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A database of Resource Description Framework (RDF) statements suggests in-
dexing schemes different from those commonly used in relational databases in 
order to achieve scalability and robustness required during write transactions.  
This paper suggests an indexing scheme for RDF databases that uses AVL trees 
in place of B-tree-like indexes. 

1   Introduction 

The Resource Description Framework (RDF) is a World Wide Web Consortium 
(W3C) Recommendation for the representation of metadata. At its most fundamental 
level, RDF consists of statements of short fixed sentences, comprising a subject, a 
predicate and an object. This short sentence of three terms is collectively known as an 
RDF statement or triple, which when combined, together form a directed graph with 
subjects and objects comprising the nodes and predicates forming the arcs [1, 2]. 

2   RDF Data Storage 

Several databases currently exist for the storage of RDF data. These databases – often 
referred to as RDF stores – exist as both open source projects and commercial product 
offerings. The first RDF store was Guha’s rdfDB [4], an intellectual successor to this is 
the Kowari project [5]. Kowari is an open source, massively scalable, transaction-safe, 
purpose-built database for the storage and retrieval of metadata. 
 
Native RDF stores exist due to difficulties storing large quantities of RDF data in 
relational databases. Storage of metadata in a relational database typically requires a 
design with a few (one to six) very narrow, deep tables. Each table might consist of 
two to five columns, most of which are indexed more than once for performance. A 
basic query would require all tables to be joined with additional table aliases for nested 
joins. Large numbers of individual queries are required to perform more complex 
queries, resulting in slower response times. 
 



Updating metadata statements in a relational database is expensive since all columns 
are indexed. This would require data pages and indexed columns to be locked.  Up-
dates in a relational database are slow when multiple data locks attempt to obtain the 
same page lock (a "hot spot"). These types of locks also affect reading performance 
and maintenance. 
 
These problems are avoided in Kowari, which allows inline writes into its indexes, 
does not have the concept of data pages and makes use of phase trees to allow for 
long-lived read transactions during writing [3]. 

3   AVL Trees 

Kowari is composed of a number of components, including a query layer at the top of 
the stack, and an RDF statement storage layer at the bottom. The statement-based 
approach of the storage layer treats predicates (properties) as just another data ele-
ment. This contrasts with existing database formalisms (e.g. [6]), which treat relations 
as completely different from elements. The statements are indexed using three parallel 
Adelson-Velskii and Landis (AVL) trees – an index for each subject, predicate and 
object. AVL trees are balanced binary search trees where the height of the two sub-
trees of any node differs by at most one, the children of any node are themselves AVL 
trees. This structure has the useful property that searching, insertion, and deletion 
times are O(log n), where n is the number of nodes in the tree. O(log n) times are 
guaranteed by the fact that the trees are balanced [7, 8]. 
 
Each index in Kowari is an AVL tree that provides addressing information into a 
large random-accessed file. Using this structure allows the AVL trees to remain rela-
tively small and are often able to fit into physical memory. In practice, the speed of 
searching, insertion and deletion operations are linear when the depth of the AVL 
trees is relatively small. As trees may become unbalanced during write operations, 
they must be rebalanced, often by rotation of a node's children. This is a simple opera-
tion on the addressing information tree which does not affect the underlying data. In 
the general case, rebalancing times are also O(log n). Nodes are split into two when 
full. 
 
AVL trees are particularly useful for RDF stores whose query approach systemati-
cally constrains one or more elements of a triple (or quad if grouping information is 
added to the "triple"). Triples may be indexed in order and rotated to create parallel 
indexes. Any given constraint on one or more triple elements may thus be satisfied as 
a simple range in one of the indexes. For example, a query asking for RDF statements 
whose subject is a given string may be satisfied by performing a search for triples in a 
subject-first index where the subject returned is the number corresponding to that 
string literal that can be used as a key in a hash table lookup. 
 
The AVL trees each have a different key ordering, defined as follows: 
 



(subject, predicate, object), 
(predicate, object, subject) and 
(object, subject, predicate). 

 
Each node in the AVL tree holds the following information: 
 
• A set of triples sorted according to the key order for this tree; 
• The number of triples in the set for this node; 
• A copy of the first triple in the sorted set; 
• A copy of the last triple in the sorted set; 
• The ID of the left subtree node; 
• The ID of the right subtree node; 
• the height of the subtree rooted at this node. 
 
All triples in the left subtree compare less than the first triple in the sorted set and all 
triples in the right subtree compare greater than the last triple in the sorted set. Space 
for a fixed maximum number of triples is reserved for each node. A triple is added to 
a tree by inserting it into the sorted set of an existing node. If the only appropriate 
node is full then a new node will be allocated and added to the tree. A triple is re-
moved from the tree by identifying the node that contains it and removing it from the 
sorted set. If the sorted set becomes empty then the node is removed from the tree.  
 
A design goal was to keep index addressing information in memory for as long as 
possible.  AVL tree nodes are split between two files such that the sorted set of triples 
for a node are stored as a block in one file while the remaining fields are stored as a 
record in the other file.  This ensures that the traversal of an AVL tree does not result 
in sorted sets of triples being unnecessarily read into memory. This also allows for 
different file I/O mechanisms to be used for the two files.  This is similar to ap-
proaches using B-trees in many relational databases. 
 
B-trees generally do not fill their nodes completely, with each node having some 
number of entries between N/2 and N, where N is the order of the tree.  This results in 
an index being (on average) about 25% larger than it needs to be. This pushes B-tree 
indexes out of a range that can be memory-mapped or cached, much sooner.   This is 
a major concern when indexes can reach several gigabytes in size.  AVL trees also 
tend to be faster to traverse than B-trees when the entire tree fits in memory. 
 
Figure 1 illustrates the internal workings of the directed graph implementation in 
Kowari, showing a portion of an index implemented in a AVL tree. The data (stored 
as a series of triples) is sorted by the first component of the triple. The first compo-
nent of each triple in the figure represents a subject. The data is stored only in the 
indices and is not stored separately elsewhere. Storing the data multiple times in-
creases the storage requirements for the data set but allows for very rapid responses to 
queries since each query component can use the most appropriate index. 

 
 



 

Fig. 1. Storing RDF statements in an AVL tree, in subject-predicate-object form 

4   Conclusions and Further Work 

Our work has shown that AVL trees are sufficient for storing hundreds of millions of 
RDF statements and allowing access to them in near real time. With current ap-
proaches, scaling above this level may force the AVL trees out of physical memory, 
moving searching, insertion and deletion operations out of the linear behavior zone 
and into a logarithmic one. Future scaling work above this level focuses on more 
complex indexing structures, such as keeping hashtables of sorted triples. 
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