. Pre(A): process(A,Id)
Pre(B): NONE

4. Post(A): know(A,know(B,NOT(respond(A,Id))))
Post(B): know(A,NOT(respond(A,Id)))

5. Completion(A): know(B,NOT(respond(A,Id)))

6. The best analogy for understanding the perfor-
mative, is what happens when you are asked the
time and you do not know what time it is.

18Addressing the issue of agent noti�cation for messages delivered
and received, is among those considered in KQML's implementation.

N E T W O R K

A G E N T

R o u t e rApplication

Handler Functions/
Interface

Conversation
Module

Figure 2: Logical architecture of a KQML speaking agent.

� eos(A,B,Id) This performative is somewhat unusual
with respect to the other performatives mentioned be-
cause it is only purpose is to notify B that there are
no more responses to a request for a multi-response
query.

An example

Here, is an example of a conversation between agents with
symbolic names Gen-DB and Gen1. Gen1 wants to know
who are John's parents, and sends a stream-all to Gen-DB,

(stream-all :sender Gen1
:receiver Gen-DB
:language Prolog
:ontology Genealogy
:aspect ``X''
:reply-with q1
:content ``parent(John,X)'')

and, in time, Gen-DB responds accordingly:

(tell :sender Gen-DB
:receiver Gen-1
:language Prolog
:ontology Genealogy
:in-reply-to q1
:content ``parent(John,Alice)'')

(tell :sender Gen-DB
:receiver Gen-1
:language Prolog
:ontology Genealogy
:in-reply-to q1
:content ``parent(John,Bob)'')

(eos :sender Gen-DB
:receiver Gen-1
:in-reply-to q1)

6 KQML semantics and architecture of KQML speak-
ing agents

The logical architecture of a KQML speaking agent is shown
in Figure 2. It is based in the KQML implementation devel-
oped at UNISYS [14] . We identify the following four parts:

Application. In the case that this is a non{distributed
application, the application programmer has to identify the
points in the program where external information is needed.
At those points, queries (in the general sense) have to be de-
livered to other applications (agents) that can answer them.
The problem of what to send to whom can be attacked
in several ways: 1) if the query-answering capabilities of
each agent are well known in advance (like in [17] and in
[10], where early versions of KQML were used for inter{
agent communication) the application programer encodes
the information in the distributed application so that when
a query has to be answered by an agent in the outside world,
the application knows in advance whom to query, 2) if the
application operates in an environment mostly consisting of
open systems [19, 18] the application can ask a facilitator19

to appropriately deliver its query, or, 3) the application can
ask the facilitator (or other agents) to take care of appropri-
ately delivering the query or \discuss" the matter with the
facilitator or other agents, in order to deliver the query on
its own, or collect information from agents and facilitators,
so that it can make its own decisions regarding the delivery
of its queries (such an approach is also best suited for an
open systems' community). KQML provides performatives
to support the implementation of all the above mentioned
approaches. Only in this last case, has the application pro-
grammer to provide code in order to use the extra informa-
tion regarding other agents' capabilities.

Handler functions and Interface Module. The appli-
cation programmer has to provide functions (called handler
functions) that will process the various performatives. For
example, for the ask-if performative the handler function
(written in the application's native language) should access
the application, check the truth status of the expression for
the application and accordingly convey this information to
the agent that made the query. Normally either the tell
or the deny performative should be used in such a case.
Through them, the application can state either that the ex-
pression is true, or that it is not known to be true or that
the negation of the expression is true. In order for the appli-
cation programmer to provide the handler functions he has
to know the exact meaning of the various KQML perfor-
matives (here on called semantics of the performatives) and
the policies that govern their use (conversation policies). We
further refer to the conversation policies in Section 6.1.

Conversation Module. The conversation module lies be-
tween the router and the handler functions and interface
module. Every message, either received by the agent or sent
to some other agent, has to go through the conversation
module. This module implements the conversation policies
and checks all messages in order to decide if they are allow-
able continuations of the agent's current conversations with
other agents. Our approach regarding the implementation
of this module and its role and functionality in the overall
architecture of an agent, is the subject of Section 6.1. We
consider this module to be a partial implementation of the
semantics.

Router. The router handles all KQML messages going to
and from its associated application. Each KQML speaking
software agent has its own router process but all routers are

19Facilitators are specialized agents that are designated with the
task of facilitating the communication of agents by primarily holding
information regarding the query answering capabilities of the agents
in their network domain.

T0

T1 T2

T3

T4

T5

T6

T7

T8

T9

at time T6

at time T4

IMPORT - (eos :sender a :receiver c :in-reply-to id-a-1) @T9

IMPORT - (tell :sender b :receiver a :in-reply-to id-a-2 :content expr8) @T8

IMPORT - (tell :sender c :receiver a :in-reply-to id-a-1 :content expr7) @T7

EXPORT - (tell :sender a :receiver b :in-reply-to id-b-1 :content expr6) @T6

IMPORT - (tell :sender c :receiver a :in-reply-to id-a-1 :content expr5) @T5

EXPORT - (ask-all :sender a :receiver b :reply-with id-a-2 :content expr4) @T4

IMPORT - (tell :sender c :receiver a :in-reply-to id-a-1 :content expr3) @T3

IMPORT - (ask-if :sender b :receiver a :reply-with id-b-1 :content expr2) @T2

EXPORT - (stream-all :sender a :receiver c :reply-with id-a-1 :content expr1) @T1

Figure 3: Sequence of imported and exported messages for
agent \a".

identical. Routers are content independent message routers
that provide the agent with a single point of contact for the
rest of the network. It provides both client and server func-
tions for the application and manages multiple simultaneous
connection with other agents.

6.1 Implementation of the conversation policies for
KQML performatives

The purpose of the conversation module is to assure that
the agent is involved in meaningful conversations with other
agents and keep track of them, despite the possibly asyn-
chronous behavior of the agent. The conversation module is
an implementation of the conversation policies that suggest:
1) which performatives start a conversation, and 2) which
performative is to be used at any given point of a conver-
sation. Figure 3 gives an example of a series of messages
sent and received by an agent name a during some time pe-
riod. Between times T1 and T9 messages from three di�erent
conversations are handled. The conversation module should
handle something like that appropriately, keeping track of
all three ongoing threads. Here is the scheme we suggest for
doing that:

1. When a message (either to be imported to the applica-
tion or to be exported to some other agent) reaches the
conversation module, the module attempts to match it
against one of the ongoing conversations.

2. If the message is not an acceptable continuation of
some current thread, an attempt is made to start a
new thread with it20.

3. If no new thread can start with the current message, a
message with the error performative will be sent to the
sender (if the message is to be imported) or a signal
is delivered to the application (if the message is to be
exported).

We obviously have to de�ne the acceptable threads of mes-
sage exchanges and provide the module with the means to
test them. We view the problem as one of parsing where the

20Not all performatives can be starting points for new threads. In
the example of Figure 3 we consider the performatives ask-if, ask-all,
stream-all to be acceptable starting points. We believe that eventu-
ally only advertise performatives (that are used to make known to
other agents the capabilities of an agent) should be starting points.

grammar de�nes the conversation policies and messages are
the terminals (so any series of messages in the same thread,
is a \sentence" to be parsed). It di�ers from the usual pars-
ing paradigm, though, in that the \sentence" might well be
un�nished, meaning that the thread might not be complete
(see Figure 3 as of time T4 or T6). Figure 1 shows part of
an Augmented Transition Network (ATN) speci�cation that
can be used to perform this task for the subset of KQML
performatives of Table 1, The ATN de�nes the conversation
policies for this subset. For illustrative reasons the states
where a message is to be imported are shaded. Not pre-
sented here are the tests and actions of the ATN that han-
dle the necessary constraints among the various �elds of the
messages in order to de�ne a thread21 (conversation). The
terminals are not known in advance. As mentioned before,
the terminals are KQML messages with values for all their
�elds. Every time that a new message is to be handled by
the module, the message becomes a potential new terminal.
Referring to the described, top-level procedure, this new ter-
minal is appended to the �rst \sentence" (thread) and an
attempt is made to successfully parse the new sentence. If
this fails, the second \sentence" is tried and so one.

An implementation of the conversation policy for a con-
siderably extended set of KQML performatives is in progress.
We believe that by providing a conversation module that can
cooperate with the router the agent will be able to better
handle asynchronous behavior, help the agent keep track of
its business and provide the means to the application pro-
grammer to build more complex schemes of inter-agent com-
munication (protocols like the Contract Net, see [28, 11]).

7 Software agents and KQML

We argue that our semantic approach does not constrain the
kinds of software agents that can use KQML. Although the
propositional attitudes represented by the predicates know,
want, intend make reference to cognitive states for the
agents, the cognitive states are necessary for understanding
the performatives but not for using them. If the applica-
tion designer wants to build a belief model to implement
those mental states on top of the application, so that the
application can better support a problem solving strategy
or protocol, so be it. KQML does not require the existence
of such a protocol or a cognitive model. Operators like want
and know are materialized by virtue of use of a performa-
tive and are implied by the use of the language, rather, than
the other way round, i.e., cognitive states implying a certain
use of the language.

The really interesting question is how to interpret the bel
operator in a given computer program. It depends on what
the programmer ascribes to the program. For a PROLOG
application (or a logic based system in general), bel might
stand for whatever can be proved true in the system. Similar
arguments can be made for other applications that adhere
to the physical symbol{system hypothesis (frames, scripts,
rule{based systems, semantic nets). How about a neural
net? One can still suggest an interpretation that associates
input and output. The same argument can be made for
devices (such as thermostats), or databases. A functional
approach to provide materialization for bel and common
sense about how it should be interpreted for a given system,
will do. If not, the :ontology slot can solve the problem.
By choosing an interpretation from a library of such, the

21The �elds for the KQML subset presented here, are: :sender,
:receiver , :reply-with and :in-reply-to.

application can make known to its conversational partner
what bel means for it.

It is our view that a belief model or a cognitive model is
not necessary for a software agent to talk KQML. It can be
useful to have one, either elaborate or primitive, but nothing
more that a functional interpretation of the bel operator is
necessary, for the semantics to make sense. All that is nec-
essary is a program and handler functions. In between these
two, many things can be included. A belief space, a cognitive
model, a goal space, a problem solving strategy, or various
combinations of the above. But none of that is mandatory
for KQML to be used. In KQML, like in human communica-
tion, the personal agendas and beliefs of the agents suggest
the choice of words, but the words themselves have an ac-
cepted meaning.

8 Conclusion

We have presented an approach for the de�nition of the se-
mantics of KQML. Although it is eventually the programmer
that materializes the semantics through the handler func-
tions that he writes, we have provided a framework that the
programmer has to comply with. This framework is more
detailed and formal than the existent so far ([2]), and will
be supported by a software module (the conversation mod-
ule) that will guide and restrict the possible uses of the lan-
guages primitives (performatives). The framework is based
on speech act theory and primarily Searle's ideas.

We envision KQML as a general purpose communication
language for software agents of all kinds. We believe that
we o�er an approach towards the semantics of the language
that makes no commitments to application languages, agent
models, programming paradigms, problem solving strategies
and protocols. This approach stems from our belief that all
those issues are peripheral to the communication language
itself, which should be rich enough to accommodate a variety
of propositional attitudes and o�er enough leeway to imple-
ment all kinds of models, strategies and protocols, beneath
the language. Ideally, KQML will rise to its full potential
with the use of the results of the other research e�orts of the
KSE, because those e�orts will provide the means for inter-
agent understanding of the propositional context itself.

In the future, we intend to further apply our semantic
approach to the full set of the up to date KQML performa-
tives and re�ne the structure of a KQML speaking agent.
All material related to KQML and the KSE can be accessed
through the World Wide Web22.

References

[1] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. KQML Overview. Working paper,
1992.

[2] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Speci�cation of the KQML agent-
communication language. Working paper, June 1993.

[3] J.L. Austin. How to do things with words. Harvard
University Press, Cambridge, MA, 1962.

[4] Alan H. Bond and Les Gasser. An analysis of problems
and research in DAI. In Readings in Distributed Arti-
�cial Intelligence, pages 3{35. Morgan Kaufman Pub-
lishers, San Mateo, California, 1988.

22URL is http://www.cs.umbc.edu/kqml/

[5] John A. Campbell and Mark P. D'Inverno. Knowl-
edge interchange protocols. In Y. Demazeau and J.-P.
Muller, editors, Decentralized A.I.: Proc. of the First
European Workshop on Modelling, pages 63{80. Else-
vier Science Publishers B.V. /North Holland, Amster-
dam, 1990.

[6] Philip R. Cohen and Hector J. Levesque. Intention
= Choice + Commitment. In Proceedings of the Na-
tional Conference on Arti�cial Intelligence, pages 410{
415, July 1987.

[7] Philip R. Cohen and Hector J. Levesque. Intention
is choice with commitment. Arti�cial Intelligence,
42:213{261, 1990.

[8] P.R. Cohen and H.J. Levesque. Persistence, intention,
and commitment. In P. R. Cohen, J. Morgan, and M. E.
Pollack, editors, Intentions in Communication, pages
33{69. MIT Press, Cambridge, MA, 1990.

[9] P.R. Cohen and C.R. Perrault. Elements of a plan{
based theory of speech acts (1979). In Alan H. Bond
and Les Gasser, editors, Readings in Distributed Ar-
ti�cial Intelligence, pages 169{186. Morgan Kaufman
Publishers, San Mateo, CA, 1988.

[10] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,
M. Genesereth, and W. Mark. PACT: An experiment
in integrating concurrent engineering systems. 1992.

[11] Randall Davis and Reid G. Smith. Negotiation as a
metaphor for distributed problem solving. Arti�cial In-
telligence, 20:63{109, 1983. (Also published in Readings
in Distributed Arti�cial Intelligence, Alan H. Bond and
Les Gasser, editors, pages 333{356, Morgan Kaufmann,
1988).

[12] E.H. Durfee, V.R. Lesser, and D.D. Corkill. Coopera-
tive distributed problem solving. In A. Barr, P.R. Co-
hen, and E.A. Feigenbaum, editors, The Handbook of
Arti�cial Intelligence, Vol. IV, pages 83{147. Addison{
Wesley Pub. Co., Reading, MA, 1989.

[13] Oren Etzioni and Daniel Weld. A softbot-based inter-
face to the internet. CACM, 37(7):72{76, 1994.

[14] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge ex-
change protocol. In Kazuhiro Fuchi and Toshio Yokoi,
editors, Knowledge Building and Knowledge Sharing.
Ohmsha and IOS Press, 1994.

[15] L. Gasser. An overview of DAI. In Nicholas M. Avouris
and Les Gasser, editors, Distributed Arti�cial Intelli-
gence: Theory and Praxis, pages 9{30. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1992.

[16] Michael R. Genesereth and Steven P. Ketchpel. Soft-
ware agents. CACM, 37(7):48{53, 1994.

[17] Mike Genesereth. Designworld. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
2,785{2,788. IEEE CS Press.

[18] Carl Hewitt. O�ces are open systems. Communications
of the ACM, 4(3):271{287, July 1986. (Also published
in Readings in Distributed Arti�cial Intelligence, Alan
H. Bond and Les Gasser, editors, pages 321{330, Mor-
gan Kaufmann, 1988).

[19] Carl Hewitt and Je� Inman. DAI betwixt and be-
tween: From \intelligent agents" to open systems sci-
ence. IEEE Transactions on Systems, Man and Cyber-
netics, 21(6), December 1991. (Special Issue on Dis-
tributed AI).

[20] J. Hintikka. Knowledge and Belief. Cornell University
Press, Ithaca, New York, 1962.

[21] Kurt Konolige. A Deduction Model of Belief. Pitman,
London, 1986.

[22] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology for
knowledge sharing. AI Magazine, 12(3):36 { 56, Fall
1991.

[23] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
Knowledge Sharing E�ort: Progress report. In
B. Nebel, C. Rich, and W. Swartout, editors, Principles
of Knowledge Representation and Reasoning: Proc. of
the Third International Conference (KR'92), San Ma-
teo, CA, November 1992. Morgan Kaufmann.

[24] J. Searle and D. Vanderveken. Foundations of illocu-
tionary logic. Cambridge University Press, Cambridge,
UK, 1985.

[25] John R. Searle. Speech Acts. Cambridge University
Press, Cambridge, UK, 1969.

[26] M.P. Singh. Towards a formal theory of communication
for multiagent systems. In Proceedings of the IJCAI'91,
1991.

[27] M.P. Singh. A semantics for speech acts. (to appear
in Annals of Mathematics and Arti�cial Intelligence),
1992.

[28] Reid G. Smith. The contract net protocol: High
level communication and control in a distributed prob-
lem solver. IEEE Transactions on Computers, C-
29(12):1104{1113, December 1980. (Also published in
Readings in Distributed Arti�cial Intelligence, Alan H.
Bond and Les Gasser, editors, pages 357{366, Morgan
Kaufmann, 1988).

