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Abstract

We describe an ongoing project to develop technology that will support collaborative
construction and effective use of distributed large-scale repositories of highly expressive
reusable ontologies.  We are focusing on developing a distributed server architecture for
ontology construction and use, representation formalisms that remove key barriers to
expressing essential knowledge in and about ontologies, ontology construction tools, and
tools for obtaining domain models for use in applications from large-scale ontology
repositories.  We are building on the results of the DARPA Knowledge Sharing Effort,
specifically by using the Knowledge Interchange Format (KIF) as a core representation
language and the Ontolingua system as a core ontology development environment.

In order to enable distributed ontology repositories and services, we are developing a
distributed server architecture for ontology construction and use based on ontology
servers which provide access via a network API to the contents of ontologies and to
information derivable from the contents by a general purpose reasoner.  Ontology servers
will be analogous to data base servers and will provide services including configuration
management, support for distributed ontologies with components resident on remote
servers, and automatic caching of derived results.

We are developing new representation formalisms, integrating existing formalisms, and
incorporating the results into the tools and servers developed in the project.  The
representation language resulting from this work will enable ontologies to contain richly
textured descriptions that are structured into multiple views and abstractions, and are
expressed in a generic representation formalism optimized for reuse.  In addition, a
computer interpretable ontology description language will enable annotation of
ontologies with assumptions made, approximations made, topics covered, example uses,
competency, relationships to other ontologies, etc.

We are addressing key difficulties in building large scale ontologies by developing
ontology construction tools for specifying the overall structure of an ontology during the
early stages of development, supporting teams of collaborating developers, testing and
debugging ontologies,  and merging ontologies.

We are also developing retrieval, extraction, composition, and translation tools that will
enable users to effectively obtain domain models from large-scale ontology repositories
that satisfy a set of application-specific requirements  regarding content, level of
abstraction, view, underlying assumptions,  representation language, usability by problem
solving methods, etc.
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Overview
We are developing technology that will enable construction and effective usage of
distributed large-scale repositories of highly expressive reusable ontologies.  We consider
ontologies to be domain theories that specify a domain-specific vocabulary of entities,
classes, properties, predicates, and functions, and a set of relationships that necessarily
hold among those vocabulary items (Fikes 1996).  Ontologies provide a vocabulary for
representing knowledge about a domain and for describing specific situations in a
domain.  They can be used as building block components of knowledge bases, object
schema for object-oriented systems, conceptual schema for data bases, structured
glossaries for human collaborations, vocabularies for communication between agents,
class definitions for conventional software system, etc.

Ontology construction is a complex collaborative process that crosses individual,
organizational, and geographic boundaries.  It involves several types of groups with
differing expertise, goals, and interactions.  An ontology server must be carefully
structured to support this complexity.  Consider, for example, the task of building schema
to support the command and control (C2) process.  A common C2 schema would provide
a substrate for numerous applications in planning, logistics, intelligence, etc..  With the
proper underlying technology, it could support advanced knowledge-based applications
as well as conventional data base and software systems.  To construct this schema, small
groups of experts in each of the key sub-areas collaborate to specify ontologies
describing the essential concepts, their properties, and interrelationships.  The products of
these groups of authors must be merged and checked for consistency by a supervisory
board of editors.  The editors must then invite comments from a large group of reviewers
and critics that include expert peers, end users, and application developers.  As portions
of the ontologies stabilize and the editors release them from the reviewing process, larger
groups of application developers must become familiar with them and incorporate them
into existing and new applications.  Furthermore, the developers need support to convert
the ontologies into a form that they can readily work with in a specific knowledge
representation language, database schema language, interface language, or programming
language, and they need support for extracting domain models from the ontologies that
can be used by problem solving modules.

We are developing technology that will make this scenario a reality by addressing key
barriers to representing essential knowledge in and about ontologies, constructing
ontologies, accessing the content of ontologies, and obtaining domain models from large-
scale ontology repositories.  We are building on the results of the Defense Advanced
Research Projects Agency (DARPA) Knowledge Sharing Effort (Patil et al. 1992),
specifically by using the Knowledge Interchange Format (KIF) (Genesereth and Fikes
1991; Genesereth and Fikes 1992) as a core representation language and the Ontolingua
system (Farquhar, Fikes, and Rice 1996; Gruber 1993) as a core ontology development
environment.  KIF is a highly expressive formally defined language specifically designed
for representing knowledge in a reusable and translatable form.  Ontolingua is a system in
wide-spread use that adds object-oriented constructs to KIF, includes a library of reusable
ontologies, supports collaborative ontology construction by assembling and extending
building block ontologies from the library, provides an HTML-based user interface (Rice
et al. 1996) accessible via a World Wide Web navigator (e.g., Netscape), and supports a
network GFP API (Karp, Myers, and Gruber 1995) for object-oriented access and editing
of ontologies.

Specifically, we are:
• Developing a distributed server architecture for ontology construction and use;
• Developing new representation formalisms, integrating existing formalisms, and

incorporating the results into the tools and servers developed in the project;
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• Developing tools that address key difficulties in building large scale ontologies;
and

• Developing retrieval, extraction, composition, and translation tools for obtaining
domain models from large-scale ontology repositories that satisfy a set of
application-specific requirements.

   Distributed Server Architecture  – We are developing a distributed server architecture
for ontology construction and use based on ontology servers which provide access to the
contents of ontologies via a network API and to information derived from the contents by
a general purpose reasoner.  Ontology servers will be analogous to data base servers and
will enable distributed ontology repositories and distributed servers for editing, browsing,
etc. which access the repositories.  Ontology servers will provide a suite of services,
including configuration management for ontologies, support for ontologies that have
components resident on remote servers, and support for an Ontology-URL that enables
ontologies to be linked into World Wide Web pages so that they are accessible for
browsing like any other Web "document".

A particularly difficult task for an ontology server is supporting efficient query answering
from ontologies represented in a highly expressive language.  To provide that support, we
are developing an idiom-based retrieval facility that returns instances of a sentence
containing schema variables from a given ontology.  The retrieval facility will employ a
general purpose reasoner that can be run as a background process to infer and cache
sentences that match idioms used by the API and by translators.  These derived facts will
be removed by a truth maintenance facility when the statements on which they are based
are removed.

   Representing Essential Knowledge In And About Ontologies  – There are significant
gaps in the expressive power of current knowledge representation languages.  These gaps
prevent the inclusion in ontologies of knowledge about domains that is essential for many
high-priority applications and knowledge about ontologies themselves that is essential for
effective ontology use and reuse.  We will close some of the more important of those
gaps by developing new representation formalisms, integrating existing formalisms, and
incorporating the results into the tools and servers developed in the project.  The results
will enable ontologies to contain richly textured descriptions that are structured into
multiple views and abstractions, and are expressed in a generic representation formalism
optimized for reuse.  In addition, a computer interpretable ontology description language
will enable annotation of ontologies with assumptions made, approximations made,
topics covered, example uses, competency, relationships to other ontologies, etc.

We are developing a representation for ontology competency based on evaluable
functions and relations analogous to methods in object-oriented programming.  We are
developing tools for composing and associating with an ontology methods that are
procedural implementations of theorems provable in the ontology.  The methods would
then be directly callable by applications that use the ontology.

   Ontology Construction   – We are addressing key difficulties in building large scale
ontologies by developing tools for specifying the overall structure of an ontology during
the early stages of development, supporting teams of collaborating developers, testing
and debugging ontologies, and merging ontologies.

We are developing tools for testing ontologies that enable a developer to use an ontology
to describe familiar situations and to query those situations to determine if the situations
as described have expected properties.  The query answering facility will use the
ontology server's general purpose reasoner to derive answers.

We are also developing tools for merging ontologies that describe a common sub-
domain using differing vocabularies, assumptions, approximations, views, abstractions,
etc.  The tools will:
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• Use the ontology server's reasoner to derive and add to the merged ontology
equivalence, subsumption, and disjointness relationships among the classes,
predicates, and functions of the ontologies being merged;

• Provide facilities for renaming classes, predicates, and functions in the merged
ontology; and

• Provide facilities for combining classes, predicates, and functions that have
differing definitions but are intended to be equivalent.

    Obtaining Domain Models From Large-Scale Ontology Repositories    – Sophisticated
retrieval, extraction, composition, and translation tools will be needed in order to
effectively obtain domain models from large-scale ontology repositories that satisfy a set
of application-specific requirements regarding content, level of abstraction, view,
underlying assumptions, representation language, usability by problem solving methods,
etc.

Given that a set of classes, objects, relations, functions, views, and/or topics have been
identified for retrieval, relevance-based extraction and composition techniques are
needed for producing an ontology which contains all the sections of repository ontologies
that are relevant to the identified elements.  We are developing such techniques by
extending our research on irrelevance reasoning in knowledge based systems and
compositional modeling in engineering domains.

For ontologies from a repository to be incorporated into an application system, the
knowledge must be translatable in some practical way into the receiving system's
representation language.  Currently, knowledge base translators are difficult to build,
maintain, and extend because they must be hand coded by experts and translation rules
are typically embedded procedurally in the program.  We are addressing these problems
by developing vocabulary translation tools that enable a knowledge base builder to
specify and apply declarative translation rules, a suite of translators for the extended
representation language we will develop, and a declarative translation rule language that
enables customization of the translators for particular uses.

Representing Essential Knowledge In and About
Ontologies
There are many gaps in the expressive power of current knowledge representation
languages that prevent or make impractically difficult the inclusion in ontologies of
knowledge about domains that is essential for many high priority applications and
knowledge about ontologies themselves that is essential for their effective use and reuse.
We are closing some of the more important of those gaps by developing new
representation formalisms, integrating existing representation formalisms, and
incorporating the results into the Ontolingua representation language and into all of the
tools and servers developed in the project.

Multiple Models
Entities in a given domain can be usefully described from multiple perspectives (views),
at multiple levels of abstraction, and under alternative sets of assumptions.   We are
adding a "multiple modeling capability" to the Ontolingua representation language to
support:
• Views, where each view corresponds to a class with its own set of descriptive

properties and attributes.  Each view class could be linked to classes that can be
used as other views of a common object and each instance of a view class could
be linked to the other instance descriptions of the same object.

• Abstractions, where each abstraction corresponds to a class with its own set of
descriptive properties and attributes.  Classes could have class slots (e.g.,
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"Abstracts" and "Abstraction-Of") whose values define an abstraction  hierarchy.
We would also develop a formalism for describing the relationships between
levels of abstractions to support reasoning across abstraction levels and
propagation of changes through abstraction levels.

• Sets of incompatible alternative descriptions (e.g., with different simplifying
assumptions) to assure that at most one alternative from each group is included in
an ontology.

Contexts
The notion of context is central for representing many aspects of knowledge.  Contexts in
knowledge representation languages provide a means of referring to a group of related
assertions (closed under entailment) about which something can be said.  For example,
contexts can be used to represent the beliefs of an individual (e.g., a ship's captain) or
group (i.e., a ship's crew), the information accessible to a sensor or to an agent,
descriptions of situations, alternative descriptions of domain objects, or the ontology
being used by an agent for a specific activity.  Formal theories of context are sufficiently
well developed so that constructs for representing contexts are a suitable candidate for
inclusion in the Ontolingua representation language.

We are extending the Ontolingua representation language to include contexts as
formalized by McCarthy and Buvac (Buvac, Buvac, and Mason 1995; McCarthy and
Buvac 1994).  The extension will enable ontologies to include statements made with
respect to a context, statements relating what is true in one context to what is true in other
contexts, and statements that describe and relate contexts.

Ontology Competency Expressed as Procedural Methods
We are developing techniques and tools for characterizing the computations that are
supported by an ontology.  In particular, we will develop facilities that support a notion
of ontology competency based on evaluable functions and relations analogous to methods
in object-oriented programming.  The facility would provide a capability of associating
with an ontology a set of methods that are procedural implementations of theorems
provable in the ontology.  Such methods would be directly callable by applications that
use the ontology.

If a constructive proof can be given for a sentence of the form Φ(x1,…,xn) =>

R(x1,…,xn), where R is a relation and Φ(x1,…,xn) is a sentence containing only
computable functions and relations, then R becomes a computable relation.  We will
develop a compiler that produces a method that computes R(x1,…,xn) from such a
constructive proof.  The resulting method would serve as a reference implementation of
the method in some widely available implementation language (e.g., JAVA or C).  Such
methods associated with an ontology could be considered to be extensions of the API
used to access the ontology.

Ontology Annotation
As with software in general, the reusability of ontologies depends critically on the
availability of information describing each ontology.  Useful information to an agent
considering an ontology includes the assumptions made, approximations made, topics
covered, example descriptions using the ontology, competency descriptions, relationships
to other ontologies, etc.  The availability of such statements is critical for many aspects of
reuse.  For example, when an ontology is being constructed using existing component
ontologies, they can be used to ensure that the assumptions associated with the set of
component ontologies do not conflict.
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We are developing a computer interpretable annotation language for use in structuring
ontology repositories that will include relations among ontologies such as "abstracts",
"approximates", and "alternative".  The annotation language may need to include a
domain specific vocabulary so that provision will need to be made for an ontology to
have associated with it an annotation ontology for that domain.  Annotations may also
provide examples of the competency of an ontology by describing example situations
using the ontology and sets of queries about those situations whose answers are derivable
from the ontology.

Ontology Construction
Key difficulties in building large scale ontologies include developing the overall structure
of the ontology during the early stages of development, supporting teams of collaborating
developers,  testing and debugging, integrating alternative versions, and acquiring the
numeric parameters of probabilistic models.  We are developing a suite of ontology
construction tools that address these difficulties as described in the following sections.

Browsers and Editors
We are extending the current Ontolingua system so that it supports browsing and editing
large ontologies.  We will employ client-side applets (e.g., in JAVA or VRML) to
provide tightly coupled, fast response interactions.  2-D and 3-D visualization and
structure editing metaphors will help users to get an overview of ontologies and
manipulate them in novel ways.

We will also provide support for a broader range of the ontology development cycle,
including the early phases which often require compound edits such as taxonomy
restructuring as well as adding descriptions of new classes.  An example of an editor for
early stages of ontology development is one that mimics Microsoft Word's outline mode
and is used to specify basic frame language constructs like class-subclass relationships,
slots in classes, and value type restrictions.  The editor could include a spelling corrector
that uses the ontology's vocabulary as its dictionary.  We would consider adapting
existing outline editors (e.g., in the form of JAVA applets) to produce such an editing
tool.  A simple frame structure input language for Ontolingua would enable developers to
use their own text editors to produce a document loadable by Ontolingua describing
class-subclass relationships, slots in classes, and value type restrictions.

Collaborative Construction
As we have outlined, ontology construction is an inherently collaborative process.  We
are extending Ontolingua’s current facilities for collaborative construction to support
large numbers of interacting groups and to provide more complete support for the editing
and reviewing process.  For example, reviewers will have commands available to
annotate and suggest changes to an existing ontology, without being able to actually
modify it.  Using COTS tools, comments and suggestions can be integrated with threaded
e-mail discussions so that reviewers can easily determine whether or not their suggestions
have been followed up on by developers.

Ontology Testing
As with any software development, testing and debugging are major issues in ontology
development.  We are developing tools for testing ontologies, including:
• Tools that enable a developer to use an ontology to describe familiar situations

and to query those situations to determine if the situations as described have
expected properties.  The ontology server's general purpose reasoner will be used
to derive answers to queries, and the algorithm for extracting Bayesian network
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models for specific situations from a knowledge base will be used for testing the
uncertainty information in an ontology.

• A facility for specifying a test suite for an ontology, where each test consists of a
situation specification, a set of queries about the situation, and the expected
answers to the queries.  Such test suites can be used as requirements specifications
for ontologies, for regression testing of ontologies, and as examples of the
computations supported by ontologies.

Ontology Integration
We are developing tools for integrating ontologies that describe a common sub-domain
using differing vocabularies, assumptions, approximations, views, abstractions, etc.  The
result of the integration may be:
• A single ontology that is a merger of the component ontologies, or
• A set of rules for translating sentences in one ontology into sentences in another

ontology.

Integrating the vocabularies of two ontologies involves determining and specifying
relationships between the intended meanings of the non-logical symbols (i.e., symbols
that name the classes, predicates, and functions) of the first ontology and the non-logical
symbols of the second ontology.  The ontology server's reasoner can assist with that task
by deriving equivalence, subsumption, and disjointness relationships among the classes,
predicates, and functions of the ontologies.  When the integration is to produce a merger
of the two ontologies, these derivations can be added to the resulting ontology.  Facilities
are then needed to enable the user to rename classes, predicates, and functions in the
resulting ontology, and to combine classes, predicates, and functions that have differing
definitions but are intended to be equivalent.  When the integration is to produce a set of
translation rules, then the derivations can be represented as rules, and facilities are needed
to enable the user to add rules that rename and combine symbols.

Accessing the Contents of Ontologies
Effective ontology construction and use are many faceted activities that require a wide
variety of tools and services.  Furthermore, organizations and individuals may have
strong ownership interests in the ontologies or components of ontologies that they
develop.  In order to support ontology tools and services and to respect ownership
interests, successful distribution of and access to ontologies requires a distributed server
architecture.

We are designing and building a prototype ontology server which provides access to the
contents of ontologies via a network API and to information derived from the contents by
a general purpose reasoner.  Ontology servers will be analogous to data base servers and
will support distributed repositories and distributed servers for editing, browsing, etc.
which access the repositories.

The ontology server will support distributed ontologies by enabling component (i.e.,
included) ontologies to be resident on remote servers.  This capability will be achieved by
implementing various forms of remote references within an ontology for classes,
relations, functions, and axiom schema loaded on remote servers.

The ontology server will also provide the capabilities described in the following sections.

Configuration Management
Configuration management facilities for ontologies and their components are critical for
supporting the development and usage life cycle of ontologies.  We are developing
configuration management facilities for ontology servers that are specific to ontologies
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and that augment standard software system configuration management facilities,
including the following:
• Version tracking of component ontologies so that a given version of an ontology

always contains the same components;
• Author notification when there is a more recent version of a component ontology

available;
• Commands for upgrading a component ontology to its later version;
• Facilities for specifying rules for translating descriptions in one version to

descriptions in another version;
• Facilities for performing regression testing on new versions;
• Facilities for succinctly describing the differences between versions of an

ontology; and
• Facilities to notify running applications and developers as releases are made.

Inference and Idiom-Based Retrieval
The ontology server must support queries against a rich representation language, answer
them efficiently, and balance resources across the server and clients.  To support efficient
query answering and ontology translation (see below), we will employ an idiom-based
retrieval facility that returns all instances of a given sentence containing schema variables
(i.e., an idiom) that are in a given ontology.

The idiom-based retrieval facility will employ a general purpose reasoner (i.e., theorem
prover) and classifier that can be run as a background process to infer sentences that
match certain schematic patterns.  These derived facts will be cached using a truth
maintenance facility so that they can be removed in case the statements on which they are
based are deleted.

We are developing a general purpose reasoner (i.e., theorem prover) for the Ontolingua
representation language to provide basic reasoning support for ontology services,
including:
• Classification;
• Deriving and caching instances of sentence schema to support idiom-based

ontology access;
• Ontology testing in which an ontology is used to describe a familiar situation and

the description is queried to determine if it has expected properties;
• Client-side execution.  In order to make effective use of the server’s resources,

some inference will need to be done on client machines.   A client-side inference
tool that uses the network API to access an ontology’s contents will be able to
perform analysis, consistency checking, and inference without placing undo strain
on the server’s performance.

We will include a truth maintenance system in the ontology server that will enable
derived sentences (i.e., theorems) to be cached in ontologies accompanied by the axioms
that support their derivation, and will automatically delete derived sentences when their
supporting axioms are deleted.  This facility will enable servers to augment ontologies
with derived sentences that support specific server capabilities, such as sentences that
match axiom schema recognizable by translators or API's and sentences that define
evaluable functions and relations.

Network API for Ontologies
Ontology servers will provide access to ontologies via a network API.  We will specify a
CORBA-based (Mowbray and Zahavi 1995) network API for ontology servers that
includes the full Ontolingua representation language.  We expect the Ontolingua API to
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be an extension of the Generic Frame Protocol (GFP) (Karp, Myers, and Gruber 1995) ,
and we will work with the GFP Working Group in the DARPA Knowledge Sharing
Effort to maximize the correspondence between these protocols and assure consistency in
the areas where they overlap.

The API will use the ontology server's idiom-based retrieval mechanism as its basic
mechanism for obtaining information from an ontology.  For example, to obtain the
subclasses of a given class C, the API will retrieve true instances of the sentence
"(Subclass-Of ?x C)".  The API will augment the server's idiom-based retrieval
mechanism by tasking the server's background derivation facility to derive and add to
each ontology true instances of the idioms that are used by the API's retrieval functions.
For example, the derivation facility could derive the sentence "(Subclass-Of Csub C)"
from the sentences:

(=> (Csub ?x) (C ?x))
(<=> (subclass-Of ?c1 ?c2) (=> (holds ?c1 ?x) (holds ?c2 ?x)))

The API's response to a retrieval request will then include the results derived during the
background processing.

World Wide Knowledge Web
We are developing technology to enable ontologies to be linked into World Wide Web
pages so that they are accessible for browsing via the Web like any other Web
"document".  Each ontology would be resident on a ontology server, but would be
accessible for browsing from any Web browser.  The basic enabler would be an
"Ontology-URL" that specifies an ontology, a ontology server on which the ontology
resides, and an ontology browser, so that clicking on the Ontology-URL would invoke
the browser presenting a view of the ontology.

Obtaining Domain Models From Large-Scale Ontology
Repositories
We anticipate that ontology repositories will contain richly textured descriptions that
include uncertainty, are structured into multiple views and abstractions, and are expressed
in a generic representation formalism optimized for reuse.  Sophisticated retrieval,
extraction, composition, and translation tools will be needed to effectively obtain domain
models from large-scale ontology repositories that satisfy application-specific
requirements regarding content, abstraction level, view, underlying assumptions,
representation language, usability by problem solving methods, etc.  We are developing a
suite of such tools as described in the following sections.

Topic-Based and Class-Based Retrieval
We are developing facilities for accessing ontology repositories by browsing and
querying a topic index to identify ontologies of interest in a repository (i.e., topic-based
retrieval).  In addition, we are developing facilities for accessing ontology repositories by
browsing and querying the class-subclass taxonomy of a reference ontology to identify
classes of interest in a repository (i.e., class-based retrieval).  The class-based retrieval
facility will automatically determine additional classes that are needed from a repository
to support the retrieved classes.

A consensus standard "upper level" reference taxonomy could serve as an index into an
ontology repository for class-based retrieval by asking ontology developers to specify for
each class in their ontologies which if any immediate superclasses that class has in the
reference ontology. (This is a generalization of the current notion of specifying "Thing"
as the superclass of top level classes in an ontology.)  The result would be that one could
browse the reference ontology looking for classes of interest in the repository.  The
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repository would look like one big ontology with all the repository classes reachable from
the reference ontology.  One could also search the reference repository to find a class of
interest and then browse from the retrieved class as before.

We are working as members of the ANSI committee on ontology standards to develop
and make generally available a consensus standard reference ontology.  The goal of that
committee is to build a large, reusable, widely-held, representation-neutral ontology to
serve as a central terminology base and inter-model fulcrum.  We intend to focus our
work in that committee on extending the reference ontology to include a reference set of
slot names and augmenting the reference classes with slots, slot constraints, and
disjointness constraints so that each class has a distinct semantics from other classes in
the reference set.

In addition to the top down index provided by a reference ontology, a retrieval facility
could provide suggestions for alternatives to a given class based on abstraction and view
links associated with the class.

Relevance-Based Ontology Composition
Given that a set of classes, objects, relations, functions, views, and/or topics have been
identified for retrieval, techniques are needed for extracting and composing an ontology
that contains all the sections of repository ontologies that are relevant to the identified
elements and is logically consistent.  For example, such techniques would support
selecting the "relevant" portion of the reference ontology to include in an ontology that is
being developed.  We are developing a set of relevance-based extraction and composition
techniques as extensions to the research we have done on irrelevance reasoning in
knowledge based systems (Levy 1993) and compositional modeling in engineering
domains (Falkenhainer et al. 1994; Low and Iwasaki 1992).

Translation
For ontologies from an ontology repository to be incorporated into an application system,
the knowledge must either be represented in the receiving system's representation
language or be translatable in some practical way into that language (Baalen and Fikes
1993; Buvac and Fikes 1995; Gruber 1993).  We cannot expect a standard knowledge
representation language to emerge that would be used generally in application systems,
and we cannot expect all application systems to use the same domain-specific vocabulary
in their knowledge bases.  Thus, a critical enabler for widespread use of ontology
repositories is an ability to effectively translate knowledge from the language(s) in which
it is represented in ontology repositories into specialized representation languages.
Currently, knowledge base translators must be hand coded by experts, and translation
rules are typically embedded procedurally in the program.  Translators are therefore
difficult to build, maintain, and extend.  More effective tools are needed for specifying
and performing translation of repository ontologies both among knowledge
representation formalisms (e.g., between KIF and IDL) and among domain-specific
vocabularies.

We are developing vocabulary translation tools that:
• Enable a knowledge base builder to declaratively specify translation rules

between the vocabulary used in a source ontology and the vocabulary used in a
target ontology, and

• Apply declarative translation rules to translate a source ontology into an ontology
that uses the vocabulary of a target ontology.

We are developing a suite of Ontolingua translators for standard schema languages (e.g.,
IDL), data base languages (e.g., SQL), object-oriented programming languages (e.g.,
C++), and knowledge representation languages (e.g., LOOM).  These translators will:
• Support the additional expressive power being added to Ontolingua, and
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• Include a declarative translation rule language that enables knowledge base
builders to extend and customize the translators for particular uses.

Translating from Ontolingua into a given representation language is in general a difficult
problem, because in most cases the expressive power of the target language is less than
that of Ontolingua.  Hence, there will not be a translation in the target language of every
possible Ontolingua sentence.  Instead, some subset of Ontolingua will be translatable
into the target language.  For example, the only form of quantified statement
representable in an object schema language might be:

(forall <variable>1) (=> (member-Of <variable>1 <class>) <quantifier_free_sentence>)

All quantified Ontolingua statements that are not in the above form would not be
translatable into the object schema language.

In order to translate Ontolingua into a given target language, one needs to specify the
subset of Ontolingua sentences that are translatable into the language and the translation
of each such sentence.  Given such a specification, the task of a translator, then, is to
determine for each sentence in the ontology to be translated whether it is in the
translatable subset or is equivalent to a sentence in the translatable subset.  The test of
whether a given sentence is in the translatable subset can be performed by describing the
subset as a grammar and applying standard pattern matching techniques for "recognizing"
the grammar (Baalen and Fikes 1993; Buvac and Fikes 1995).  Thus, for example, we
might specify that the following form of quantified statement is representable in a simple
target frame language:

(forall <variable>1) (=> (member-Of <variable>1 <class>) {TRANS <sentence>})

where "{TRANS <sentence>}" matches against any sentence that is itself translatable.

The difficulty in the translation arises in determining whether a given sentence is
equivalent  to a translatable sentence.  As simple examples, consider the following
sentence forms that are equivalent to the example above:

(forall <variable>1) (=> (class-Of <class> <variable>1)) {TRANS <sentence>})
(forall <variable>1) (=> (<unary relation> <variable>1) {TRANS <sentence>})

In the first form, the "Member-Of" relation has been replaced by its inverse "Class-Of",
and in the second, the class is considered to be a unary relation rather than a set.  In
general, a translator can be considered to have available a set of axioms that can be used
to reformulate sentences that are not recognizable by the translation grammar by deriving
sentences that are recognizable and therefore translatable by the grammar.  For example,
sentences of the forms given above could be transformed into translatable sentences by
using the following axioms:

(<=> (member-Of ?x ?c) (class-Of ?c ?x))
(<=> (member-Of ?x ?c) (holds ?c ?x))

Translation servers can prepare for requests to translate a given ontology by tasking the
ontology server on which the ontology resides with deriving in the background and
adding to the ontology translatable reformulations of sentences in the ontology that would
otherwise not be translatable.

Comparison With Other Research
Current and recent work on the Ontolingua ontology development environment at the
Knowledge Systems Laboratory (KSL) is unique in its translation approach to knowledge
sharing, its implemented architecture for distributed collaborative ontology construction,
its large user community, and its substantial library of reusable ontologies.  Nonetheless,
there are a number of efforts and research projects that are relevant to the proposed work.
These fall into four categories:
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• Large knowledge base efforts such as CYCorp’s CYC project (Guha et al. 1990;
Lenat 1995), the Botany Knowledge Base (BKB) project at the University of
Texas (Clark and Porter 1996), and the SRI ECOCYC project (Karp et al. 1996);

• Taxonomic ontology efforts, including those aimed at supporting machine
translation such as Pangloss (Hovy and Nirenburg 1992; Knight and Luk 1994)
and WordNet (Miller 1995), and those aimed at providing uniform terminology in
the medical domain such as UMLS (Lindberg, Humphreys, and McCray 1993);

• Interoperable knowledge base tools and protocols such as those developed in the
DARPA Knowledge Sharing Effort (Patil et al. 1992), the Generic Frame
Protocol (GFP) (Karp, Myers, and Gruber 1995), and SRI’s Generic Knowledge
Base (GKB) editor; and

• Knowledge representation systems such as Classic (Borgida et al. 1989), Loom
(MacGregor 1991), and Theo (Mitchell et al. 1989).

Large Knowledge Base Efforts
There have unfortunately been few efforts to construct large knowledge bases with both
broad coverage and substantial depth in specific domains.

Perhaps the best known of these efforts is the CYC project (Guha et al. 1990; Lenat
1995).  CYC’s ambitious goal was to encode a substantial portion of human knowledge
over a ten year period.  During this time it has represented a large number of concepts
and relations among them.  Since its contents have been kept proprietary1, the quality and
coverage of the representations are largely unknown.  Also, the CYC knowledge base is
basically monolithic, making use in application systems a daunting proposition.
Although CYC has developed some sophisticated editing and browsing techniques, it has
not provided distributed access for editing or support for collaboration, relying on
frequent person-to-person meetings and tight managerial control to avoid conflicts.

The Botany Knowledge Base (BKB) project at the University of Texas aims at encoding
the knowledge present in a college level botany textbook (Clark and Porter 1996).  It has
made substantial progress in this direction and has been used to support applications in
tutoring, natural language generation, and qualitative simulation.  Work coming out of
the BKB project has taken important steps towards supporting multiple views (Ackers
and Porter 1994) and extracting relevant portions of a knowledge base for solving
specific problems (Rickel and Porter 1994).

The ECOCYC knowledge base project at SRI (Karp et al. 1996) aims at encoding a
substantial amount of knowledge about e coli bacteria, including there genetic structure
and metabolic pathways.  In order to be useful for domain experts, it provides
sophisticated display methods that present the knowledge in schematic drawings that
experts are familiar with.

Taxonomic Ontology Efforts
There have been an increasing number of efforts to build large taxonomic ontologies.
These taxonomic ontologies are being used in several different areas including natural
language processing and medical informatics.

Hovy at ISI has employed a substantial ontology for the purpose of machine translation
(Hovy and Nirenburg 1992; Knight and Luk 1994).  This application focus provides
important constraints on the work and yields crisp criteria for making ontological
decisions; i.e., does it make a difference for translation?  Hovy has integrated the

                                                
1  A small number of top-level nodes have been released for inspection by a broader community in recent months.
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ontological portion with the over 50,000 term WordNet (Miller 1995) lexicon providing a
very valuable resource.  The ontology, however, is of limited use for purposes where the
need for axiomatic information is critical such as planning or simulation because the
classes contain no descriptive information other than their location in the taxonomy.

There are several substantial efforts underway in the medical informatics community to
construct a unified ontology of medical terminology (Lindberg, Humphreys, and McCray
1993).  The need to share medical records makes a unified terminology critical.  These
ontologies are basically large structured glossaries augmented with an encoding scheme.
They form an important building block for future ontological work.  For instance, they
could be augmented with additional axiomatic information to support information
integration.  The existing projects might well benefit from the technology being proposed
in this project.

Interoperable Knowledge Base Efforts
In addition to the Ontolingua work at KSL, there have been several efforts aimed at
supporting interoperation between knowledge bases.

The DARPA Knowledge Sharing Effort (KSE) (Patil et al. 1992)is a collaboration of
several leading knowledge representation research groups who have been looking for
ways to increase our ability to share represented knowledge across systems.  One key
result of that effort has been the Knowledge Interchange Format (KIF) (Genesereth and
Fikes 1991; Genesereth and Fikes 1992), a highly expressive formally defined declarative
interchange language.  KIF is currently being standardized by ANSI.  KSL has been an
active participant in the knowledge sharing effort and co-developers of the KIF language.
The Ontolingua system uses an extended version of KIF as its internal representation
language and includes in its library the KIF ontologies for sets, numbers, tuples, etc.

KIF embodies one approach to sharing knowledge – a declarative interchange language.
Another approach is to provide an application program interface (API) that can be used to
transfer knowledge between programs.  KSL has worked with SRI to develop an API for
object-oriented knowledge bases called the Generic Frame Protocol (GFP) (Karp, Myers,
and Gruber 1995) and has subsequently extended this protocol to support network
interaction.  We have recently demonstrated networked interoperation of Ontolingua with
SRI’s knowledge base browsing and editing tools using the network GFP.  It is worth
noting that the expressiveness of GFP is very restricted when compared with full KIF.
By using the network extensions to GFP, GKB can be used to interact with remote
knowledge bases.

The generic knowledge base (GKB) editing and browsing tools developed at SRI nicely
complement the approach that we have taken to providing distributed access to
ontologies.  GKB requires a powerful client machine and provides a direct manipulation
graphical interface to browse and edit a knowledge base.  This interface is restricted to
the level of expressiveness that GFP provides., but is excellent for some classes of users
and applications.

Knowledge Representation Tool Efforts
There have been a large number of efforts to develop knowledge representation tools
including frame systems such as KEE, Clips, and Theo, description logic systems such
LOOM  (MacGregor 1991) and Classic (Borgida et al. 1989), and systems supporting full
first order logic such as PTTP (Stickel 1992) and Epikit (Genesereth 1990).  There has
also been some work (e.g., Parka (Stoffel, Taylor, and Hendler 1996)) on integrating the
expressiveness of a knowledge representation system with database technology to support
larger knowledge bases.  These systems are potential delivery vehicles for knowledge
bases constructed from common ontologies.  Existing knowledge bases developed for
these systems can provide the starting point for sharable reusable ontologies.
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We hope to exploit some of the underlying technologies that support large scale
knowledge bases.  These systems do not, however, address the issues of knowledge
sharing or collaborative construction, although recent work on Loom has begun to
address issues such as distributed access and translations into C++ and KIF.
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