
Benchmarking Database Representations of

RDF/S Stores

Yannis Theoharis1,2, Vassilis Christophides1,2, and Grigoris Karvounarakis3

1 Institute of Computer Science, FORTH, Vassilika Vouton,
P.O.Box 1385, GR 71110

2 Department of Computer Science, University of Crete, P.O.Box 2208, GR 71409,
Heraklion, Greece

{theohari, christop}@ics.forth.gr
3 Department of Computer and Information Science, University of Pennsylvania,

3330 Walnut St., Philadelphia, PA 19104, USA
gkarvoun@cis.upenn.edu

Abstract. In this paper we benchmark three popular database repre-
sentations of RDF/S schemata and data: (a) a schema-aware (i.e., one ta-
ble per RDF/S class or property) with explicit (ISA) or implicit (NOISA)
storage of subsumption relationships, (b) a schema-oblivious (i.e., a sin-
gle table with triples of the form 〈subject-predicate-object〉), using (ID)
or not (URI) identifiers to represent resources and (c) a hybrid of the
schema-aware and schema-oblivious representations (i.e., one table per
RDF/S meta-class by distinguishing also the range type of properties).
Furthermore, we benchmark two common approaches for evaluating tax-
onomic queries either on-the-fly (ISA, NOISA, Hybrid), or by precomput-
ing the transitive closure of subsumption relationships (MatView, URI,
ID). The main conclusion drawn from our experiments is that the evalua-
tion of taxonomic queries is most efficient over RDF/S stores utilizing the
Hybrid and MatView representations. Of the rest, schema-aware represen-
tations (ISA, NOISA) exhibit overall better performance than URI, which
is superior to that of ID, which exhibits the overall worst performance.

1 Introduction

Several RDF stores have been developed during the last five years for support-
ing real-scale Semantic Web applications. They usually rely on (main-memory)
virtual machine implementations or on (object-) relational database technology,
while employing a variety of storage schemes. The most popular database repre-
sentations for shredding RDF/S resource descriptions into relational tables are:
the schema-oblivious (also called generic or vertical), the schema-aware (also
called specific or binary) and a hybrid representation, combining features of the
previous two. In schema-oblivious, a single table is used for storing both RDF/S
schemata and resource descriptions under the form of triples (〈subject-predicate-
object〉). In schema-aware, each property (or class) defined in an RDF/S schema
is represented by a separate table. In hybrid one table per RDF/S meta-class is

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 685–701, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

686 Y. Theoharis, V. Christophides, and G. Karvounarakis

created, namely, for class and property instances with different range values (i.e.,
resource, string, integer, etc.). Several variations (e.g., with explicit or implicit
database representation of subsumption relationships, use of resource URIs vs
IDs, etc.) of these three core storage schemes have also been implemented in
existing RDF stores [2,15,24,4,16,19,22,13] (see [20] for an extensive survey). In
terms of inferring triples from schema information there exist two approaches:
either to precompute them (at compile-time) or to compute them on demand
(at run-time). The schema-oblivious (URI and ID), as well as, approaches using
materialized views (MatView) adopt the former approach, while schema-aware
(ISA and NOISA) and Hybrid adopt the latter. On demand computations can be
performed either in main memory (as in ISA) or in secondary memory (as in
NOISA and Hybrid). All these representations have pros and cons for different
Semantic Web application scenarios, and, thus, benchmarking their performance
is an important, but also a challenging task.

In this paper, we focus on the efficient evaluation of taxonomic RDF/S
queries, retrieving the proper or transitive instances of a particular class or
property. A key point affecting the performance of such queries is the represen-
tation of subsumption relationships and thus, the cost of traversing persistent
class (or property) hierarchies. For this reason, we have developed a synthetic
RDF/S generator, which takes as input the size of the subsumption hierarchies,
the number of classified resources, as well as their distribution under classes or
properties at various levels in the hierarchy and produces RDF/S schemas and
resource descriptions that match these specifications. Then, we have conducted
extensive experiments on the aforementioned RDF/S storage schemes on top
of the object-relational DBMS PostgreSQL. The main conclusion drawn from
these experiments is that the evaluation of taxonomic queries is most efficient
over RDF/S stores utilizing the Hybrid and MatView representations. This result
is especially interesting in the case of Hybrid which is also optimal in terms of
storage space requirements, in contrast with MatView which relies on Transitive
Closure (TC) precomputation over the database instances, that incurs a huge
storage overhead. Of the rest, schema-aware representations (ISA, NOISA) ex-
hibit as expected overall better performance than URI, which is superior to that
of ID, that exhibits the worst performance.

Experimental results reported in [1] and [2] also highlight the performance
gains of the schema-aware representation compared to the schema-oblivious one.
The main reason is that in the former, tuples contain only the property values
involved in a given query, while in the latter, tuples contain both property names
and values and, thus, imply an additional filtering phase on the property name
on a significantly larger table (i.e., extra overhead for schema filtering in all
queries) to locate the tuples actually involved in a query. However, a compara-
tive evaluation of taxonomic queries against different database representations of
subsumption relationships is not provided in any of these studies. Furthermore,
the statistical analysis presented in [14], [21] highlights the structural charac-
teristics of RDF schemata employed by popular or emerging SW applications.
However, these studies do not benchmark intensional (i.e., schema) or extensional

Benchmarking Database Representations of RDF/S Stores 687

(i.e., data) queries formulated against secondary memory-based RDF/S stores.
Moreover, in [5] an extensive benchmarking of intensional taxonomic queries
has been presented for various families of encodings, using real data from the
Open Directory Portal as a testbed. In this paper, we take one step further, by
evaluating both intensional and extensional taxonomic queries against various
synthetic RDF/S schemata and resources descriptions, corresponding to differ-
ent Semantic Web application needs. The goal of the experiments reported in [8]
was to evaluate the trade-off between the materialization of the TC, including
triples that are inferred by the schema, and its run-time computation using a DL
(Description Logic) reasoner. Their main conclusion was that the use of materi-
alized views in a database managed by a DL reasoner leads to increasing result
completeness, while the query response time is considerably low. Furthermore,
authors in [23] worked on the problem of incremental maintenance of material-
ized ontologies using logic reasoners by taking into account the RDF/S model
semantics [11]. They also noted the trade-off between inferencing time, storage
space and access time. Compared to these studies we provide precise formulas
to estimate the storage overhead of the materialized approach.

The remainder of this paper is organized as follows: Section 2 surveys the
main storage schemes adopted by existing RDF/S stores. Moreover, we illustrate
the translation of taxonomic queries against each of the three possible RDF/S
relational representations. Section 3 introduces our synthetic RDF/S generator
based on different distribution modes of resources under the classes of a schema.
Section 4 presents the results of our experimental evaluation using the qualita-
tive and quantitative parameters considered by our RDF/S generator. Finally,
Section 5 concludes our paper and discusses possible future directions in RDF/S
benchmarking.

2 RDF/S Storage Schemes

The three widely used storage schemes for shredding RDF/S resource descrip-
tions into relational tables are:

Schema-oblivious (also called generic or vertical): One ternary relation is used
to store any RDF/S schema or resource description graph. This table con-
tains triples of the form 〈subject-predicate-object〉 where attribute subject
represents a resource that is the source of a property, whose name is given
in attribute predicate, while attribute object represents a destination re-
source or a literal value for this property (see Figure 1). Different properties
of a specific resource are tied together using the same subject URI.

Schema-aware (also called specific or binary): Unlike the previous representa-
tion one table per RDF/S schema property or class is used (see Figure 2).

Hybrid: In this representation (see Figure 3), there is a ternary relation for ev-
ery different property range type and a binary relation for all class instances
(as in schema-aware). On the other hand, property (class) instances with
range values of the same type are stored in the same relation, distinguished
by the property (class) id (as in schema-oblivious).

688 Y. Theoharis, V. Christophides, and G. Karvounarakis

Triples
Subject Predicate Object

(resource URI) (property name) (property value)

Fig. 1. Schema-oblivious representation

Property1 Class1
Subject Object

(resource URI) (property value)
Subject

(resource URI)

... ...
Propertyn Classm

Subject Object
(resource URI) (property value)

Subject
(resource URI)

Fig. 2. Schema-aware representation

Properties with range Resource Class Instances
Subject Predicate Object

(resource URI) (property name) (property value)
Subject Object

(resource URI) (classid)

...
Properties with range integer

Subject Predicate Object
(resource URI) (property name) (property value)

Fig. 3. Hybrid representation

Schema evolution is straightforward in the schema-oblivious approach,
whereas the addition (deletion) of a new property requires the addition (dele-
tion) of a table in the schema-aware approach. On the other hand, the for-
mer approach disregards type information, since all property values are usually
stored as VARCHARs (i.e., strings) in the object attribute, whereas the latter en-
tails a significant overhead when managing a potentially large number of tables
(for voluminous RDF/S schemata). In Hybrid, schema evolution can be easily
supported (as in schema-oblivious), while preserving type information (as in
schema-aware).

The main variations of the schema-aware scheme concern the representation
of subsumption relationships of classes and properties, defined in one or more
RDF/S schemata. The first, called ISA, exploits the object-relational features of
SQL99 [18] for representing subsumption relationships using sub-table definitions
(see subsection 2.1). The second, called NOISA, ignores this feature and stores
RDF/S data using a standard relational representation as depicted in Figure 2.
Furthermore, two variations of the schema-oblivious scheme have been proposed,
which differ in the way they store resources’ URIs. The former, called URI, stores
the URIs in the table holding the triples (usually repeating the same URI, e.g.,
in multiple triples that refer to properties of the same resource), while the latter,
called ID, relies on integer identifiers to represent resources and properties in the
triple table and stores them only once in a separate table (called “instance”).
It should be stressed that the redundancy in the URI representation incurs a
significant storage overhead. On the other hand, the ID representation suffers

Benchmarking Database Representations of RDF/S Stores 689

Table 1. RDF/S storage schemes and systems

RDF/S Stores Schema-aware Hybrid Schema-oblivious

ISA NOISA MatView Hybrid URI ID

RDFSuite[2] X X X
Jena[15,24] X[24] X[15]
Sesame[4] X X
DLDB[16] X
RStar[13] X
KAON[22] X
PARKA[19] X

3Store[9] X

from the need of an additional join operation at the end of every query, in order
to retrieve the actual resource URIs.

Except from the triples which are explicitly defined in an RDF graph, many
other can be inferred by the semantics of the schema (see RDF/S model seman-
tics [11]). Two main approaches have been proposed to address this issue: the a
priori (at compile-time) materialization in the persistent store or the a posteriori
(at run-time) computation of the inferred triples. The former approach avoids
to recomputing TCs for every query, but incurs a storage overhead and makes
data updates harder, while the latter has less storage requirements, although its
scalability is limited by the main memory space that is required for the run-time
TC computations.

Existing RDF/S stores employing either URI or ID, the two schema-oblivious
variations, usually adopt the former (materialized) approach,1 while [16] pro-
poses to store the precomputed triples as materialized views: for each class or
property, a table holds its proper instances while a materialized view holds both
proper and transitive instances. In order to create this view, the table with the
proper instances is “unioned” with the views of its direct subclasses. Hence-
forth, we call this storage scheme MatView. On the other hand, RDF/S stores
employing one of the two variations of the schema-aware, ISA and NOISA, as
well as the Hybrid usually adopt the former (virtual) approach. It is worth notic-
ing that both Hybrid and NOISA employ an internal encoding of subsumption
relationships using interval-based labels of persistent classes and properties [5].
This encoding ensures an efficient evaluation of taxonomic queries in secondary
storage, by transforming costly TC computations into appropriate range queries
and reduces main memory requirements of the TC computation.

Table 1 summarizes the storage schemes implemented by existing RDF/S
stores. Other approaches exist, but they are beyond the scope of our paper. For
example, [6] focuses on how to derive an efficient schema-aware representation
without any a priori knowledge of the employed RDF/S schemata. Although
quite interesting, this work leads to more complex implementations of declarative
query language interpreters running on the top of application-specific RDF/S

1 Although SQL99 [18] defines a syntax for expressing transitive joins the existing
implementations are not efficient [17].

690 Y. Theoharis, V. Christophides, and G. Karvounarakis

stores. Furthermore, in [7], the authors employ the schema-oblivious approach
for building persistent Semantic Web applications on top of existing RDF/S
stores. Finally, native stores like Redland [3] or YARS [10] employ lower level
database techniques to manage RDF/S data such as Hash Tables and B+-trees,
but do not provide full-fledged database functionality.

2.1 Translation of Taxonomic RDF/S Queries

In this subsection, we present the translation of the core RDF/S taxonomic
queries into SQL over the relational schemas considered by the schema-aware
(ISA and NOISA), the Hybrid and the schema-oblivious (URI and ID) represen-
tations illustrated in Figures 1, 2 and 3.

Consider, for instance, the (binary) tree-shaped class hierarchy of Figure 4.
The label of each class is composed of two integers: the end number denotes the
unique classid obtained when traversing the hierarchy in post-order, while the
start is the end number of the leftmost descendant of the class. Then, to find all

 Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

[1, 1]

[1, 3]

[1, 7]

[4, 4] [5, 5]

[4, 6]

[2, 2]

Fig. 4. Example of a labeled RDF/S schema

subclasses of the Root we sim-
ply need to issue a query
with the filtering condition
1 ≤ start, end ≤ 7 (i.e., re-
turning the classes whose la-
bel is included in the inter-
val of the Root). The labels of
classes and properties, as well
as their subsumption relation-
ships are stored into two auxil-
iary tables called SubClass and
SubProperty. In this context,
each extensional taxonomic query issued against the NOISA and Hybrid represen-
tations (i.e., find all transitive instances of the Root) also implies an intensional
query involving a range condition on class or property labels.

In the following we show the SQL translation of taxonomic queries at Root
level (given its label) over our testbed representations:

– Schema-aware NOISA: the SQL translation of our example taxonomic
query in this representation is performed in two phases. First we need to
find all the subclasses of the Root class:

select S.end
from SubClass S
where S.start >= RootStart and S.end <= RootEnd

Next, we need to scan sequentially all the tables holding the instances of the
previously retrieved subclasses, in the order determined by the query plan:

(select URI from Child_11) UNION ALL (select URI from Child_12) UNION ALL
(select URI from Child_1) UNION ALL (select URI from Child_21) UNION ALL
(select URI from Child_22) UNION ALL (select URI from Child_2) UNION ALL
(select URI from Root)

Benchmarking Database Representations of RDF/S Stores 691

Note that, internally, the unique classid (i.e., the post order number) is
used as table name (rather than a string as depicted in Figure 2) and no
elimination of duplicates is required (UNION ALL) to assemble resource URIs.

– Schema-aware ISA: the SQL translation of our example taxonomic query
in this representation is left entirely to the internal implementation of the
PostgreSQL table inheritance feature:

select URI from Root;

where all the tables of the involved subclasses are sequentially scanned.
As a matter of fact, PostgreSQL relies on a special catalog table, called
pg inherits, to store the subsumption relationships of tables defined in an
object-relational schema. This table holds a unique id for each sub-table,
along with the id of its parent table and the number of table occurrences
in the hierarchy (in case of multiple inheritance). Then, a C program uses
this information to compute the sub-tables involved in an SQL query: first,
the tableID is inserted into an empty list; then, the direct children of this
table are found, by performing a selection on pg inherits, and their tableIDs
are appended to the list. This process is repeated recursively for each new
tableID that is appended to the list, until a fixpoint is reached. After that,
PostgreSQL scans all tables in the order in which they appear in the list.

– Hybrid: the SQL translation of our example taxonomic query in this repre-
sentation is simpler, since it requires only one phase for both schema filtering
and instance scanning:

select I.URI
from ClassInstances I
where I.classid >= RootStart and I.classid <= RootEnd;

– Schema-oblivious URI: the SQL translation of our example taxonomic
query in this representation is:

select T.SubjectURI
from Triples T
where T.predicate = ’typeof’ and T.object = ’Root’;

– Schema-oblivious ID: the SQL translation of our example taxonomic query
includes a join operation between the table holding triples and the one hold-
ing resources’ URIs. Below, typeofID stands for the identifier of the property
typeOf:

select I.URI
from Triples T, Instance I
where T.predicate = typeofID and T.ObjectID = RootID and I.ID = T.SubjectID;

– MatView: the SQL translation of our example taxonomic query involves a
simple scan on the materialized view which stores the proper and transitive
instances of the Root class.

select MV.URI
from Mat_View_Root MV;

692 Y. Theoharis, V. Christophides, and G. Karvounarakis

3 Synthetic RDF Data Generation

As we will explain in the sequel, for relatively small schema sizes, the hierarchy
structure (i.e., shape and arity) does not affect the performance of (intensional
or extensional) taxonomic queries; as a matter of fact, their performance only
depends on the number of nodes in the hierarchy. For this reason, our RDF/S
generator produces only binary-tree-shaped subsumption hierarchies rather than
more exotic structures of class or property lattices.

More precisely, the three critical parameters of our generator are (a) the depth
of the tree; (b) the total number of classified resources; and (c) their distribution
mode under nodes at various hierarchy levels. It should be stressed that the tree
depth determines the size of an RDFS schema and therefore the number of tables
we have to create in the two schema-aware representations (i.e., for complete
binary trees 2depth+1 − 1 tables). In our benchmark we consider three categories
of schemata, namely, small (up to 4 levels, i.e., 31 nodes), medium (up to 6
levels, i.e., 127 nodes), and large (more than 7 levels). In addition, the number
of resources that we consider in our experiments is 10,000, 100,000 and 1,000,000.

3.1 Distribution of Resources

In average case analysis, we can consider a uniform distribution of resources
under the nodes of the tree-shaped subsumption hierarchy. However, this is not
a realistic assumption for real-life Semantic Web applications. For instance, in
some SW applications, such as Semantic Web Portals [5], leaf classes are highly
populated compared to the intermediate ones while in other applications such
as Knowledge Bases (e.g., the IMDB2 wrapped in RDF/S) some class subtrees
are heavier than others in terms of classified resources. Our RDF/S generator
relies on the zipfian distribution [25] to simulate the classification of resources
in Semantic Web applications.

Definition 1. The distribution of occurrence probabilities of resources under the
schema classes follows the zipfian law:

Zipf(A, i) = A/(iz ∗ h)

where A is the total number of resources to be distributed, i is the rank value
given to each class, N is the total number of classes, z is a skew parameter and
h =

∑N
j=1 1/jz.

After assigning an increasing rank to each class, the probability that a re-
source is classified under a class according to the zipfian distribution essentially
follows a power-law: the number of resources classified under the class with the
1st rank is iz times larger than the class with the ith rank. When z = 0, resources
are uniformly classified, while when z > 0 some classes are more frequently pop-
ulated than others. In this work we consider that z = 1 and thus, a class with
i-th rank, can be populated with A/(i∗h) resources. In a nutshell, our generator
considers the following resource distribution modes:
2 Url: www.imdb.com

Benchmarking Database Representations of RDF/S Stores 693

 Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

(r7, 551 res)

(r5, 772 res)

(r2, 1,930 res)

(r6, 643 res)

(r3, 1,287 res)(r1, 3,861 res) (r4, 965 res)

 Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

(r2 1,930 res)

(r3, 1,287 res)

(r4, 965 res) (r5, 772 res)

(r6, 643 res)

(r7, 551 res)

(r1, 3,861 res)

Fig. 5. Zipfian Distribution favouring leaves vs favouring subtrees

– Uniform distribution of resources to tree classes (z = 0): in this case, resource
distribution is determined only by the total number of schema classes (i.e.,
the tree depth). For instance, with a uniform classification of 10,000 resources
under the seven nodes of our example schema depicted in Figure 4, in the
case of ISA and NOISA we need to insert 10,000/7 = 1428 tuples in each
class instance table, while in Hybrid 10,000 tuples will be inserted into the
single class instance table (Hybrid), 1/7 of which will have the classid of the
Root class as the value of the attribute object, 1/7 of which will have the
classid of the Child 1, etc.

– Zipfian distribution of resources favouring tree leaves (z = 1): in this case,
lower rank values are given to leaf classes while the Root class has the highest
rank. Using this class ranking, the classification of 10,000 resources under
our example schema is illustrated in the left part of Figure 5 (for each class
its rank value and number of classified resources is shown).

– Zipfian distribution of resources favouring sub-trees (z = 1): in this case,
lower rank values are given to the classes of a sub-tree. The generator is
parameterized to take into account the depth of the root class of a sub-
tree. For instance, the lower rank values are given to the classes of the first
(leftmost) sub-tree whose root (Child 1) is located at depth 1 of our example
schema. Using this class ranking, the classification of 10,000 resources under
our example schema is illustrated in the right part of Figure 5 (for each class
its rank value and number of classified resources is shown).

4 Experimental Evaluation

In this section, we present a performance evaluation of taxonomic queries issued
against six relational representations (ISA, NOISA, MatView, Hybrid, URI and ID),
using the synthetic RDF/S schemata and data created by our generator. The
objective of our study is to measure the effect of the schema size in intensional
taxonomic queries, as well as, the effect of resource number and distribution
modes in extensional taxonomic queries. Experiments were carried out on a pc
with a Pentium III 1GHz processor and 256MB of main memory, over Suse Linux
(v9.2) using PostgreSQL (v7.4.6) with Unicode configuration and 10,000 buffers
(8KB each), used for data loading, index creation and querying. Each query was

694 Y. Theoharis, V. Christophides, and G. Karvounarakis

run several times: once, initially, to warm up the database buffers and then nine
more times to get the average execution time of a query.

4.1 Physical Database Schema and Size

First, we loaded tree-shaped schemata of variable depth into the database. In
ISA and NOISA, tables SubClass (or SubProperty) were populated with the
subsumption relationships of the synthetically generated RDFS schema In these
representations, an index on the uri attribute was created for each instance table
of a specific schema class. To speed-up sequential access, each instance table was
clustered according to this index. In Hybrid, a B+-tree index was created on the
classid attribute of the single table that holds the instances of all classes. This
table was clustered according to classid, in order to minimize the I/Os required
when fetching the resources that are classified under a specific class.

Then, we generated various datasets according to the distribution modes
presented in the previous section and load them into the instance tables of each
representation. To compute the physical database size for each representation we
consider that the attribute uri has the type VARCHAR(1000), while classid in
Hybrid has the type int4. Moreover, we took into account the extra storage cost
per tuple due to an internal id of 40 bytes generated by PostgreSQL to identify
the physical location of a tuple within its table (block number, tuple index within
block). PostgreSQL also incurs an overhead of 4 bytes for the storage of strings.
In schema-oblivious, the attribute predicate has the type VARCHAR(20). Table 2
summarizes the size of the database for the three different numbers of resources,
distributed uniformly among the schema classes.

– ISA and NOISA: For each tuple ((1000∗1+4)+40) Bytes = 1KB are needed.
– Hybrid: For each tuple ((1000 ∗ 1 + 4) + 4 + 40) Bytes = 1KB are needed.

Also for each entry of the index constructed on classid, PostgresSQL holds
8 bytes for the ’row pointer’ and 4 bytes for the int4 type of the search
key. Since 12 Bytes are needed per index entry, the expected index size for
10,000 resources is around 12KB. However, PostgreSQL fills, as expected,
each index page until the fill-factor of 70%. As a result, for 10,000 resources
the index size is approximately 1.3 ∗ 12KB = 15.6KB.

– Schema-oblivious: For each tuple (2 ∗ (1000 ∗ 1 + 4) + (20 ∗ 1 + 4)) Bytes
= 2KB are needed.

The following lemma gives a precise measure of the storage overhead of TC
precomputations, in schema-oblivious and MatView.

Lemma 1. Consider a complete-binary tree shaped RDFS schema and uniform
resource distribution. Let d be the depth of the tree and A be the number of triples
explicitly given. Then the number of total triples (those explicitly given and those
inferred due to class or property subsumption) is: totalT riples(A, d) � d ∗ A

Proof. Let A be the total number of triples. Then, each class has y = A/2d+1−1
triples. Computing inferred triples for each class in a bottom-up fashion results
in the following total number of triples:

Benchmarking Database Representations of RDF/S Stores 695

TA =
∑d

i=0 2i ∗ (2d+1−i − 1) ∗ y = y ∗ (
∑d

i=0 2d+1 − 2i) = y ∗ ((d + 1) ∗ 2d+1 −
∑d

i=0 2i) = y∗((d+1)∗2d+1−(2d+1−1)) = A∗((d+1)∗2d+1/(2d+1−1)−1) � d∗A
�

Lemma 1 presumes a complete, binary-tree-shaped schema. It should be also
stressed that, a zipfian distribution of resources favouring leaves or subtrees
implies that a larger number of resources will be located deeper in the tree.
Since MatView, URI and ID duplicate the resources classified under a class in
the instance tables of all of its superclasses, the storage overhead in these rep-
resentations is more significant in the case of the zipfian than in the case of the
uniform distribution.

Increasing the number of triples during TC precomputation implies a direct
increase of the database size. URI’s storage requirements are obviously d times
larger than without precomputed TCs. On the other hand, ID hold triples of
the type 〈int4, int4, int4〉 and resource URIs are only stored once. Hence, the
storage overhead in ID is significantly smaller than in URI. More precisely, each
triple needs 3 ∗ 4 + 40 = 52 Bytes (vs 2KB in URI).

Finally, in MatView, each view is of type 〈resourceURI, id〉. The aforemen-
tioned storage overhead of this representation can be computed in a similar way
by changing the meaning of A, from ”total number of triples” to ”total number
of resources”.

4.2 The Effect of Schema Size

As we have already explained in Section 2.1, taxonomic queries involve two
filtering phases, an intensional (i.e., at the schema) and an extensional (i.e.,
at the data). During the former, we need to compute all the subclasses of
the root class whose transitive instances need to be retrieved. Recall that, in
NOISA and Hybrid, this computation is performed by a range query on the
classes’ interval-based labels, while in ISA a TC is performed internally on
the structural information of the inheritance table catalog (pg inherits) main-
tained by PostgreSQL. During the extensional filtering phase of a taxonomic
query, schema-aware (both ISA and NOISA) needs to scan a number of (pos-
sibly empty) tables, containing the instances of the schema classes, while all
the other representations need to scan only one (possibly empty) table, regard-
less of the number of the schema classes under which resources are classified.

Table 2. Database size

of Resources ISA,NOISA,Hybrid URI ID MatView

10,000 10 MB depth ∗ 20 MB � 10-14 MB depth ∗ 10 MB
100,000 100 MB depth ∗ 200 MB � 100-140 MB depth ∗ 100 MB

1,000,000 1 GB depth ∗ 2 GB � 1-1.4 GB depth ∗ 1 GB

696 Y. Theoharis, V. Christophides, and G. Karvounarakis

Fig. 6. Querying an empty database

In order to measure the cost of the
schema filtering in taxonomic queries,
we have executed the same query (i.e.,
transitive instances of the Root class)
against an empty database created ac-
cording to the six possible representa-
tions. As we can see from Figure 6,
in schema-aware the execution time
of taxonomic queries depends on the
size of the schema in terms of number
of classes or properties (and thus on
the depth of our complete binary tree)
while the execution time in the other storage schemes is independent from the
schema size (almost 0 seconds). The extra cost of the schema-aware is due to
the I/O seek time of empty tables.

Moreover, since the physical size of a resource’s URI in ISA and NOISA is
1KB and each PostgreSQL buffer requires 8 KB (out of which only 8,152 Bytes
of them are used - the other 40 Bytes hold block information), only 7 tuples (i.e.,
7 resources) can be stored in one block. Thus, the last block of each table may
contain from 1 up to 7 resources. This factor incurs an extra storage overhead,
which in the worst case (i.e., 511 classes for depth = 8) can be up to 4MB.

4.3 The Effect of Resource Distribution Mode

Recall that, taxonomic queries in Hybrid are evaluated in one phase, where both
schema and data filtering are performed against the single table used to store
all class instances. Then, to find the transitive instances of a specific class (e.g.,
Root) we only need to perform an index scan on the classid (filtering condition
on the labels of the descendant classes) and table clustering on this attribute is
high beneficial for query performance. Hence, as we can see in Figure 7, the exe-
cution time in Hybrid scales linearly with respect to the size of the database (i.e.,
the number of classified resources). Similar behaviour is exhibited by schema-
oblivious and MatView, also evaluating taxonomic queries in one phase due to
the TCs precomputation.

Before further detailing our experimental results, we would like to point out
that ISA and NOISA exhibit the same behavior in terms of all the aforementioned
factors affecting the evaluation of taxonomic queries. They only differ in the
fact that schema filtering (as the first evaluation phase of taxonomic queries in
schema-aware) in ISA is performed in main-memory by PostgreSQL, while in
NOISA it is handled by a separate query. However, for small schema sizes the
main-memory and the persistent processing of the schema filtering phase comes
with almost the same execution cost. For this reason, both representations gave
the same measurements in all experiments and thus we are going to refer to both
of them in the figures below as schema-aware.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

Ti
m

e(
se

c)

of Clasees

Empty Database

15 31 63 127 255 511

Sch−aware
Other

Benchmarking Database Representations of RDF/S Stores 697

Fig. 7. Root Queries: variable depth and number of uniformly distributed resources

Querying the Root Class: Figure 7 depicts the execution times for a query
requesting the transitive instances of the root class, in the case of the uni-
form distribution, over each representation. The performance figures for the two
zipfian distributions were very similar to Figure 7, thus we conclude that the
distribution mode doesn’t affect execution time of taxonomic queries at the root
class.

It is worth noticing that the schema size affects query evaluation time only in
the case of schema-aware, due to the storage overhead explained previously. As
we can see in Figure 7(a), this overhead, which varies between 0 and 4MB, has a
significant effect for 10,000 resources (i.e., of size 10 MB), while Figures 7(b),(c)
depict that it is not as important for larger numbers of resources, where the
schema-aware representations achieve similar performance to that of Hybrid and
MatView. Furthermore, comparing Hybrid and URI, we can easily observe that
URI exhibits very similar performance to Hybrid in the case of 10,000 resources
(Figure 7(a)), while Hybrid clearly outperforms URI in the other two cases (Fig-
ures 7(b),(c)). The reason for the latter is that the physical size of triples
involved in the query in URI is twice as large as the size of the tuples involved in
the ClassInstances table of Hybrid, thus additional I/O activity is required for
this representation. Regarding ID, in all figures it exhibits the worst performance,
because it requires an extra join to retrieve the actual resource URI. This join is
very costly, given that the number of triples involved is, on average, depth times
larger than the actual triples existing in the RDF graph (Lemma 1). Finally,
MatView is the only representation, between those who precompute TCs, which
achieves good performance, since taxonomic query evaluation only involves a
sequential scan over the corresponding view. However, precomputing the TCs
(also for URI and ID) both incurs a huge storage overhead and also creates the
need for a view-update strategy.

Querying a Middle Level Class: Figure 8 depicts the execution times over
each representation, for a query requesting the transitive instances of a middle
level class, in the case of a zipfian distribution favouring subtrees (note that the
y axis is drawn in logarithmic scale). Clearly, for a small and medium number
of resources, Hybrid and MatView exhibit the overall best performance, while for
a large number of resources schema-aware and MatView outperform all other
representations. Of the rest ID performs better than URI, but they are both far
worse than the previous three representations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
im

e(
se

c)

of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e(
se

c)

of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

 0

 50

 100

 150

 200

T
im

e(
se

c)

of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

698 Y. Theoharis, V. Christophides, and G. Karvounarakis

Fig. 8. Middle level queries: Zipfian distribution favouring subtrees

Fig. 9. Leaf level queries: Zipfian distribution favouring leaves

In the case of middle level queries we have to access a smaller number of
subclasses, as well as of classified resources, than in the case of querying the root
class. In order to measure the effect of distribution modes in query evaluation
we need to compute the selectivity of the filtering conditions on the instance
tables of each representation. A zipfian distribution favouring subtrees leads to
query selectivity of 35% and 45%, while favouring leaves leads to selectivity
between 45% and 55%3. We should point out that, since in the two zipfians
distributions (favouring subtrees or leaves) the subtrees rooted at a middle
level have different weights (i.e., number of classified resources) we choose in our
experiments to query the heaviest subtrees.

The varying selectivity rapidly affects query evaluation time in Hybrid and
URI. In the case of Hybrid, an index scan is performed on the ClassesInstances
table, using the B+-tree index on the attribute classid where the selectivity is
fairly high, as opposed to the sequential scan required to retrieve the instances
of the root class. As one would expect, the higher the selectivity, the higher is
the benefit of choosing an index scan. On the other hand, when the selectivity
is low, the I/O cost of accessing and using the index may be greater than the
benefit; hence, index scan is efficient in the case of a uniform distribution, while
it incurs an execution overhead in the case of the two zipfian distributions. This
behaviour is reflected in Figure 8(c), where Hybrid exhibits worse performance
than schema-aware and MatView for a large number of resources. Also the index
scan on table Triples in URI uses a B+-tree index on the object attribute. The
overhead of accessing the index in this case is even bigger than in Hybrid, since
the index size in URI (index on a VARCHAR(1000) attribute) is much bigger than

3 On the other hand, a uniform distribution leads to increased selectivity, starting
from 80% for depth = 3 and increasing up to 94% for depth = 8.

0.1

1

10

T
im

e(
se

c)

of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

1

10

100

T
im

e(
se

c)

of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

10

100

T
im

e(
se

c)

of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

0.01

0.1

1

T
im

e(
se

c)

of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

0.01

0.1

1

10

Ti
m

e(
se

c)

of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

10

100

Ti
m

e(
se

c)

of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

Benchmarking Database Representations of RDF/S Stores 699

in Hybrid (index on an int4 attribute). As a result, URI exhibits the overall worst
performance. Finally, in the case of ID the query plan produced by PostgreSQL
do not use the index on object, but a sequential scan on table Triples. Hence,
what really affects the evaluation of taxonomic queries in ID is not the distribu-
tion mode, but the depth of the subsumption hierarchy, since the total number
of triples is depth times larger (Lemma 1) than the original one.

Querying Leaves. In this case we have to access only a single class and a
smaller number of classified resources. The former implies no additional I/Os for
the schema-aware representations due to space left at the end of blocks. Hence,
schema-aware exhibits the same (overall best) behaviour as MatView (Figure 9,
note that the y axis is drawn in logarithmic scale). Furthermore, the selectivity
is higher than in the case of queries at middle level, and ranges between 70%
and 85% in the two zipfian distributions.4 (we queried the leaf class with the
largest weight). As a result, the perfomance figures of Hybrid converge with those
of schema-aware and MatView, while URI and ID follow by far.

Due to space limitations, we are not showing the experimental results for the
cases of querying middle level and leaf classes, when resources are distributed
uniformly. However, the results in those cases illustrate the same trends, with
the exception that URI performs better than ID.

5 Summary and Future Work

The main conclusion that can be drawn from our experiments is that Hybrid and
MatView achieve the best performance in terms of query execution times of
taxonomic queries. Both exhibit very similar performance in the cases of small,
medium and large numbers of resources (namely 10,000, 100,000 and 1,000,000,
respectively) and queries on the root or leaf classes, while MatView outperforms
Hybrid in the case of queries on middle level classes.

However, the performance of MatView relies on the duplication of resources in
the instance tables of all superclasses of the class under which they are classified,
which incurs a huge storage overhead. Moreover, MatView comes with the addi-
tional cost of data updates in materialized views, which can be a decisive factor
in applications involving frequent updates (URI and ID also suffer from the same
drawbacks). Unlike MatView, Hybrid achieves competitive performance without
having to precompute TCs, by taking advantage of the encoding of subsumption
hierarchies (the attribute classid) that is stored with the data (resource uri),
enabling to evaluate taxonomic queries in a single phase.

Of the rest, schema-aware representations achieve similar performance to
Hybrid and MatView for medium and large number of resources and queries on
root class. Additionally, schema-aware exhibit the overall best performance in
the case of taxonomic queries at leaf level classes. Furthermore, schema-aware is
better than URI for medium and large number of resources and queries on root,

4 Compared to selectivity ranging between 94% and 99.8% in a uniform distribution.

700 Y. Theoharis, V. Christophides, and G. Karvounarakis

and clearly for queries at middle or leaf level classes. Note that, URI is sensi-
tive to the size of the main-memory used for caching: as this size increases, URI’s
performance improves for larger number of resources. It is worth noticing that
queries in our benchmark were executed against databases that only contained
resources classified under classes. The addition of property-related triples in a
single Triples table, in the case of schema-oblivious representations (URI, ID)
would further degrade the performance of the two schema-oblivious representa-
tions.

Finally, apart from the case of taxonomic queries at middle or leaf level
classes and zipfian resource distribution where ID outperforms URI, ID exhibits
the worst performance, mainly because of the costly join operation it has to
perform, and also suffers from the same drawbacks as MatView and URI (although
the storage overhead is much smaller than in the case of URI).

It should be stressed that the conclusions drawn from our experiments are
also confirmed by the independently conducted benchmarking of XML database
implementations [12], where the combination of document-dependent partition-
ing (as in schema-aware) with the use of interval-based encoding for containment
joins (similar to taxonomic queries) yields superior performance, compared to
document-indepedent (similar to schema-oblivious) approaches. As a next step,
we plan to extend our testbed to other categories of queries involving schema
and data path expressions, that are translated to SQL queries with joins over the
underlying RDBMS. To that end, we need to extend our generator with appropri-
ate distribution modes of properties over (domain or range) classes. Conclusions
of [21] could offer a basis for our attempt to model more sophisticated schema
structures.

References

1. R. Agrawal, A. Somani, and Y. Xu: Storage and Querying of E-Commerce Data.
In Proc. of VLDB 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis: On Storing Volu-
minous RDF Descriptions: The case of Web Portal Catalogs. In Proc. of WebDB’01
(co-located with ACM SIGMOD’01).

3. D. Beckett: Redland RDF Application Framework, 2003.

4. J. Broekstra, A. Kampman and F. van Harmelen: Sesame: A generic Architecture
for Storing and Querying RDF and RDF Schema. In Proc. of the ISWC’02.

5. V. Christophides, M. Scholl, D. Plexousakis., S. Tourtounis: On Labelling Schemes
for the Semantic Web. In Proc. of the 12th Intern. World Wide Web Conference
(WWW’03), 2003.

6. L. Ding, K. Wilkinson, C. Sayers, H. Kuno: Application-Specific Schema Design for
Storing Large RDF Datasets. In Proc. of the PSSS’03, collocated with ISWC’03.

7. M. Gertz, K.-U. Sattler: A Model and Architecture for Conceptualized Data An-
notations. Technical Report CSE-2001-11, Dept. of Computer Science, University
of California, Davis, 2001.

8. Y. Guo, J. Heflin, Z. Pan: Benchmarking DAML+OIL Repositories. In Proc. of
ISWC’03.

Benchmarking Database Representations of RDF/S Stores 701

9. S. Harris, and N. Gibbins: 3Store: Efficient Bulk RDF Storage. In Proc. of 1st
International Workshop on Practical and Scalable Semantic Web Systems 2003.

10. A. Harth, S. Decker: Yet Another RDF Store: Perfect Index Structures for Storing
Semantic Web Data With Contexts. DERI Technical Report, 2004.

11. P. Hayes: RDF Semantics. W3C Working Draft, World-Wide Web Consortium
(W3C), 2003.

12. H. Lu, J. X. Yu, G. Wang, S. Zheng, H. Jiang, G. Yu, A. Zhou: ”What Makes the
Differences: Benchmarking XML Database Implementations”, ACM TOIT, Vol.5,
No.1, Feb’05, p 154–194.

13. L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu: RStar: An RDF Storage and Query System
for Enterprise Resource Management. In Proc. of the ACM CIKM 2004.

14. A. Magkanaraki et al: Benchmarking RDF schemata for the Semantic Web. In
Proc. of the 1st International Semantic Web Conference (ISWC’02), 2002.

15. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. 2001,
Technical report Hewlett Packard Laboratories.

16. Z. Pan, J. Heflin: DLDB: Extending Relational Databases to Support Semantic
Web Queries. In Proc. of PSSS’03, collocated with ISWC’03.

17. G. Schadow, M. Barnes, and C. McDonald, Representing and querying conceptual
graphs with relational database management systems is possible, In Proc. of AMIA
Symposium 2001:598-602

18. SQL99 Standard, NCITS/ISO/IEC 9075-1 01-Jan-1999 Information Technology -
Database Languages - SQL - Part 1: Framework.

19. K. Stoffel, M. Taylor, J. Hendler: Efficient Management of Very Large Ontologies.
In Proc. of American Association for Artificial Intelligence Conference (AAAI’97),
1997.

20. SWAD-Europe Deliverable 10.2: Mapping Semantic Web Data with RDBMSs.
21. C. Tempich, R. Volz: Towards a benchmark for Semantic Web reasoners - an analy-

sis of the DAML ontology library. In Proc. of The 2nd Int. Workshop on Evaluation
of Ontology-based Tools, EON2003.

22. R. Volz, D. Oberle, B. Motik, S. Staab: KAON SERVER - A Semantic Web Man-
agement System. In Proc. of the Atlantic Web Intelligence Conference (AWIC’03),
2003.

23. R. Volz, S. Staab, B. Motik: Incremental Maintenance of Materialized Ontologies.
Proc. of ODBase’03, 2003.

24. K. Wilkinson, C. Sayers, H. A. Kuno, D. Raynolds: Efficient RDF Storage and
Retrieval in Jena2. In Proc. of SWDB’03 (co-located with VLDB’03).

25. G. K. Zipf: Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Reading, Massachusetts, 1949.

	Introduction
	RDF/S Storage Schemes
	Translation of Taxonomic RDF/S Queries

	Synthetic RDF Data Generation
	Distribution of Resources

	Experimental Evaluation
	Physical Database Schema and Size
	The Effect of Schema Size
	The Effect of Resource Distribution Mode

	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

