
1

Chapter 5
Logic and Inference:

Rules

Based on slides from Grigoris Antoniou and Frank van Harmelen

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

Knowledge Representation

The subjects presented so far were related
to the representation of knowledge
Knowledge Representation was studied
long before the emergence of WWW in AI
Logic is still the foundation of KR,
particularly in the form of predicate logic
(first-order logic)

The Importance of Logic

High-level language for expressing
knowledge
High expressive power
Well-understood formal semantics
Precise notion of logical consequence
Proof systems that can automatically
derive statements syntactically from a set
of premises

2

The Importance of Logic (2)

There exist proof systems for which semantic
logical consequence coincides with syntactic
derivation within the proof system

– Soundness & completeness
Predicate logic is unique in the sense that
sound and complete proof systems do exist.

– Not for more expressive logics (higher-order logics)
trace the proof that leads to a logical
consequence.
Logic can provide explanations for answers

– By tracing a proof

Specializations of Predicate Logic:
RDF and OWL

RDF/S and OWL (Lite and DL) are
specializations of predicate logic
– correspond roughly to a description logic

They define reasonable subsets of logic
Trade-off between the expressive power
and the computational complexity:
– The more expressive the language, the less

efficient the corresponding proof systems

Specializations of Predicate Logic:
Horn Logic

A rule has the form: A1, . . ., An → B
– Ai and B are atomic formulas

There are 2 ways of reading such a rule:
– Deductive rules: If A1,..., An are known to be

true, then B is also true
– Reactive rules: If the conditions A1,..., An are

true, then carry out the action B

Description Logics vs. Horn Logic

Neither of them is a subset of the other
It’s impossible to assert that people who study and
live in the same city are “home students” in OWL
– This can be done easily using rules:

studies(X,Y), lives(X,Z), loc(Y,U), loc(Z,U) →
homeStudent(X)

Rules cannot assert the information that a person
is either a man or a woman
– This information is easily expressed in OWL using

disjoint union

3

Monotonic vs. Non-monotonic Rules

Example: An online vendor wants to give a
special discount if it is a customer’s birthday

Solution 1
R1: If birthday, then special discount
R2: If not birthday, then not special discount

But what happens if a customer refuses to
provide his birthday due to privacy concerns?

Monotonic vs. Non-monotonic
Rules (2)

Solution 2
R1: If birthday, then special discount
R2’: If birthday is not known, then not special

discount
Solves the problem but:
– The premise of rule R2' is not within the

expressive power of predicate logic
– We need a new kind of rule system

Monotonic vs. Non-monotonic
Rules (3)

The solution with rules R1 and R2 works
in case we have complete information
about the situation
The new kind of rule system will find
application in cases where the available
information is incomplete
R2’ is a nonmonotonic rule

Exchange of Rules

Exchange of rules across different applications
– E.g., an online store advertises its pricing, refund, and

privacy policies, expressed using rules
The Semantic Web approach is to express the
knowledge in a machine-accessible way using
one of the Web languages we have already
discussed
We show how rules can be expressed in XML-
like languages (“rule markup languages”)

4

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

Family Relations

Facts in a database about relations:
– mother(X,Y), X is the mother of Y
– father(X,Y), X is the father of Y
– male(X), X is male
– female(X), X is female

Inferred relation parent: A parent is either a
father or a mother

mother(X,Y) → parent(X,Y)
father(X,Y) → parent(X,Y)

Inferred Relations

male(X), parent(P,X), parent(P,Y), notSame(X,Y) →
brother(X,Y)
female(X), parent(P,X), parent(P,Y), notSame(X,Y) →
sister(X,Y)
brother(X,P), parent(P,Y) → uncle(X,Y)
mother(X,P), parent(P,Y) → grandmother(X,Y)
parent(X,Y) → ancestor(X,Y)
ancestor(X,P), parent(P,Y) → ancestor(X,Y)

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

5

Monotonic Rules – Syntax

loyalCustomer(X), age(X) > 60 → discount(X)

We distinguish some ingredients of rules:
– variables which are placeholders for values: X
– constants denote fixed values: 60
– Predicates relate objects: loyalCustomer, >
– Function symbols which return a value for

certain arguments: age

Rules

B1, . . . , Bn → A

A, B1, ... , Bn are atomic formulas
A is the head of the rule
B1, ... , Bn are the premises (body of the rule)
The commas in the rule body are read
conjunctively
Variables may occur in A, B1, ... , Bn
– loyalCustomer(X), age(X) > 60 → discount(X)
– Implicitly universally quantified

Facts and Logic Programs

A fact is an atomic formula
E.g. loyalCustomer(a345678)
The variables of a fact are implicitly
universally quantified.
A logic program P is a finite set of facts and
rules.
Its predicate logic translation pl(P) is the set
of all predicate logic interpretations of rules
and facts in P

Goals

A goal denotes a query G asked to a logic
program
The form: B1, . . . , Bn →
If n = 0 we have the empty goal �

6

First-Order Interpretation of Goals

∀X1 . . . ∀Xk (¬B1 ∨ . . . ∨ ¬Bn)
– Where X1, ... , Xk are all variables occurring in B1, ...,

Bn
– Same as pl(r), with the rule head omitted

Equivalently: ¬∃X1 . . . ∃Xk (B1 ∧ . . . ∧ Bn)
– Suppose we know p(a) and we have the goal p(X) →
– We want to know if there is a value for which p is true
– We expect a positive answer because of the fact p(a)
– Thus p(X) is existentially quantified

Why Negate the Formula?

We use a proof technique from mathematics
called proof by contradiction:
– Prove that A follows from B by assuming that A is

false and deriving a contradiction, when combined
with B

In logic programming we prove that a goal can
be answered positively by negating the goal and
proving that we get a contradiction using the
logic program
– E.g., given the following logic program we get a

logical contradiction

An Example

p(a)
¬∃X p(X)

The 2nd formula says that no element has
the property p
The 1st formula says that the value of a
does have the property p
Thus ∃X p(X) follows from p(a)

Monotonic Rules – Predicate Logic Semantics

Given a logic program P and a query
B1, . . . , Bn →

with the variables X1, ... , Xk we answer
positively if, and only if,

pl(P) |= ∃X1 . . . ∃Xk(B1 ∧ ... ∧ Bn) (1)
or equivalently, if

pl(P) ∪ {¬∃X1 . . . ∃Xk (B1 ∧ ... ∧ Bn)} is
unsatisfiable (2)

7

The Semantics of Predicate Logic

The components of the logical language
(signature) may have any meaning we like
– A predicate logic model A assigns a certain meaning

A predicate logic model consists of:
– a domain dom(A), a nonempty set of objects about

which the formulas make statements
– an element from the domain for each constant
– a concrete function on dom(A) for every function

symbol
– a concrete relation on dom(A) for every predicate

The Semantics of Predicate Logic (2)

The meanings of the logical connectives
¬,∨,∧,→,∀,∃ are defined according to their
intuitive meaning:
– not, or, and, implies, for all, there is

We define when a formula is true in a
model A, denoted as A |= φ
A formula φ follows from a set M of
formulas if φ is true in all models A in which
M is true

Motivation of First-Order Interpretation of Goals

p(a)
p(X) → q(X)
q(X) →

q(a) follows from pl(P)
∃X q(X) follows from pl(P),
Thus, pl(P)∪{¬∃ Xq(X)} is unsatisfiable,
and we give a positive answer

Motivation of First-Order Interpretation of Goals

p(a)
p(X) → q(X)
q(b) →

We must give a negative answer because q(b)
does not follow from pl(P)

8

Ground Witnesses

So far we have focused on yes/no answers
to queries
Suppose that we have the fact p(a) and the
query p(X) →
– The answer yes is correct but not satisfactory

The appropriate answer is a substitution
{X/a} which gives an instantiation for X
The constant a is called a ground witness

Parameterized Witnesses

add(X,0,X)
add(X,Y,Z) → add(X,s(Y),s(Z))
add(X, s8(0),Z) →

Possible ground witnesses:
– {X/0,Z/s8(0)}, {X/s(0),Z/s9(0)} . . .

The parameterized witness Z = s8(X) is the most
general answer to the query:
– ∃X ∃Z add(X,s8(0),Z)

The computation of most general witnesses is the
primary aim of SLD resolution

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

Motivation – Negation in Rule Head

In nonmonotonic rule systems, a rule may not be
applied even if all premises are known because
we have to consider contrary reasoning chains
Now we consider defeasible rules that can be
defeated by other rules
Negated atoms may occur in the head and the
body of rules, to allow for conflicts
– p(X) → q(X)
– r(X) → ¬q(X)

9

Defeasible Rules

p(X) ⇒ q(X)
r(X) ⇒ ¬q(X)

Given also the facts p(a) and r(a) we conclude
neither q(a) nor ¬q(a)
– This is a typical example of 2 rules blocking each other

Conflict may be resolved using priorities among
rules
Suppose we knew somehow that the 1st rule is
stronger than the 2nd
– Then we could derive q(a)

Origin of Rule Priorities

Higher authority
– E.g. in law, federal law pre-empts state law
– E.g., in business administration, higher management

has more authority than middle management
Recency
Specificity

– A typical example is a general rule with some
exceptions

We abstract from the specific prioritization
principle

– We assume the existence of an external priority
relation on the set of rules

Rule Priorities

r1: p(X) ⇒ q(X)
r2: r(X) ⇒ ¬q(X)
r1 > r2

Rules have a unique label
The priority relation to be acyclic

Competing Rules

In simple cases two rules are competing
only if one head is the negation of the other
But in many cases once a predicate p is
derived, some other predicates are
excluded from holding
– E.g., an investment consultant may base his

recommendations on three levels of risk
investors are willing to take: low, moderate,
and high

– Only one risk level per investor is allowed to
hold

10

Competing Rules (2)

These situations are modelled by
maintaining a conflict set C(L) for each
literal L
C(L) always contains the negation of L but
may contain more literals

Defeasible Rules: Syntax

r : L1, ..., Ln ⇒ L
r is the label
{L1, ..., Ln} the body (or premises)
L the head of the rule
L, L1, ..., Ln are positive or negative literals
A literal is an atomic formula p(t1,...,tm) or
its negation ¬p(t1,...,tm)
No function symbols may occur in the rule

Defeasible Logic Programs

A defeasible logic program is a triple
(F,R,>) consisting of
– a set F of facts
– a finite set R of defeasible rules
– an acyclic binary relation > on R

A set of pairs r > r' where r and r' are labels of rules
in R

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

11

Brokered Trade

Brokered trades take place via an
independent third party, the broker
The broker matches the buyer’s
requirements and the sellers’ capabilities,
and proposes a transaction when both
parties can be satisfied by the trade
The application is apartment renting an
activity that is common and often tedious
and time-consuming

The Potential Buyer’s Requirements

– At least 45 sq m with at least 2 bedrooms
– Elevator if on 3rd floor or higher
– Pets must be allowed

Carlos is willing to pay:
– $ 300 for a centrally located 45 sq m apartment
– $ 250 for a similar flat in the suburbs
– An extra $ 5 per square meter for a larger apartment
– An extra $ 2 per square meter for a garden
– He is unable to pay more than $ 400 in total

If given the choice, he would go for the cheapest
option
His second priority is the presence of a garden
His lowest priority is additional space

Formalization of Carlos’s Requirements –
Predicates Used

size(x,y), y is the size of apartment x (in sq m)
bedrooms(x,y), x has y bedrooms
price(x,y), y is the price for x
floor(x,y), x is on the y-th floor
gardenSize(x,y), x has a garden of size y
lift(x), there is an elevator in the house of x
pets(x), pets are allowed in x
central(x), x is centrally located
acceptable(x), flat x satisfies Carlos’s
requirements
offer(x,y), Carlos is willing to pay $ y for flat x

Formalization of Carlos’s Requirements – Rules

r1: ⇒ acceptable(X)
r2: bedrooms(X,Y), Y < 2 ⇒ ¬acceptable(X)
r3: size(X,Y), Y < 45 ⇒ ¬acceptable(X)
r4: ¬pets(X) ⇒ ¬acceptable(X)
r5: floor(X,Y), Y > 2,¬lift(X) ⇒ ¬acceptable(X)
r6: price(X,Y), Y > 400 ⇒ ¬acceptable(X)
r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1

12

Formalization of Carlos’s Requirements – Rules

r7: size(X,Y), Y ≥ 45, garden(X,Z), central(X) ⇒
offer(X, 300 + 2*Z + 5*(Y − 45))

r8: size(X,Y), Y ≥ 45, garden(X,Z), ¬central(X) ⇒
offer(X, 250 + 2*Z + 5(Y − 45))

r9: offer(X,Y), price(X,Z), Y < Z ⇒ ¬acceptable(X)
r9 > r1

Representation of Available Apartments

bedrooms(a1,1)
size(a1,50)
central(a1)
floor(a1,1)
¬lift(a1)
pets(a1)
garden(a1,0)
price(a1,300)

Representation of Available Apartments

37512yesno1yes653a7

3700nono3yes602a6

35015yesno0yes553a5

33015noyes1no552a4

3500yesno2no652a3

3350yesno0yes452a2

3000yesno1yes501a1

PriceGardenPetsLiftFloorCentralSizeBedroomsFlat

Determining Acceptable Apartments

If we match Carlos’s requirements and the available
apartments, we see that
flat a1 is not acceptable because it has one bedroom only
(rule r2)
flats a4 and a6 are unacceptable because pets are not
allowed (rule r4)
for a2, Carlos is willing to pay $ 300, but the price is
higher (rules r7 and r9)
flats a3, a5, and a7 are acceptable (rule r1)

13

Selecting an Apartment

r10: cheapest(X) ⇒ rent(X)
r11: cheapest(X), largestGarden(X) ⇒

rent(X)
r12: cheapest(X), largestGarden(X),

largest(X)
⇒ rent(X)

r12 > r10, r12 > r11, r11 > r10
We must specify that at most one apartment
can be rented, using conflict sets:

– C(rent(x)) = {¬rent(x)} ∪ {rent(y) | y ≠ x}

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

Atomic Formulas

p(X, a, f(b, Y))

<atom>
<predicate>p</predicate>
<term><var>X</var></term>
<term><const>a</const></term>
<term> <function>f</function>

<term><const>b</const></term>
<term><var>Y</var></term>

</term>
</atom>

Facts

<fact>
<atom>

<predicate>p</predicate>
<term>

<const>a</const>
</term>

</atom>
</fact>

14

Rules

<rule>
<head>

<atom>
<predicate>r</predicate>
<term><var>X</var></term>
<term><var>Y</var></term>

</atom>
</head>

Rules (2)

<body>
<atom><predicate>p</predicate>

<term><var>X</var></term>
<term> <const>a</const> </term>

</atom>
<atom><predicate>q</predicate>

<term> <var>Y</var></term>
<term> <const>b</const></term>

</atom>
</body>

</rule>

Rule Markup in XML: A DTD
<!ELEMENT program ((rule|fact)*)>
<!ELEMENT fact (atom)>
<!ELEMENT rule (head,body)>
<!ELEMENT head (atom)>
<!ELEMENT body (atom*)>
<!ELEMENT atom (predicate,term*)>
<!ELEMENT term (const|var|(function,term*))>
<!ELEMENT predicate (#PCDATA)>
<!ELEMENT function (#PCDATA)>
<!ELEMENT var (#PCDATA)>
<!ELEMENT const (#PCDATA)>
<!ELEMENT query (atom*))>

The Alternative Data Model of RuleML

RuleML is an important standardization
effort in the area of rules
RuleML is at present based on XML but
uses RDF-like “role tags,” the position of
which in an expression is irrelevant
– although they are different under the XML data

model, in which the order is important

15

Our DTD vs. RuleML

varvar
indconst
relpredicate
andatom*
_bodybody
_headhead
imprule
rulebaseprogram

Lecture Outline

1. Introduction
2. Monotonic Rules: Example
3. Monotonic Rules: Syntax & Semantics
4. Nonmonotonic Rules: Syntax
5. Nonmonotonic Rules: Example
6. A DTD For Monotonic Rules
7. A DTD For Nonmonotonic Rules

Changes w.r.t. Previous DTD

There are no function symbols
– The term structure is flat

Negated atoms may occur in the head and the
body of a rule
Each rule has a label
Apart from rules and facts, a program also
contains priority statements
– We use a <stronger> tag to represent priorities, and

an ID label in rules to denote their name

An Example

r1: p(X) ⇒ s(X)
r2: q(X) ⇒ ¬s(X)
p(a)
q(a)
r1 > r2

16

Rule r1 in XML

<rule id="r1">
<head>

<atom>
<predicate>s</predicate>
<term><var>X</var></term>

</atom>
</head>
<body>

<atom>
<predicate>p</predicate>
<term><var>X</var> </term>

</atom>
</body>

</rule>

Fact and Priority in XML

<fact>
<atom>

<predicate>p</predicate>
<term><const>a</const></term>

</atom>
</fact>

<stronger superior="r1" inferior="r2"/>

A DTD

<!ELEMENT program ((rule|fact|stronger)*)>

<!ELEMENT fact (atom|neg)>
<!ELEMENT neg (atom)>
<!ELEMENT rule (head,body)>
<!ATTLIST rule id ID #IMPLIED>
<!ELEMENT head (atom|neg)>
<!ELEMENT body ((atom|neg)*)>

A DTD (2)

<!ELEMENT atom (predicate,(var|const)*)>
<!ELEMENT stronger EMPTY)>
<!ATTLIST stronger

superior IDREF #REQUIRED>
inferior IDREF #REQUIRED>

<!ELEMENT predicate (#PCDATA)>
<!ELEMENT var (#PCDATA)>
<!ELEMENT const (#PCDATA)>
<!ELEMENT query (atom*))>

17

Summary

Horn logic is a subset of predicate logic that
allows efficient reasoning, orthogonal to
description logics
Horn logic is the basis of monotonic rules
Nonmonotonic rules are useful in situations
where the available information is incomplete
They are rules that may be overridden by
contrary evidence
Priorities are used to resolve some conflicts
between rules
Representation XML-like languages is
straightforward

