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Marine Biology Simulation
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Introduction

This document is the report of a summer job experience by a computer science

student named Pat.

Last summer I decided to get a programming job to further develop the skills I had

learned in class. I was hired to modify a simulation program used by some marine

biologists. I was referred to Jamie, an experienced software developer. Jamie described

the existing program to me, and I continued from there. This is my report of what I

learned and the code that I developed.

A simulation is a model of a real system. Scientists build simulations to better

understand the systems they are studying, to observe and predict their behavior, or to

perform experiments on them. Many real systems are difficult or impossible to observe

and control, much less experiment with. It is easy, though, to run a simulation program

repeatedly and to modify it to explore the effect of changes to the model.

I worked on a simulation of fish moving in a relatively small body of water, such as a

lake. The modifications I added made the simulation more interesting and allowed the

biologists to study more complex behavior. For example, one change I made allowed

the biologists to track the fish population as fish breed and die. Another change

allowed them to study what happens when there are several kinds of fish in the

environment, with different patterns of movement.

This report is divided into five chapters. The first chapter describes what the program

did before I began working on it. The next chapter contains Jamie’s explanation of the

code — how the program was implemented. The third chapter describes the set of

changes I made to model fish breeding and dying. The fourth chapter describes changes

that allowed the biologists to study fish with specialized patterns of movement.

After the summer was over, I continued to work for the biologists part-time. The last

chapter of this report describes further changes I made that allowed the biologists to

study fish in both bounded and unbounded environments.
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 Note about the AP Computer Science Exams:

Computer Science A: Students are expected to be familiar with the material

in Chapters 1 – 4 of this case study, including the Fish and Simulation classes

presented in Chapter 2, the modifications to the Fish class presented in Chapter

3, and the DarterFish and SlowFish classes presented in Chapter 4. Students

should also be familiar with the class documentation for several other classes

and interfaces from the case study (Debug, Direction, EnvDisplay,

Environment, Locatable, Location, and RandNumGenerator) and with

the subset of methods that are used in the case study from the Standard Java

ArrayList, Color, and Random classes. A Quick Reference for these appears

at the end of Chapter 2. Students taking the A Exam are not responsible for the

material in Chapter 5.

Computer Science AB: Students should be familiar with the classes and

class documentation listed above and the Environment interface and

the BoundedEnv and UnboundedEnv classes presented in Chapter 5.

Students should also be familiar with the class documentation for the

SquareEnvironment abstract class.
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Case Study

Chapter 1

Experimenting with the

Marine Biology Simulation Program

Last summer I was hired to modify a simulation program used by some marine

biologists. On the first day, I met with my boss who told me a little bit about the

program I would be working on. It was designed to help the marine biologists

study fish movement in a bounded environment, such as a lake or a bay. It was

working fine for them, but they wanted to make some improvements and add

some new functionality.

Jamie, an experienced programmer on the team, would be available the following

day to give me a “guided tour” of the actual program code. In the meantime I could

experiment with the program and start figuring out what it did. I was given some

instructions for running it and told where to find several data files to use with it.

[Educational prerequisites for this chapter: The first two sections of the chapter,

Experimenting with the Simulation and Looking at the Data Files, have no

prerequisites. The last section, Sneaking a Peek at Some Code, assumes familiarity

with constructing objects, invoking methods (including the obj.method() calling

syntax), and for loops.]
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Experimenting with the Simulation

The first thing I did was to determine how to compile and run the existing program.

Exercise Set 1:

1. Run the marine biology simulation program with two different data files,

fish.dat and manyFish.dat, to see how the simulation works. You will

need to find out from your teacher how to compile and run the program on

your school’s computers. You will also need to know where to find the

fish.dat and manyFish.dat data files. These files describe the initial

configuration of the fish in the environment. [Note: In the JavaMBS.zip

distribution file, the main method to run the Marine Biology Simulation is

in the MBSGUI class in the Code  folder. Select “Open environment file . . .”

in the file menu to find and open an initial configuration file. The

configuration files are in the DataFiles folder.]

2. Run the marine biology simulation program twice with the same data file. Is

the behavior of the fish in the environment the same both times?

 

Analysis Question Set 1:

1. How does the program appear to model the body of water (the “bounded

environment”)? What do the grid lines represent?

2. Where can fish be in the model? Can there be more than one fish in the same

place at the same time? 

3. Do all fish face the same direction? Does a fish’s direction appear to matter? 

4. Pick one fish and watch it for several steps. Does it move in every step? How

far does it move? Does it always move in the same direction? Can it move in

any direction? Is it more likely to move in one direction over another?

I ran the program several times with the different files and watched the behavior. I then

made some notes and tried to deduce what the “rules” were in the program for fish

movement. I found it difficult, though, to keep track of everything that was happening,

and I wasn’t sure that all my original conclusions were correct. I decided I needed

to develop a strategy, to be more scientific in my tests. I started with the file called

onefish.dat. This file, as its name implied, seemed to model a single fish in a small

(7 x 5) environment. I created a table showing where the fish was at each timestep,

which direction it was facing, and where it moved.
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Exercise Set 2:

1. Run the marine biology simulation program with onefish.dat for five

timesteps, keeping notes.

Timestep Fish’s Fish’s Did it In what New New

Location Direction Move? Direction? Location Direction

1

2

3

4

5

How often does the fish move forward? Right? Left? Backward?

2. Compare your results with a classmate. Did your classmate have the same

results? What conclusions can you draw about fish movement in a single run

of the program and about different runs of the program? How confident are

you that you have enough data?

Conclusions:

I made several conclusions based on my tests.

• The fish always moved in every timestep, but it didn’t always move the same way.

• It always moved one space.

• It did not always move in the direction it was facing.

• Sometimes it moved forward; sometimes it moved to the side.

• I never saw it move backward in that test run.

• When it moved to the side it always changed direction.

• After every move, its new direction was always the same as the direction it moved.

• Every time I ran the program I saw different results.
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Analysis Question Set 2:

1. Did your test results show the same thing? What did others in your class

discover? Are five timesteps enough to come to any conclusions?

2. What if you run the program with onefish.dat for 10 timesteps? 20

timesteps?

Timestep Fish’s Fish’s Did it In what New New

Location Direction Move? Direction? Location Direction

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20
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Looking at the Data Files

I wanted to see if I could read the data files that were providing the initial configuration

of fish in the environment. I decided to start with onefish.dat. The contents of the

file are:

           bounded 7 5
           Fish 3 2 North

I guessed that the “bounded” referred to the “bounded environment” my boss

had mentioned, and that the 7 and 5 in the first line specified the dimensions of

environment, since I had already noticed that its size was 7 x 5. I thought the second

line probably determined the initial location and direction of the fish, especially since

I noticed that every time I ran the program with this file the fish started out facing the

top of the screen.

Analysis Question Set 3:

1. If the numbers “3 2” in onefish.dat refer to the initial location of the fish in

the environment, how are locations in an environment numbered?

 

Exercise Set 3:

1. Look over another of the data files and then run the program using it. Are the

size of the environment and the initial locations and directions of the fish what

you expected based on the analysis of onefish.dat? 

2. Create a data file of your own and then run the program using it. Is the initial

configuration of the environment what you would have expected?
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Sneaking a Peek at Some Code

As I was compiling and running the program, I noticed two files called

SimpleMBSDemo1.java and SimpleMBSDemo2.java. I decided to run the first

one and discovered that it was a simpler version of the simulation program that

always ran for 15 timesteps. It wasn’t as interesting as the full version of the

program, but the filename said “Simple” so I thought that I might be able to read

it and understand it even before meeting with Jamie. I decided to look at the code.

public class SimpleMBSDemo1
{
    // Specify number of rows and columns in environment.
    private static final int ENV_ROWS = 10;   // rows in environment
    private static final int ENV_COLS = 10;   // columns in environment

    // Specify how many timesteps to run the simulation.
    private static final int NUM_STEPS = 15;  // number of timesteps

    // Specify the time delay for each step
    private static final int DELAY = 1000;    // delay in milliseconds

    /** Start the Marine Biology Simulation program.
     *  The String arguments (args) are not used in this application.
     **/
    public static void main(String[] args)
    {
        // Construct an empty environment and several fish in the
        // context of that environment.
        BoundedEnv env = new BoundedEnv(ENV_ROWS, ENV_COLS);
        Fish f1 = new Fish(env, new Location(2, 2));
        Fish f2 = new Fish(env, new Location(2, 3));
        Fish f3 = new Fish(env, new Location(5, 8));

        // Construct an object that knows how to draw the environment
        // with a delay; display the initial configuration of the
        // environment.
        SimpleMBSDisplay display = new SimpleMBSDisplay(env, DELAY);
        display.showEnv();

        // Run the simulation for the specified number of steps.
        for ( int i = 0; i < NUM_STEPS; i++ )
        {
            f1.act();
            f2.act();
            f3.act();
            display.showEnv();
        }
    }
}
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I noticed that the first few lines create named constants (ENV_ROWS, ENV_COLS,

NUM_STEPS, and DELAY) that can be used later in the class. However, it was the main

method that was most interesting to me, because I knew that this is where the program

execution starts. I saw that the first thing it does is to create a BoundedEnv object. I

figured that must represent the body of water — the “bounded environment”. The

program then creates three Fish objects, passing each one the environment and a

Location object. I couldn’t remember what the initial positions of the fish had been

when I ran the program, but it seemed reasonable that these Location objects were

determining the initial positions. (I decided to rerun the program to verify this.) I

wasn’t as sure about why the new fish were being passed the Environment object, and

made a note to ask Jamie when we met.

Next, the program creates an object called display of a class called

SimpleMBSDisplay. This seemed to be the object that was displaying the environment

on the screen. I noticed that the new SimpleMBSDisplay object is also passed the

environment when it is constructed, but this made sense to me if its job is to display the

environment. I assumed that the call

    display.showEnv();

actually does the displaying. The SimpleMBSDisplay constructor is also passed the

DELAY constant which, according to the comment, seemed to be the time delay between

timesteps that gives the user time to see what is happening.

Finally, the main method contains a loop in which the three fish are told to “act”

and then display is asked to show the environment again. I wondered, does “act”

mean “move”?
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Now I was curious about what the difference was between SimpleMBSDemo1.java

and SimpleMBSDemo2.java. I ran SimpleMBSDemo2.java, but it seemed to do

pretty much what SimpleMBSDemo1.java had done. (It was a little difficult to know

for sure, since the behavior of every run of the program was different anyway.) So

I decided to compare the code in the two files. The only differences are at the end

of the two programs.

   From SimpleMBSDemo1:
         // Construct an object that knows how to draw the environment with
         // a delay; display the initial configuration of the environment.
         SimpleMBSDisplay display = new SimpleMBSDisplay(env, DELAY);
         display.showEnv();

         // Run the simulation for the specified number of steps.
         for ( int i = 0; i < NUM_STEPS; i++ )
         {
             f1.act();
             f2.act();
             f3.act();
             display.showEnv();
         }

   From SimpleMBSDemo2:
         // Construct an object that knows how to draw the environment with
         // a delay.
         SimpleMBSDisplay display = new SimpleMBSDisplay(env, DELAY);

         // Construct the simulation object. It needs to have the environment
         // and the object that can draw the environment.
         Simulation sim = new Simulation(env, display);

         // Run the simulation for the specified number of steps.
         for ( int i = 0; i < NUM_STEPS; i++ )
         {
             sim.step();
         }

I found the code for SimpleMBSDemo2 harder to understand, and I was glad that I had

looked at SimpleMBSDemo1 first. First of all, SimpleMBSDemo2 constructs the display

object, display, but never asks it to show the environment. Secondly, even though

SimpleMBSDemo2 constructs three fish just as SimpleMBSDemo1 did, it never asks them

to act. Instead, it constructs an object of a new Simulation class, and in the loop asks

it to “step.” I noticed that the program passes the environment and the display object to

the Simulation constructor, so I assumed that the Simulation object must ask the

display object to show the environment when the Simulation object is constructed. I

also assumed that its step method must ask the fish to act, although I wasn’t sure how

since the program never passes the fish to the simulation.
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Later in the summer I created the picture below. It illustrates the behavior of a driver

in the marine biology simulation, such as the main method in SimpleMBSDemo2. (A

driver is a main method, applet, or graphical user interface that “drives” the rest of

the program.)

At this point I felt that I had learned about as much about the marine biology

simulation program as I could without Jamie’s “guided tour.” I had a basic idea about

how the program was working and I was ready to start exploring some of the code (like

the mysterious Simulation class!) in more detail.

The Driver
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Marine Biology Simulation
Case Study

Chapter 2

Guided Tour of the

Marine Biology Simulation Implementation

Before making any modifications to the marine biology simulation, I needed to

understand more thoroughly how the existing program worked. I had experimented,

running it in several different ways and with different initial data, but I didn’t know

much about the actual implementation. My next step was to meet with Jamie, an

experienced programmer who had known the original program developer and was

familiar with the code. This is Jamie’s “guided tour” of the simulation program.

[Educational prerequisites for this chapter: Students should be familiar with

reading class documentation, constructing objects and invoking methods, the

format of a class implementation (instance variables and methods), and the basic

flow control constructs (conditions and loops). Students should also be familiar

with 1-D Java arrays. Topics covered in this chapter include: object interaction,

class documentation, class implementation, instance and class variables,

interfaces, random numbers, the this keyword, equals vs ==, black box and

code-based testing, and analyzing alternative designs. The chapter introduces

and uses the following standard Java classes: ArrayList, Random, and Color.

It does not, however, cover all of the ArrayList methods with which students

are expected to be familiar. It touches on the difference between arrays and the

ArrayList class, but does not go deeply into the difference between these basic

data structures. The chapter also briefly introduces the protected keyword;

chapter 4 covers this concept more thoroughly.]
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The Big Picture

The marine biology simulation case study is a simulation program designed to help

marine biologists study fish movement in a small, bounded environment such as a lake

or bay. For modeling purposes, the biologists think of the environment as a rectangular

grid, with fish moving from cell to cell in the grid. Each cell contains zero or one fish.
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A simulation is often represented as a series of repeated timesteps. In this case, in

each timestep of the simulation every fish has an opportunity to move to one of its

immediately adjoining neighbors. Fish in this simulation only move forward and to the

side; they never move backward. Thus, the fish in row 3 and column 2 (also known as

location (3, 2)) in the illustration above has two neighboring locations to which it could

move, the one in front of it and the one to its right (locations (3, 3) and (4, 2)). The fish

in location (4, 8) has one location to which it could move, the one to its left.

One of the purposes of this simulation is to help the biologists understand how fish

movement is affected by the size and density of the fish population. To do this, they run

the simulation many times with different initial fish configurations. The program reads

a file that specifies the size of the environment, the number of fish, and their starting

locations. By changing the file read in by the program, the biologists can run the

simulation with different initial conditions and see what happens.

What classes are necessary?

To model fish swimming in a bounded environment, the program has Fish objects and

an Environment object. The purpose of the program is to simulate fish moving in the

environment, so the program also has a Simulation object. There are a number of

other useful, but less important classes, in the program, which I’ll call the “utility

classes.” We’ll get to those later, but these three are the core classes of the marine

biology simulation.

�

�

�
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What do objects of the core classes do?

The Simulation class has a step method that executes a single timestep in the

simulation, in which each fish has the opportunity to move to an adjoining location in

the grid. This leads to a number of design questions. Who is responsible for keeping

track of the fish in the environment? Who is responsible for actually moving a fish?

Who is responsible for knowing what behavior (moving, aging, breeding, dying, etc.) is

required as part of the simulation? The original programmer considered several options

and decided on the following design.

• The Fish class encapsulates basic information about a fish (color, location, and

so on) and basic fish behavior. For now, this behavior is just moving to an

adjacent cell.

• The Environment class models the rectangular grid, keeping track of the fish

in the grid. It does not care what their behavior is, except when that behavior

changes the number of fish in the grid or their locations. In fact, eventually the

original programmer realized that there is nothing about the behavior of the

environment that depends on the objects in it being fish. They could be band

members marching on a field, physics particles moving in a small space, or any

other object that you might want to model in a bounded, grid-like environment.

So, the Environment doesn’t refer to fish at all; instead, it models a grid of

generic objects.

• The Simulation class represents the behavior that happens in every timestep

of the simulation, fish movement in this case. Of course, the fish have to

know how to do whatever it is that the simulation wants them to do, so the

Simulation and the Fish classes share the responsibility for knowing what

behavior is required in the simulation.

What do the core classes look like?

The heart of this simulation is the step method in the Simulation class. To run

the program, though, something needs to repeatedly call step. This something is

called a driver. It could be a Java applet, for example, or an application with a

graphical user interface. It could even be a very simple main method, such as the

one in SimpleMBSDemo2, that constructs a Simulation object (let’s call it sim, for

example) and then calls step in a loop like the one below.

         for ( int i = 0; i < NUM_STEPS; i++ )
            sim.step();
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The Simulation Class

The Simulation class is actually quite simple. It has two methods: a constructor and

the step method. The class, with most of its comments and debugging statements

removed, is shown below.

    public class Simulation
    {
        private Environment theEnv;
        private EnvDisplay theDisplay;

        public Simulation(Environment env, EnvDisplay display)
        {
            theEnv = env;
            theDisplay = display;
            theDisplay.showEnv();
        }

        public void step()
        {
            // Get all the fish in the environment and ask each
            // one to perform the actions it does in a timestep.
            Locatable[] theFishes = theEnv.allObjects();
            for ( int index = 0; index < theFishes.length; index++ )
            {
                ((Fish)theFishes[index]).act();
            }
            theDisplay.showEnv();
            Debug.println(theEnv.toString());
            Debug.println("———— End of Timestep ————");
        }
    }
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The constructor receives two parameters, an Environment object and an EnvDisplay

object. EnvDisplay is one of the utility “classes” I mentioned earlier. It is actually

an interface instead of a class. An interface is like a class, but it just specifies what

methods should be implemented without actually implementing them. A program with

an interface needs to also have at least one class that implements the interface, in other

words, that provides implementations for all the methods that the interface specifies.

In this case, the EnvDisplay interface specifies a single method, showEnv. The

SimpleMBSDisplay class in SimpleMBSDemo2 is one class that implements the

EnvDisplay interface, so a SimpleMBSDisplay object can be passed as the

EnvDisplay parameter to the Simulation constructor. There could be other classes

that display the environment in other ways (such as a text-based display or a display

that uses pictures rather than graphical shapes to represent the fish); as long as they

implement the EnvDisplay interface, the step method will work just fine.‡

Because the Simulation constructor needs the environment and display, the driver

(applet, main method, or user interface) that constructs the Simulation object must

construct the environment and display objects first. The Simulation constructor

then stores the two parameters so the step method can use them later and asks the

EnvDisplay object to display the initial environment configuration.

The step method represents what happens in a single simulation timestep. First, it asks

the environment for a list of all its objects (fish), which the environment returns as an

array of Locatable objects. Locatable is another interface defined within the marine

biology simulation program. Recall that an environment can contain many different

kinds of objects (fish, band members, and so on). Any object stored in an environment

must implement the Locatable interface, though. This means that it must keep track

of its location in the environment, and it must provide a location method to report

its location. The Fish class used by the marine biology simulation implements the

Locatable interface, as we’ll see later. A BandMember class or PhysicsParticle

class would also have to implement the Locatable interface if their objects were going

to be put in an environment.

Once the step method has received the list of Locatable objects (fish, in this case)

from the environment, it loops through them, asking each one to carry out whatever

actions it performs in a single timestep. The Locatable interface does not have an act

method, but the Fish class does. Since all the Locatable objects in the marine biology

simulation’s environment are actually instances of the Fish class, the step method

can cast the current Locatable object to the Fish class and call the act method

associated with Fish. (Analysis questions in Chapter 5 consider alternatives to this

design choice.) Next, the step method asks the EnvDisplay object to display the

state of the environment after the timestep.

‡ EnvDisplay and the other utility classes are “black box classes” in the case study. You do not need to

read or understand the implementations of these classes unless you want to; they will not be tested on

the AP Exam. You should, however, be familiar with the class documentation for EnvDisplay and

the other utility classes listed in the Quick Reference at the end of this chapter. You should also be

thoroughly familiar with the core classes, including the calls they make to utility class methods, such

as the showEnv method.
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The Simulation constructor and step method also include several calls to

Debug.println, although the code above doesn’t show the calls in the constructor.

The Debug class is another utility class. Debug.println is like System.out.println,

except that the string will only be printed if debugging has been turned on. There are

other methods in the Debug class to turn debugging on and off. Because the step

method does not include a call to one of these methods, we can assume that debugging

is off unless the method that called step turned it on.
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Analysis Question Set 1:

1. At the end of Chapter 1, Pat wondered how the step method asks the fish to

act when SimpleMBSDemo2 never passes the fish to the simulation. How does

step know what fish to ask to act? How did it get enough information from

the driver to be able to do this?

2. How does the code in the Simulation class explain the differences between

SimpleMBSDemo1 and SimpleMBSDemo2?

The Environment Interface

Environment is another interface! An environment object in the marine biology

simulation program models a rectangular grid that contains objects at various grid

locations. Jamie told me that since I would not be modifying the environment as part

of my summer project, I could treat it as a “black box.” A black box object or module

is one whose internal workings are hidden from the user. A classic example in the real

world is a toaster; most people know how to use a toaster without ever looking inside

it to see how it is wired.

Treating the environment as a black box meant that I only had to worry about the list

of public operations that objects of other classes, also known as client code, can use.

Thus, I only had to become familiar with the Environment interface, and not with the

classes that implement it. (Thinking back to SimpleMBSDemo1 and SimpleMBSDemo2,

though, I could guess that BoundedEnv must be a class that implements this interface.)

A partial list of the public operations specified in Environment, including those used by

methods in the Simulation and Fish classes, appears below.

Partial List of Public Methods in the Environment Interface

Direction randomDirection()
Direction getDirection(Location fromLoc, Location toLoc)
Location getNeighbor(Location fromLoc, Direction compassDir)
ArrayList neighborsOf(Location ofLoc)

int numObjects()
Locatable[] allObjects()
boolean isEmpty(Location loc)
Locatable objectAt(Location loc)

void add(Locatable obj)
void remove(Locatable obj)
void recordMove(Locatable obj, Location oldLoc)

other tested methods not shown; see the class documentation in the

Documentation folder
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The first four methods in this partial list, randomDirection, getDirection,

getNeighbor, and neighborsOf, deal with navigating around the environment using

locations and directions. Location and Direction are two more utility classes: a

Location object encapsulates the row and column of a cell in the environment grid,

while the Direction class represents a compass direction and provides several

constants such as Direction.NORTH and Direction.SOUTH. A partial list of the

methods and constants for these classes is shown below. The randomDirection

method in the Environment interface returns a randomly chosen valid direction,

such as NORTH, SOUTH, EAST, or WEST. The getNeighbor method takes a location,

fromLoc, and a direction, compassDir, and returns the location that is the neighbor

of fromLoc in the given direction. For example, if fromLoc is the location (2, 4),

then getNeighbor(fromLoc, Direction.NORTH) would return the location (1, 4).

Similarly, the getDirection method returns the direction required to get from one

location to another. If toLoc is the location (3, 4), then getDirection(fromLoc,

toLoc) would return Direction.SOUTH. Finally, the neighborsOf method returns

all the neighbors of a given location in an ArrayList object. (ArrayList is a standard

Java class, found in java.util.) The call neighborsOf(fromLoc), for example,

would return a list containing the locations (1, 4), (2, 5), (3, 4), and (2, 3), although not

necessarily in that order.

The other methods in the Environment interface deal with the objects in the

environment, all of which must be Locatable objects. (Their classes must all have a

location method.) The numObjects method indicates how many Locatable objects

there are in the environment. The allObjects method returns a list of them in an

array; in the marine biology simulation, that array contains Fish objects. (Fish are

valid Locatable objects.) The isEmpty method indicates whether a particular location

in the grid is empty, while the objectAt method returns the object at the location.

Next, there are three methods that modify the environment: add, which adds a new

object to the environment; remove, which removes an object from the environment;

and recordMove, which records the fact that an object moved from one location to

another. The recordMove method is necessary because the environment needs to know

if a Locatable object (a fish, in this case) thinks it is now at a different location.

Selected Public Constants and Methods in:

Location Direction

Location(int row, int col) Constants: NORTH, SOUTH, EAST, WEST
int row() Direction()
int col() Direction(String str)
boolean equals(Object other) Direction toRight(int degrees)

Direction toLeft(int degrees)
Direction reverse()
boolean equals(Object other)

other tested constants and methods not shown; see the class documentation in

the Documentation folder
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Analysis Question Set 2:

Assume that env is a valid 20 x 20 BoundedEnv object. (BoundedEnv is a

class that implements the Environment interface.) Consider the following

code segment.

Location loc1 = new Location(7, 3);

Location loc2 = new Location(7, 4);

Direction dir1 = env.getDirection(loc1, loc2);

Direction dir2 = dir1.toRight(90);

Direction dir3 = dir2.reverse();

Location loc3 = env.getNeighbor(loc1, dir3);

Location loc4 = env.getNeighbor(new Location(5, 2), dir1);

1. What locations would you expect in the ArrayList returned by a call to

env.neighborsOf(loc1) after this code segment?

2. What should be the value of dir1?

3. What should be the value of dir2? of dir3?

4. What location should loc3 refer to?

5. What location should loc4 refer to?

6. Read the class documentation for the Location and Direction classes.

What other constructors and methods do they have? How might you use

their toString methods in a program? What do the additional toRight and

toLeft methods in Direction do?

Exercise Set 1:

1. Write a simple driver program that constructs a BoundedEnv environment

(similar to the one in SimpleMBSDemo1) and then test your answers to the

Analysis Questions above. The ArrayList, Location, and Direction

classes all implement the toString method to provide useful output.

2. In your driver program, use the inDegrees method from the Direction class

to discover the degree representations for the Direction constants NORTH,

SOUTH, EAST, and WEST. What is the value of dir3 in degrees?
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The Fish Class

A Fish object has several attributes, or features. It has an identifying number, its ID,

which is useful for keeping track of the different fish in the simulation, especially during

debugging. It has a color, which is used when displaying the environment. A fish also

keeps track of the environment in which it lives, its location in the environment, and the

direction it is facing. The Fish class encapsulates this basic information about a fish with

its behavior. A list of the methods in the Fish class appears below.

Methods in the Fish Class

public Fish(Environment env, Location loc)
public Fish(Environment env, Location loc, Direction dir)
public Fish(Environment env, Location loc, Direction dir, Color col)
private void initialize(Environment env, Location loc,
                        Direction dir, Color col)

protected Color randomColor()

public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()

public void act()

protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)

The constructors, related helper methods, and fields:

The Fish class has three constructor methods. All three require that the client

code constructing the fish specify the environment in which the fish will live and its

initial location in that environment. The second constructor allows the client code

to specify the fish’s direction, while the third allows client code to specify both the

direction and the color. (Color‡ is a standard Java class found in java.awt.) Rather

than repeating the code to initialize a new fish’s state in all three constructors, the

original programmer chose to have them call an internal helper method, initialize.

‡ The Color class is not part of the AP Computer Science Java subset, but is useful for this case study.

Students will be expected to be able to use the Color constructor and constants documented in the Quick

Reference at the end of this chapter, which will also be available as a reference during the AP Exam.
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This method has four parameters (environment, location, direction, and color). The

Fish constructors call methods to choose random directions and colors for fish whose

direction and color were not provided by the client code. The Environment class has a

randomDirection method, which the first Fish constructor uses to randomly choose a

direction for the fish. Unfortunately, the Color class does not provide a randomColor

method, so the original programmer implemented one in the Fish class. The code below

shows the Fish constructors and the initialize method.

    // Class Variable: Shared among ALL fish
    private static int nextAvailableID = 1;   // next avail unique identifier

    // Instance Variables: Encapsulated data for EACH fish
    private Environment theEnv;    // environment in which the fish lives
    private int myId;            // unique ID for this fish
    private Location myLoc;      // fish's location
    private Direction myDir;     // fish's direction
    private Color myColor;       // fish's color

    // constructors and related helper methods
    public Fish(Environment env, Location loc)
    {
        initialize(env, loc, env.randomDirection(), randomColor());
    }

    public Fish(Environment env, Location loc, Direction dir)
    {
        initialize(env, loc, dir, randomColor());
    }

    public Fish(Environment env, Location loc, Direction dir, Color col)
    {
        initialize(env, loc, dir, col);
    }

    private void initialize(Environment env, Location loc,
                            Direction dir, Color col)
    {
        theEnv = env;
        myId = nextAvailableID;
        nextAvailableID++;
        myLoc = loc;
        myDir = dir;
        myColor = col;
        theEnv.add(this);
    }
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The initialize method initializes four of the fish’s five instance variables, theEnv,

myLoc, myDir, and myColor, from its parameters. The remaining instance variable,

myID, is initialized from the class variable called nextAvailableID. Instance variables

encapsulate the data (or state) of an object, whereas all objects of the class share a

class variable. Class variables are indicated by the static keyword. (Some textbooks

use the term field, which is more general and refers to instance variables, class variables,

and constants.) The Fish class variable, nextAvailableID, is a single integer that

all Fish objects have access to. Each fish initializes its own ID to the current value of

nextAvailableID and then increments it for the next fish. The first fish gets ID 1, the

next one gets 2, and so on. If nextAvailableID were an instance variable, like myLoc

and myColor, every fish would have its own copy of the variable, and incrementing the

value would have no affect on the other fish. As a result, every fish would end up having

the same ID. Since nextAvailableID is a class variable and not tied to any single

object of the Fish class, it must be initialized when it is declared in the class rather than

in the Fish constructor.‡

The last line in initialize tells the environment to add the new fish to the

environment. (The this keyword refers to the object being constructed.) It is

important that this line comes after the initialization of myLoc because the add

method in Environment uses the object’s location to place it in the environment.

(Remember that all objects in an environment must be Locatable.) At this point

the fish is fully constructed and ready to act; its instance variables are initialized

and it has been placed in the appropriate location in the environment.

The randomColor method called by the first two Fish constructors generates a

random color using three randomly chosen integers in the range of 0 to 255,

representing the red, green, and blue aspects of the color. First, though, randomColor

has to get a random number generator, as shown in the code on the next page.

The RandNumGenerator class is a class that has just one method, getInstance.

The method is static, meaning that, like a class variable, it is tied to the

RandNumGenerator class, not to any particular object, and you can call it

using the class: RandNumGenerator.getInstance(). The purpose of the

getInstance method is to get a Random object (Random is a standard Java class

found in java.util) that can be used to generate random numbers (or, technically,

pseudo-random numbers). In fact, the call RandNumGenerator.getInstance()

always returns the same Random object, no matter how often it is called.‡‡

‡ Class variables are not part of the AP Computer Science Java subset, but are useful for this case study.

However, they will not be tested on the AP Exam.

‡‡ The advantage of using the Random object returned by RandNumGenerator.getInstance() rather

than constructing a new Random object directly, is that always using the same random number generator

produces a better set of random numbers. Multiple random number generators in a program can generate

sequences of numbers that are too similar.
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The nextInt method in the Random class takes an integer parameter, n, to generate

a random number in the range of 0 to n-1, so the call randNumGen.nextInt(256)

returns one of the 256 integers from 0 to 255. The randomColor method calls nextInt

three times to generate a color with a random amount of red, green, and blue.

    protected Color randomColor()
    {
        // There are 256 possibilities for the red, green, and blue
        // attributes of a color.
        // Generate random values for each color attribute.
        Random randNumGen = RandNumGenerator.getInstance();
        return new Color(randNumGen.nextInt(256),  // amount of red
                         randNumGen.nextInt(256),  // amount of green
                         randNumGen.nextInt(256)); // amount of blue
    }

One thing I noticed about randomColor (and the other helper methods further down in

the Fish class) is that it is declared protected, rather than public or private. I was

not familiar with the protected keyword. Jamie told me that it would be useful when

I started creating new types of fish, but that in the meantime I could pretend that

randomColor and the other helper methods were private. Like private methods,

they are internal methods provided to help methods in the Fish class get their job done,

and are not meant to be used by external client code.‡

‡ The protected keyword is not part of the AP Computer Science Java subset. Students will be expected

to be able to use and redefine protected methods on the AP Exam in the context of the case study,

but will not be tested on the visibility rules of protected methods. Note that although Jamie told Pat

to pretend that the protected methods are private, Java compilers will not actually keep external

client code in the marine biology program from accessing these methods. See the Specialized Fish chapter

and the Teacher’s Manual for a more detailed discussion of the protected keyword and its use in the

case study.
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Analysis Question Set 3:

Assume that env is a valid 20 x 20 BoundedEnv object. Consider the following

code segment.

    Location loc1 = new Location(7, 3);
    Location loc2 = new Location(2, 6);
    Location loc3 = new Location(4, 8);
    Fish f1 = new Fish(env, loc1);
    Fish f2 = new Fish(env, loc2);

1. What should be the return value of env.numObjects() after this code segment?

2. What should be the return value of env.allObjects()?

3. What should be the return value of env.isEmpty(loc1)?

4. What should be the return value of env.isEmpty(loc3)?

5. What should be the return value of env.objectAt(loc2)?

6. Read the class documentation for the Environment interface. What should be

the return value of env.objectAt(loc3)?

7. Based on what you know about the Fish constructors, does it make sense to

add a fish directly to the environment from client code using the add method

in Environment?

8. Why isn’t the initialize method a public method?

9. Could the reference to the environment (theEnv) have been a class variable

rather than an instance variable?
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Exercise Set 2:

1. Write a simple driver program that constructs a BoundedEnv environment

(similar to the one in SimpleMBSDemo1) and then tests your answers to the

Analysis Questions on the previous page. The Fish and Location classes

implement the toString method to provide useful output. To print the

objects in a Java array, though, you will need to step through the array and

get the string representation for each individually. (Remember that the

Simulation step method has an example of stepping through an array

returned by the allObjects method.)

2. Add a few more fish to your program and verify that numObjects and

allObjects behave as you expect. Remove a few fish using the

Environment remove method and test numObjects and allObjects again.

Then test isEmpty; does it behave as you expect if you pass it the location of

one of the fish you removed?

3. Add one of your fish to the environment using the add method in the

Environment class. What happens? Why?

Simple accessor methods in Fish:

public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()

The simplest methods in the Fish class are those that correspond to its conceptual

attributes: id, environment, color, location, and direction. For example, the

code for the id method appears below.

    public int id()
    {
        return myId;
    }

The location method is particularly important, because it is this method and the

"implements Locatable" phrase at the beginning of the Fish class definition that

make Fish valid Locatable objects. In other words, the location method and the

"implements Locatable" phrase make Fish valid objects to put in an environment.
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The other two accessor methods are isInEnv and toString. The toString method is

a typical Java method that captures basic information about a fish and puts it in a string

for display or debugging purposes. The isInEnv method, though, is more interesting. It

tests whether the fish is in the environment and at the location where it thinks it is. This

should always be the case, and if it isn’t the case, the fish is in an inconsistent state.

What does it mean, for example, to ask a fish for its location in the environment with

the location method if the fish isn’t in an environment at all? What does it mean to

ask the fish to move in that situation? The isInEnv method provides a way to test

whether the fish is in a consistent state by asking the environment for the object at the

location where the fish thinks it should be and testing that the found object is the fish

itself. (The keyword this in a Java method refers to the object on which the method

was invoked.)

    public boolean isInEnv()
    {
        return ( environment().objectAt(location()) == this );
    }

Analysis Question Set 4:

1. Does a fish start out in a consistent or inconsistent state? In other words, is it

in a consistent state immediately after it is constructed?

2. How could a fish get into an inconsistent state? (Hint: look at the methods

available in the Environment interface.)

 

Fish movement methods — act and its helper methods:

public void act()
protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)

The most important method in the Fish class from the client code’s perspective is the

act method. This is the method in which a fish does whatever action is appropriate for

a single timestep in the simulation. The code for the act method, though, actually does

very little. It first checks that the fish is still alive and well in the environment (in other

words, in a consistent state) and then, if it is, calls the internal, protected move method.

    public void act()
    {
        if ( isInEnv() )
            move();
    }
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The move method first looks for a location to which the fish can move. The

nextLocation method returns the next location the fish should move to; if the fish

can’t move, nextLocation returns the current location. If the new location is not

equal to the current location (the fish can move), move calls another helper method,

changeLocation, to actually move there. It also changes direction to reflect the

direction it moved. For example, if a fish facing north at location (4, 7) were to move

west to location (4, 6), it would change its direction to show that it moved west. The

code for the move method, with debugging messages and comments removed, is shown

below. It uses the equals method in the Location class rather than the == operator

because it only cares whether the row and column values are the same, which is what

the equals method checks, not whether the two locations are exactly the same

Location object.

    protected void move()
    {
        Location nextLoc = nextLocation();

        if ( ! nextLoc.equals(location()) )
        {
            Location oldLoc = location();
            changeLocation(nextLoc);

            Direction newDir = environment().getDirection(oldLoc, nextLoc);
            changeDirection(newDir);
        }
    }

The picture below illustrates the behavior of the Fish act and move methods.
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Analysis Question Set 5:

Consider the following variable definitions.

    Location loc1 = new Location(7, 3);
    Location loc2 = new Location(2, 6);
    Location loc3 = new Location(7, 3);

1. What does the expression loc1 == loc1 evaluate to? What about

loc1.equals(loc1)?

2. What does the expression loc1 == loc2 evaluate to? What about

loc1.equals(loc2)?

3. What does the expression loc1 == loc3 evaluate to? What about

loc1.equals(loc3)?

The nextLocation method called by move finds the next location for the fish. A fish

can move to the cell immediately in front of it or to either side of it, so long as the cell

it is moving to is in the environment and empty. The first thing nextLocation does,

therefore, is to get a list of all the neighboring locations that are in the environment

and that are empty. It calls the emptyNeighbors helper method to do this. Then it

removes the location behind the fish from the list, since the fish is not allowed to move

backward. Finally, nextLocation randomly chooses one of the valid empty locations

and returns it (or returns the current location, if the fish can’t move). The pseudo-code

below summarizes the activities of the nextLocation method.

     Pseudo-code for nextLocation method

     get list of neighboring empty locations (by calling emptyNeighbors())
     remove the location behind the fish
     if there are any empty neighboring locations
         return a randomly chosen one
     else
         return the current location
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Analysis Question Set 6:

1. Why does the Fish class need an emptyNeighbors method? Why doesn’t

nextLocation just call the neighborsOf method from the Environment class?

The emptyNeighbors method, shown below, is pretty straightforward, so we’ll look at

it before continuing on with nextLocation. In emptyNeighbors, the fish first asks the

environment for a list of all its neighboring locations. Since the neighboring locations

are not necessarily empty, emptyNeighbors constructs a new list and copies all the

neighbors that happen to be empty into the new list. The emptyNeighbors method

doesn’t know in advance how many empty neighbors there will be, so the emptyNbrs

list is an ArrayList, a list that can grow and shrink after it is created. (ArrayList is a

standard Java class found in java.util.) This is the list that emptyNeighbors returns.

    protected ArrayList emptyNeighbors()
    {
        // Get all the neighbors of this fish, empty or not.
        ArrayList nbrs = environment().neighborsOf(location());

        // Figure out which neighbors are empty and add those
        // to a new list.
        ArrayList emptyNbrs = new ArrayList();
        for ( int index = 0; index < nbrs.size(); index++ )
        {
            Location loc = (Location) nbrs.get(index);
            if ( environment().isEmpty(loc) )
                emptyNbrs.add(loc);
        }

        return emptyNbrs;
    }

At this point I was curious, so I asked Jamie why the neighborsOf method in

Environment returns an ArrayList rather than an array. It seemed to me that

neighborsOf would always know how many locations it was returning. Jamie pointed

out that in a bounded environment some of a location’s neighbors would be out-of-

bounds. The neighborsOf method only returns valid neighbors, so nbrs.size() in

emptyNeighbors does not always evaluate to 4. Since neighborsOf only returns

locations that are in the environment, we know that emptyNeighbors does too.
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Exercise Set 3:

1. Modify your driver program from Exercise Set 2 to find out how many

neighboring locations there are around locations (0, 0), (0, 1), and (1, 1).

2. What are those neighbors? Print them out.

3. Based on the dimensions you gave your bounded environment, what other

locations have the same number of neighbors?

What happens once emptyNeighbors returns the list of empty neighboring locations

to nextLocation? Since fish cannot move backward, nextLocation calculates the

“backward” direction and removes the neighbor in that direction, if it is in the list. To

do this, it calls the remove method in ArrayList that takes an object (in this case a

Location object) as a parameter, finds an equivalent object in the list, and removes it.‡

    protected Location nextLocation()
    {
        // Get list of neighboring empty locations.
        ArrayList emptyNbrs = emptyNeighbors();

        // Remove the location behind, since fish do not move backwards.
        Direction oppositeDir = direction().reverse();
        Location locationBehind = environment().getNeighbor(location(),
                                                oppositeDir);
        emptyNbrs.remove(locationBehind);
        Debug.print("Possible new locations are: " + emptyNbrs.toString());

        // If there are no valid empty neighboring locations,
        // then we're done.
        if ( emptyNbrs.size() == 0 )
            return location();

        // Return a randomly chosen neighboring empty location.
        Random randNumGen = RandNumGenerator.getInstance();
        int randNum = randNumGen.nextInt(emptyNbrs.size());
        return (Location) emptyNbrs.get(randNum);
    }

‡ There are two remove methods in ArrayList. One takes an integer index as a parameter and removes

whatever object is at that index; the other takes an object as its parameter and finds and removes the

equivalent object from the list. The second remove method is not part of the AP Computer Science Java

subset, but is useful for this case study. It may be tested on the AP Exam in the context of the case study.



Chapter 2 38

As long as there are any empty neighboring positions left in the list, the fish

randomly chooses one of them as its new position. As in the randomColor

method, RandNumGenerator.getInstance() returns the one instance of the

java.util.Random class being used in the simulation program. Recall that the

nextInt method takes an integer parameter, n, and generates a random number in the

range of 0 to n-1. For instance, if the size of the emptyNbrs list is 3, then randNum will

be set to one of the three numbers 0, 1, or 2. The nextLocation method then uses that

random number as the index into the emptyNbrs list and calls the get method in

ArrayList to retrieve the location at the specified index. An ArrayList stores its

objects generically as Object instances, so the location in the emptyNbrs list must be

cast to the Location class before nextLocation can return it to the move method as

the newly chosen location.

Analysis Question Set 7:

Consider the following bounded environments.

 

1. How many neighboring locations would the Environment neighborsOf

method return for location (1, 0) in each environment?

2. How many neighboring locations would emptyNeighbors return for the fish

in location (1, 0) in each environment?

3. What are the possible locations that nextLocation might return for the fish

in location (1, 0) in each environment?

�

�

�

�

�

�

�

� �
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We already saw that once the move method knows where it wants to move, it calls

changeLocation to actually move there and changeDirection to actually change

the direction. These methods change the myLoc and myDir instance variables. The

changeLocation method also notifies the environment to update itself. This is

necessary because the environment keeps track of the locations of all its objects, and

it is critical that the fish and environment agree where the fish is. To do this, the fish

passes both itself and its old location to the recordMove method in Environment. It

does not need to pass its new location to recordMove; the environment knows that the

object is Locatable, so it asks the object for the new location.

    protected void changeLocation(Location newLoc)
    {
        // Change location and notify the environment.
        Location oldLoc = location();
        myLoc = newLoc;
        environment().recordMove(this, oldLoc);

        // object is again at location myLoc in environment
    }

    protected void changeDirection(Direction newDir)
    {
        myDir = newDir;
    }

Note that the isInEnv, nextLocation, emptyNeighbors, changeLocation,

and changeDirection methods use calls to the fish’s own accessor methods,

direction(), location(), and environment(), rather than accessing myDir,

myLoc, or theEnv directly. This is good programming practice, even though it’s a little

harder to read, because it limits the number of places in the code that depend on the

internal representation of the object’s data. (It also turned out to be useful later when

implementing other types of fish.) In the statements that modify the fish’s location and

direction, though, changeLocation and changeDirection set myLoc and myDir

directly, since they can’t use accessor methods to modify values.
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Analysis Question Set 8:

1. Consider the fish in location (2, 2) in the example at the beginning of

this chapter. Step through the move and nextLocation methods for this

fish. What will emptyNeighbors return to nextLocation? What will

oppositeDir be set to? Where might the fish move?

2. Now that you’ve seen all the methods in the Fish class, consider modifying it

to keep track of a fish’s age. What changes would you need to make to the

Fish class?

 

Exercise Set 4:

1. Modify the Fish class to add a public changeColor method. The method

should take the new color as a parameter.

2. Modify SimpleMBSDemo2 to test your new changeColor method. Construct

new fish using the third Fish constructor, specifying the color of each fish as

you construct it. Change the color of at least one fish at some point in the

simulation. For example, you might modify the simulation loop so that one of

your fish changes to Color.red at the beginning of even numbered timesteps

and Color.yellow at the beginning of odd ones. The Java Color class

provides a number of constant color values, such as red, orange, yellow,

green, blue, and magenta. To use these constants, you will need to import

java.awt.Color into SimpleMBSDemo2.java and you will need to refer to

the colors by their “full names” (Color.red, and so on).
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Test Plan

A crucial element in any software development project is a well-defined test plan. The

test plan should consist of test cases derived from the problem specification (known

as “black box test cases” because they treat the entire program as a black box) and

test cases derived from an analysis of the code. The test plan should also include the

expected results for every test case. It is very important to identify the expected results

for each test before running it, or else subtle errors may not be caught.

Testing Programs with Random Behavior

Programs with random behavior can be difficult to test. Every time the program is

run you get different results. This makes it difficult to say what the expected results

of a given test case should be and, therefore, whether the actual results are correct.

Another difficulty is verifying that the probabilities of various behaviors are correct.

For example, a fish with two neighboring empty locations should move to each one

half the time, but that does not mean that in actual tests it will go to each location

exactly half the time. It might go to one slightly less than half the time and go to the

other slightly more than half the time and still be exhibiting correct behavior. The

challenge is to analyze test results and determine whether they demonstrate the

appropriate probabilities.

One technique for testing programs using random numbers is to seed the random

number generator. This will cause the generator to create the same sequence of pseudo-

random numbers every time the program is run, leading to predictable results. For

example, the initial configuration file specifies the initial location and direction of each

fish, but not its color. If we seed the random number generator, then the initial colors

of the fish and their behavior in each timestep will be the same every time we run the

simulation. If a given fish is constructed facing south and has empty neighboring

locations to its south and east, it will always move either south or east in the first

time step.

Another technique is to run the program many times, without seeding the random

number generator. Each run will yield different results, but the accumulation of results

will demonstrate whether the probabilistic behavior is as expected. For example, a fish

facing south with empty neighboring locations to its south and east will move south

approximately half the time and move east the rest of the time.

A third technique is to include many different test cases in each run and see if the

numerous cases create the range of expected behavior. For example, if we have many

different south-facing fish with empty neighboring locations to the south and east,

approximately half of them should move south and half should move east in any given

timestep. This technique can be combined with a seeded random number generator to
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test probabilistic behavior with predictable results. Although the behavior of all the

fish will be the same every time we run the simulation, with enough fish and enough

timesteps we can test many different test cases and see a range of behaviors. An added

benefit is that after the first run we can predict exactly which fish will show which

behavior in which timestep. This predictability makes it easier to test that a program

modification does what we want (and doesn’t break anything else).

Black Box Test Cases

The problem specification defined the following requirements for the simulation.

• No cell should have more than one fish.

• In each timestep, each fish should

• move to a randomly-chosen adjacent empty location, but

• never move backward.

• Initial configuration information for the environment should be provided

in a file.

The second and third requirements yield the following test cases and informal expected

results after a single timestep. Many of the tests regarding the initial configuration file

are boundary tests, testing extreme conditions like an empty file or a completely

full environment.

• An empty file or one that contains invalid data (such as just one dimension for

the environment) should generate an error.

• A valid file with valid environment dimensions but no fish should result in an

empty environment, but no errors.

• A file with a single fish should run with no errors. (The behavior of the fish will

depend on its starting location.)

• A file with two or more fish in the same location should generate an error.

• A file with a fish in every location in the environment (but only one fish in

every location) should run with no errors. None of the fish should move.

• A fish with no empty locations around it should stay where it is.

• A fish with a single adjacent empty location in front or to the side of it should

always move there.

• A fish with a single adjacent empty location behind it should stay where it is.

• A fish with two adjacent empty locations in front or to the side of it should

move to either of its neighboring empty locations with equal likelihood, never

staying where it is and never moving backward.

• A fish with three adjacent empty locations in front and to the side of it should

move to any of its three neighboring empty locations with equal likelihood,

never staying where it is and never moving backward.
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These test cases lead to actual test runs, such as one with an empty configuration file,

a file with valid environment dimensions but no fish, and a file with as many fish as

there are locations in the environment. The fish configuration at the beginning of this

chapter, repeated here, could form the basis of another test run. This would test the case

of a fish with a single valid location to which it could move (the fish in the lower right

corner), and the cases of fish with two and three valid neighboring locations. The

fish.dat file could form the basis of another test run.

 0 1 2 3 4 5 6 7 8
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Test Cases Based on Code

Additional test cases may come from analysis of the code, once it is written. For

example, consider the act and emptyNeighbors methods in the Fish class. The black

box test cases do not cover the test case from the act method in which the method asks

a fish that has been removed from the environment to act. Similarly, consider the loop

with the embedded conditional statement in emptyNeighbors. The tests we need

include a case where execution does not enter the loop (there are no neighboring

locations, empty or not), a case where it loops through once (one neighbor), a case

where it loops through multiple times (multiple neighbors), a case where execution

enters both the loop and the body of the if statement (a neighboring location that is

empty), and a case where the if statement is false (at least one neighboring location

that is not empty). The black box test cases cover the last three cases, but not the first

two. To test the situation in which a fish has absolutely no neighbors requires a test run

with a 1 x 1 environment with a fish in the only cell.

Analysis Question Set 9:

1. Some exceptional cases only happen if the program itself is wrong. Others

might occur even if the program is correct; if, for example, the format of the

initial configuration file is wrong. Identify at least one exceptional case that

can easily be tested by modifying the initial configuration file.

2. Which black box test cases cover the last three cases for the loop with an

embedded conditional statement in emptyNeighbors (multiple neighboring

locations, an empty neighboring location, a non-empty neighboring location)?

3. What kind of environment would you construct to test the situation in which a

fish has exactly one valid neighboring location?

�

�

�
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The Debug Class

In addition to observing the actions of the simulation by manipulating the initial

configuration file and noting the results after each timestep, we can watch the

simulation execute by running it with a debugger or, at a less detailed level, by calling

the Debug.println method in the program. The Debug class is another utility class,

some of whose methods are shown below.

Selected Public Methods in the Debug Class

static void turnOn()
static void restoreState()
static void print(String message)
static void println(String message)

other tested methods not shown; see the class documentation in the

Documentation folder

All Debug methods are static, meaning that they are not tied to any particular Debug

object, and it is not necessary to create a Debug object to call them. The print and

println methods are like System.out.print and System.out.println, except

that they will print only if debugging has been turned on. To trace what is happening

during a fish move, for example, we could add

    Debug.turnOn();

to the beginning of the Fish move method. The debugging output will show all of the

neighboring locations around a fish (empty or not) and indicate whether the fish is stuck

or which location it is moving to if it moves. Seeing this information for a number of fish

over a number of moves can help us verify that the neighborhoods are correct and that

the fish are moving in various directions in the proportions we expect. Before the move

method returns, a call to

    Debug.restoreState();

restores debugging to whatever it was before the call to turnOn. If debugging had been

off, the call to restoreState will turn it off again. If debugging had already been on,

the call to restoreState will keep it on.
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Exercise Set 5:

1. Run the simulation. Set the seed to any arbitrary value (for example, 17).

Run the simulation several times with the same configuration file and the same

seed value to make sure that every run displays the same behavior. Run the

simulation several times with the same configuration file but with different seed

values; does every run display the same behavior, or different behavior?

[Reminder: In the distributed version of the case study, the class

containing the main method is MBSGUI. To set the seed, select “Use

fixed seed . . .” from the Seed menu.]

2. Turn on debugging in the Simulation step method right before the first line

with a Debug.println statement. Restore the debugging state immediately

after the calls to Debug.println. Run the program. What does the output

tell you?

3. Run the simulation with the fish.dat initial configuration file. Make a

record of the test cases covered by the first 5 timesteps of your run, including

the actual results.

4. If you’re running a user interface that has a Save function, save a copy

of the results after 5 timesteps. Give the file a descriptive name, like

after5steps.dat. Run the program for 10 timesteps and save the results

in another file with a descriptive name.

5. Looking at your results from each timestep in the test in Exercise 3, can you

determine the order in which the environment’s allObjects method returns

the fish? How does that order influence how many empty neighbors there are

around each fish?

6. Look at the fish.dat initial fish configuration file. The first line specifies

that the environment is bounded and then gives its dimensions (number of

rows followed by number of columns). Each line after that has the class name

of an object in the environment (Fish, in this case) and its location (row and

column) and direction. Design test data to test black box test cases that have

not already been covered by fish.dat.

7. Determine the test cases required to test the move, nextLocation, and

emptyNeighbors methods in the Fish class, based on their code. Have your

test cases been tested by the black box test cases?
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What alternative designs did the original

programmer consider?

The implementation of the marine biology simulation program flows from a number

of design decisions made early on. The original programmer considered other design

possibilities as well, all of which address several fundamental questions. Who is

responsible for keeping track of the fish in the environment? Who is responsible for

actually moving a fish? Who is responsible for knowing what behavior (moving, aging,

breeding, dying, etc.) is required as part of the simulation? Consider, for example, the

following possible scenarios.

• Whatever method calls the Simulation step method could pass it a list of all

the fish, and then the simulation could ask the fish to move. In this case, the

object whose method calls step would have to keep track of all the fish in the

environment, or would have to ask the environment for the list to pass to the

step method. The Simulation class would be responsible for knowing what

behavior is part of the simulation, and the Fish class would be responsible for

knowing how to move a fish. 

• The simulation could keep track of all the fish in the environment and ask them

to move. Again, the Simulation class would be responsible for knowing what

behavior is part of the simulation, and the Fish class would be responsible for

knowing how to move a fish.

• The simulation could keep track of both the environment and all the fish in the

environment. It could pass the fish to the environment and ask it to move them.

In this case, the Environment class would be responsible for knowing what

behavior is part of the simulation and how to move a fish.

• The simulation could keep track of the environment (or be passed it as a

parameter), and ask it to move all the fish. In this case, the Environment class

would be responsible for keeping track of the fish, knowing what behavior is

required in the simulation, and knowing how to move a fish.

• The simulation could keep track of the environment (or be passed it as a

parameter), and ask it for all the fish. Then the simulation could ask the fish to

move. In this case, the Environment class would be responsible for keeping

track of the fish in the environment and providing a list of them to other objects

when asked. The Simulation object would be responsible for knowing what

behavior is required as part of the simulation. The Fish class would be

responsible for knowing how to move a fish.
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Analysis Question Set 10:

1. Which scenario above corresponds to the design chosen by the original

programmer?

2. Pick a different scenario and describe how the specifications, or lists of

public methods, for the three core classes, Simulation, Environment,

and Fish, would be different under that scenario.

3. Which of the scenarios above do you think represent particularly good design

choices? Why?

4. Do you think any of the scenarios above would be a poor design choice?

Why?

5. Do any of the designs lead to classes that are general enough that they could

be used in other applications? Do any of the designs lead to classes that could

not be used in other applications?
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Quick Reference for Core Classes and Interfaces

This quick reference lists the constructors and methods associated with the core classes

described in this chapter. Public methods are in normal type. Private and protected

methods are in italics. (Complete class documentation for the marine biology

simulation classes can be found in the Documentation folder.)

Simulation Class

public Simulation(Environment env, EnvDisplay display)
public void step()

 

Environment Interface

public int numRows()
public int numCols()
 
public boolean isValid(Location loc)
public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc,
                Direction compassDir)
public ArrayList neighborsOf(Location ofLoc)
 
public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
 
public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)
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Fish Class (implements Locatable)

public Fish(Environment env, Location loc)
public Fish(Environment env, Location loc, Direction dir)
public Fish(Environment env, Location loc, Direction dir, Color col)
private void initialize(Environment env, Location loc, Direction dir,
                        Color col)
protected Color randomColor()
 
public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()
 
public void act()
 
protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)
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Quick Reference for Utility Classes and Interfaces

(public constants, constructors, and methods only)

This quick reference lists the public constants, constructors, and methods

associated with the utility classes described in this chapter. The marine biology

simulation program also uses subsets of the following standard Java classes:

java.util.ArrayList, java.util.Random, and java.awt.Color. (Complete

class documentation for the marine biology simulation classes can be found in the

Documentation folder).

Case Study Utility Classes and Interfaces

Locatable Interface

Location location()

Location Class

Location(int row, int col)
int row()
int col()
boolean equals(Object other)
int compareTo(Object other)
String toString()

The following is not tested:

int hashCode()

RandNumGenerator Class

static Random getInstance()

Debug Class

static boolean isOn()
static boolean isOff()
static void turnOn()
static void turnOff()
static void restoreState()
static void print(String message)
static void println(String message)

Direction Class

NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, SOUTHWEST

Direction()
Direction(int degrees)
Direction(String str)
int inDegrees()
boolean equals(Object other)
Direction toRight()
Direction toRight(int degrees)
Direction toLeft()
Direction toLeft(int degrees)
Direction reverse()
String toString()
static Direction randomDirection()

The following are not tested:

FULL_CIRCLE
int hashCode()
Direction roundedDir(int numDirections,

Direction startingDir)

EnvDisplay Interface

void showEnv()
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Java Library Utility Classes

java.util.ArrayList Class (Partial)

boolean add(Object o)
void add(int index, Object o)
Object get(int index)
Object remove(int index)
boolean remove(Object o)
Object set(int index, Object o)
int size()

java.awt.Color Class (Partial)

black, blue, cyan, gray, green,
magenta, orange, pink, red,
white, yellow

Color(int r, int g, int b)

java.util.Random Class (Partial)

int nextInt(int n)
double nextDouble()
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Marine Biology Simulation
Case Study

Chapter 3

Creating a Dynamic Population

After Jamie described the existing implementation of the marine biology simulation, I

looked over the code some more to be sure I understood it. Then I talked to the marine

biologists about what modifications they wanted in the program. They decided that the

first modification would be to create a dynamic, or changing, population, with new fish

being born and other fish dying as the program ran.

Problem Specification

The marine biologists wanted the simulation to model more complex fish behavior.

They asked me to modify the simulation so that, in any given timestep, a fish might

breed, move, or die. We talked about keeping track of a fish’s age and having the

likelihood of breeding or dying depend on that, but the biologists decided that they

didn’t need that level of sophistication right away. Instead they decided to build the

model around some probabilities, giving fish a certain chance of breeding and a certain

chance of dying in any given timestep. After some analysis of experimental data they

had gathered from a sample real-world environment, the marine biologists specified

that a fish should:

• have a 1 in 7 chance of breeding,

• breed into all its empty neighboring locations if it does breed,

• attempt to move to an empty neighboring location when it does not breed,

• never move backwards (unchanged from previous version), and

• have a 1 in 5 chance of dying after it has bred or moved.

Design and Implementation

My first step was to write pseudo-code for the act method that described what I

thought it should do. Rather than putting the code for breeding and dying in the act

method, I decided to break out these activities into separate breed and die methods. I

also decided to deal with the “error condition” (or at least unexpected condition) of a

fish that has been removed from the environment at the very beginning of the method.

This is a common practice.
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     Pseudo-code for act method
         if the fish is no longer in the environment
             do nothing (return immediately)

         if this is the 1 in 7 chance of breeding
             call the breed method
         else
             call the move method

         if this is the 1 in 5 chance of dying
             call the die method

Then I went on to implement the breed method. Since the breed and die methods

should be called from act and not from methods outside the class I wanted to make

them private, but I decided to follow the lead of the original programmer and make

them protected, just like the move method. I still didn’t understand what the

difference between private and protected was, but Jamie assured me that this

would become clearer when I started creating new kinds of fish.

According to the problem specification, a fish should breed into all of its empty

neighboring locations. This means that the first step is the same as in the

nextLocation method — getting a list of the empty neighboring locations —

although, in this case, there’s no reason to remove the location behind the fish from

the list. As in nextLocation, if there are no empty neighboring locations then we’re

done with the method. Once we have the list of empty neighbors, we want to add a new

fish to all of them rather than move to just one of them. This means looping through

the list, constructing a new Fish object for each empty location and adding it to the

environment. I reviewed the Environment interface and found the add method, but

then I remembered that fish add themselves to the environment as they are constructed

so I wouldn’t need to do that separately. Here’s the first version of the code.

    protected void breed()     // first draft!
    {
        // Get list of neighboring empty locations.
        ArrayList emptyNbrs = emptyNeighbors();

        // If there is nowhere to breed, then we’re done.
        if ( emptyNbrs.size() == 0 )
            return;

        // Breed to all of the empty neighboring locations.
        for ( int index = 0; index < emptyNbrs.size(); index++ )
        {
            // Create new fish, which adds itself to the environment.
            Location loc = (Location) emptyNbrs.get(index);
            Fish child = new Fish(environment(), loc);
            Debug.println("  New Fish created: " + child.toString());
        }
    }
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Looking at this code I realized that a fish’s 1 in 7 chance of breeding is not the only

reason why it might not breed. If there are no empty neighboring locations, then it can’t

breed either. This means that the fish’s chance of breeding is actually less than 1 in 7.

I talked to the marine biologists about this, and they decided that a 1 in 7 chance of

attempting to breed was fine. I then decided that, rather than have some of the logic

about whether a fish breeds or not in the act method and some in the breed method, I

would put both tests in breed and have it return a boolean value indicating whether the

fish successfully bred or not.

In mathematics, probabilities are represented as real numbers from 0.0 to 1.0, where

0.0 means there is no probability that something will happen and 1.0 means that it will

always happen. The probability corresponding to a 1 in 7 chance is the mathematical

value 1/7 (approximately 0.143). Therefore, the test for whether the fish should attempt

to breed or not involves randomly picking a real number (a double) in the range of 0.0

to 1.0 (using the nextDouble method in java.util.Random), and comparing it to the

mathematical value 1/7. There is a 1 in 7 chance that the randomly chosen value will

be less than 1/7 and a 6 out of 7 chance that it will be greater than or equal to 1/7.

Similarly, there would be a 3 out of 4 chance that the randomly chosen value would be

less than 3/4, or 0.75.

I decided to store the probability of breeding and the probability of dying in instance

variables of the Fish class rather than as hard-coded constants, both to give them

meaningful names and because this would provide more flexibility for the future. For

example, the biologists might decide that each fish should have its own chance of

breeding, which could be set in the Fish constructor. For now, though, I decided to

initialize both instance variables in the initialize method.

On Jamie’s advice, I made one other change to the breed method. I took out the code

that actually creates a new fish and put it in a separate method, generateChild. Jamie

told me that doing this would make it easier for me to develop new kinds of fish later. To

make it clearer which fish had bred, and which spaces it had bred into, I decided to use

the four-parameter Fish constructor to give newborn fish their parent’s color. In other

words, a red fish’s children will also be red, their children will be red, and so on.
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The code below shows the new instance variables and the modified breed method,

with additions or changes to breed in boldface.

    private double probOfBreeding;     // defines likelihood in
                                       // each timestep
    private double probOfDying;        // defines likelihood in
                                       // each timestep

    protected boolean breed()     // 2nd draft!
    {
        // Determine whether this fish will try to breed in this
        // timestep.  If not, return immediately.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() >= probOfBreeding )
            return false;

        // Get list of neighboring empty locations.
        ArrayList emptyNbrs = emptyNeighbors();

        // If there is nowhere to breed, then we’re done.
        if ( emptyNbrs.size() == 0 )
            return false;

        // Breed to all of the empty neighboring locations.
        for ( int index = 0; index < emptyNbrs.size(); index++ )
        {
            Location loc = (Location) emptyNbrs.get(index);
            generateChild(loc);
        }

        return true;
    }

    protected void generateChild(Location loc)
    {
        // Create new fish, which adds itself to the environment.
        Fish child = new Fish(environment(), loc,
                         environment().randomDirection(), color());
        Debug.println("  New Fish created: " + child.toString());
    }
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Because I had moved the test of whether to breed from act to breed, I needed to

update my pseudo-code for the act method.

     Updated pseudo-code for act method
         if the fish is no longer in the environment
             do nothing (return immediately)

         attempt to breed by calling the breed method
         if the fish did not breed
             call the move method to attempt to move

         if this is the 1 in 5 chance of dying
             call the die method

The last method called by act is the die method. When a fish is constructed, it

initializes its instance variables and adds itself to the environment. When a fish dies, it

must remove itself from the environment. It does not need to “uninitialize” its instance

variables, nor does it need to “destroy” itself; this cleanup is handled by the Java

garbage collector once there are no references to the fish left in the program. I reviewed

the Environment documentation and verified how to call its remove method before

writing this simple method.

    protected void die()
    {
        environment().remove(this);
    }

Analysis Question Set 1:

1. Is the reference in the environment the only reference to a fish?

2. Pat could have changed the move method so that it, like breed, would

return a boolean value indicating whether or not the fish successfully

moved. What advantages might there be to this design change? Are there

any disadvantages?
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Once the breed and die methods were implemented, I modified the act method based

on the pseudo-code I had written earlier. I decided to implement the chance of dying,

like the chance of breeding, as a double instance variable in the range from 0.0 to 1.0,

and initialize it in the initialize method. The code, with modifications in boldface, is

shown below. Then I was ready to test my modifications.

    public void act()       // modified from Chapter 1!
    {
        // Make sure fish is alive and well in the environment — fish
        // that have been removed from the environment shouldn’t act.
        if ( ! isInEnv() )
            return;

        // Try to breed.
        if ( ! breed() )
            // Did not breed, so try to move.
            move();

        // Determine whether this fish will die in this timestep.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() < probOfDying )
            die();
    }
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Testing

With some help and advice from Jamie, I developed the black box test cases by starting

with the test cases from the original program and modifying them to reflect the

probabilities of breeding and dying. The list of modified test cases is below, with

additions shown in boldface.

• An empty file or one that contains invalid data (such as just one dimension for

the environment) should generate an error.

• A valid file with valid environment dimensions but no fish should result in an

empty environment, but no errors.

• A file with a single fish should run with no errors. (The behavior of the fish will

depend on its starting location.)

• A file with two or more fish in the same location should generate an error.

• A file with a fish in every location in the environment (but only one fish in every

location) should run with no errors. Even in the first timestep, some fish

may move into spaces vacated by dying neighbors.

• A fish with no empty locations around it should stay where it is.

• A fish should attempt to breed approximately one-seventh of the time. If it

has no empty neighboring locations, it does not breed successfully. When a

fish breeds, it should breed into all of its empty neighboring locations. The

newborn fish should not act during the timestep when they are created.

• A fish with a single adjacent empty location in front or to the side of it should

always move there if it doesn’t breed.

• A fish with a single adjacent empty location behind it should stay where it is.

• A fish with two adjacent empty locations in front or to the side of it should

either breed (see above) or should move. If it moves, it should move to

either of its neighboring empty locations with equal likelihood, never staying

where it is and never moving backward.

• A fish with three adjacent empty locations in front and to the side of it should

either breed (see above) or should move. If it moves, it should move to any

of its three neighboring empty locations with equal likelihood, never staying

where it is and never moving backward.

• Whether a fish breeds, moves, or stays still, it has a one in five chance of

dying. In other words, in each timestep approximately one-fifth of the fish

should die.

I also analyzed the code in the act, breed, and die methods to identify additional tests.

For example, test cases from breed include a fish that attempts to breed but has no

valid, empty neighboring locations and fish that breed into 1, 2, 3, and 4 locations.
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To get predictable results as I ran my tests, I seeded the random number generator

with the same seed I had used when running the original test runs (see Exercise 1 in

Exercise Set 5 of Chapter 2). Next, I turned on debugging at the beginning of the step

method in the Simulation class (and restored it before returning) to help trace fish

activity throughout the simulation. Finally, I ran the program with the fish.dat initial

configuration file. The first thing I realized was that the debugging messages weren’t as

useful as they could have been; I hadn’t added any debug messages to the breed or die

methods. I decided to add debugging messages to my new methods so I could trace all

simulation behavior more easily, not just fish movement.

After a number of timesteps it looked like the probabilities of moving in various

directions were as I expected. I saw fish with only one potential new location

move to that empty location, fish with two potential new locations move to either

the first or second empty location with approximately equal likelihood, and fish with

three potential new locations move to one of the three empty locations, again with

approximately equal likelihood. I could also verify that fish that bred were breeding

into all neighboring empty locations. It was a little harder, though, to determine

whether fish were breeding and dying with the correct probabilities. I decided to

turn off debugging for the move method to cut down on the number of trace

messages and then run the simulation for more timesteps. I did this by adding

a call to Debug.turnOff at the beginning of the move method and a call to

Debug.restoreState at the end of the method. (The turnOff method is an

additional Debug method that was not listed in the partial list of methods in Chapter 2.

It does appear, however, in the Quick Reference and the full class documentation for

the Debug class.) The results from my first test of five timesteps are below.

1 2 3 4 5 Total

Number of fish actions 6 9 15 18 20 68

Number of breed attempts 1 2 3 3 3 12

Number of deaths 1 0 2 2 3 8
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The percentage of fish in all timesteps that attempted to breed was 17.6% (12 attempts

at breeding in 68 calls to the act method); the percentage that died was 11.8%. This

was close to what I expected for the 1 in 7 chance of breeding (14.3%), although it did

not correspond very well to the 1 in 5 chance of dying (20%). I ran the test again with

10 timesteps; the additional timesteps are shown below. This time the numbers were

much closer to what I expected: 13.9% of fish in all timesteps attempted to breed (not

always successfully), while 18.3% died.

6 7 8 9 10 Total

Number of fish actions 26 31 31 36 38 230

Number of breed attempts 3 3 5 4 5 32

Number of deaths 4 8 7 6 9 42

Finally, I ran the test with 20 timesteps. In this test run, 14.2% of fish in all timesteps

attempted to breed (not always successfully), while 19.6% died.

11 12 13 14 15 16 17 18 19 20 Total

Number of fish actions 10 20 20 21 23 32 38 41 46 45 379

Number of breed attempts 5 2 2 2 6 9 5 6 5 5 53

Number of deaths 3 4 3 4 6 8 7 6 12 10 78

Analysis Question Set 2:

1. Would you have created separate breed and die methods? Why or why not?

2. Consider the design choice to put the test for whether a fish should attempt

to breed in the breed method. If there are no empty neighboring locations

to breed into, then a fish wouldn’t be able to move either. Does that affect

whether the decision was a good design choice? Should the test for whether

the fish should die have been moved into the die method?

3. The call to breed could have been

       boolean bred = breed();

       if ( ! bred )
        ...

What advantages or disadvantages do you see in these two ways of calling this

method?
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Exercise Set 1:

1. Run the marine biology simulation with the modified Fish class to see how

the behavior has changed. (Use the class provided in the DynamicPopulation

folder or follow the directions in FishModsForChap3.txt.)

[Reminder: In the distributed version of the case study, the class

containing the main method is MBSGUI.]

2. If you’re running a user interface that has a “Save” function, save a copy

of the results after 5 timesteps. Use the same seed you used in Chapter 2

(see Exercise 4 in Exercise Set 5). Give the file a descriptive name, like

chap3after5steps.dat. Run the program for 10 timesteps and save the

results in another file with a descriptive name. Compare the files you saved

in Chapter 2 with the files you just saved. Are the fish movements the same?

Why or why not?

3. Modify the generateChild method to construct children with random colors.

Run the simulation again to see how the behavior has changed.

4. Modify the initialize method to take two new parameters representing

the chance of breeding and the chance of dying. Modify the existing Fish

constructors to pass the mathematical values 1.0/7.0 and 1.0/5.0 to

initialize. The values are now hard-coded in the constructors rather

than in initialize.

5. Implement a new Fish constructor that also takes two new parameters

representing the chance of breeding and the chance of dying. Use

SimpleMBSDemo2 to test your new constructor. Construct fish with different

probabilities of breeding and dying, and note what differences in behavior

you observe. For example, what happens when you construct fish whose

probability of breeding is 0.05 and probability of dying is 0.1? What

happens when you construct fish whose probabilities of breeding and

dying are both 0.0? Remember that if you are specifying colors in the

driver (MBSSimpleDemo2), you will need to import java.awt.Color.

(See Exercise 2 in Exercise Set 4 of Chapter 2.)

6. Introduce a new instance variable in Fish keeping track of how many times

a fish bred. Initialize it in the constructor and increment it in the breed

method. Modify the debugging statement in the die method to print the

number of times the fish bred. Run your simulation for 20 timesteps. What

is the maximum number of times a fish bred in your test run? What is the

minimum number? Are these values you would have expected given the

probability of breeding in each timestep?

7. Introduce a new instance variable keeping track of a fish’s age. Initialize it

in the constructor and increment it in the act method. Modify the debugging

statement in the die method to print the age of the fish when it dies. Run

your simulation for 20 timesteps. What is the oldest age at which a fish died

in your test run? What is the youngest age at which a fish died? Are these

values what you would have expected given the probability of dying in

each timestep?



Chapter 3 62

8. What if the chance of breeding and dying depended on the age of a fish?

Change the fish’s behavior so that it never breeds until it is 3 units old, after

which it has a 1 in 3 chance of breeding. Its chance of dying, on the other

hand, increases steadily with its age: at age 1 it has a 1 in 10 chance of dying,

while at age 7 it has a 7 in 10 chance of dying.

Modified Quick Reference for Fish Class

This quick reference lists the constructors and methods associated with the modified

Fish class described in this chapter. Public methods are in regular type. Private and

protected methods are in italics. (Complete class documentation for the marine biology

simulation classes can be found in the Documentation folder.)

Fish Class (implements Locatable)

public Fish(Environment env, Location loc)
public Fish(Environment env, Location loc, Direction dir)
public Fish(Environment env, Location loc, Direction dir,
            Color col)
private void initialize(Environment env, Location loc,
                        Direction dir, Color col)
protected Color randomColor()

public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()

public void act()

protected boolean breed()
protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)
protected void die()
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Specialized Fish

After I demonstrated the dynamic population version of the simulation to the marine
biologists to make sure it met their needs, we talked about what modification should
be made next. They wanted me to create several new kinds of fish with specialized
patterns of movement to see what effect that would have on the simulation.

Problem Specification

The marine biologists decided that they would like to start by adding two new kinds of
fish to the simulation: fish that dart forward whenever possible and slow-moving fish.
These new types of fish would share all the attributes already defined for the Fish class
except that their movement behavior would be different. In particular, the biologists
decided that:

• A darter fish darts two cells forward if both the first and second cells in front of
it are empty. If the first cell is empty but the second cell is not, then the darter
fish moves forward only one space. If the first cell is not empty, then the darter
reverses its direction but does not change its location. Like objects of the Fish
class, darters never move in the same timestep as breeding.

• A slow fish moves so slowly that, even when it does not breed, it only has a 1
in 5 chance of moving out of its current cell into an adjacent cell in any given
timestep in the simulation. Like objects of the Fish class, slow fish never move
in the same timestep as breeding and never move backward.

Design Issues

Although normal fish, darters, and slow fish exhibit different behavior when
moving, they also share many similarities. For example, the id, color, location,
and direction accessor methods have nothing to do with the particular type of fish
being modeled. At the abstract level of the act method, deciding when to breed, when
to move, and when to die, the different kinds of fish have the same behavior. The
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particulars of how they breed and die are almost identical; the only difference is what
type of fish they generate when breeding. The primary difference among these three
kinds of fish, though, is how they move.

Rather than repeat the code for all the methods with the same behavior, I wanted to
use inheritance to implement the specialized kinds of fish. My idea was to create new
DarterFish and SlowFish subclasses that would extend the Fish class. This means
that an object of the DarterFish (or SlowFish) class would inherit certain data and
behavior defined in the Fish superclass, such as the accessor methods and the act,
breed, and die methods. It could also redefine the behavior of some superclass
methods by providing new implementations in the subclass. (This is also known as
overriding the superclass method.) For example, the DarterFish class could redefine
the generateChild method to create darter fish rather than normal fish, and redefine
the move method (or its helper methods) to move in a different way.

One question I had was, if a darter or slow fish used the act method inherited from
the Fish class, how would it know to use the redefined generateChild and move
methods from the DarterFish or SlowFish class, instead of the methods from the
Fish class? I decided to ask Jamie. The answer was dynamic binding (sometimes
called polymorphism, according to Jamie). Here’s how it works. The Simulation
object asks a particular fish (darter, slow, or normal) to act. Let’s say, for the sake of
simplicity, that the object is a darter fish.

• The DarterFish class doesn’t have an act method defined in it, so it inherits
the generic act method from Fish. (We say that the call to act is dynamically
bound to the act method in the Fish class.)

• The object that is acting, though, is still a DarterFish object. When the act
method (inherited from Fish) calls move, it is actually the darter fish executing
the act method that is invoking the move method on itself. The DarterFish
class does have a move method defined in it, so that is the one that’s executed.
(The call to move is dynamically bound to the redefined move method in the
DarterFish class.)

• Depending on how it is implemented, the redefined move method could
call another internal method, like location or emptyNeighbors. We’ll
see that in DarterFish the redefined move method calls nextLocation
(which it redefines) and location, direction, changeLocation, and
changeDirection (which it does not redefine). This means that the call to
nextLocation will be dynamically bound to the redefined method in the
DarterFish class, but the calls to location, direction, changeLocation,
and changeDirection will be dynamically bound to the inherited methods
from the Fish class.
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The picture below shows an object of the DarterFish class, with the redefined methods
overlaying the methods they override. (Protected methods, which are meant to be used
internally, are shown inside the box representing the DarterFish object.)

One of the assumptions in this explanation of dynamic binding is that the darter or
slow fish has access privileges to the inherited methods (like act and location) and
that inherited methods (like act) have access to redefined methods (like move). This
would not be the case if these methods were private. For example, if the move method
were private in Fish and DarterFish, then the act method in Fish would always use
the move method from the Fish class, even for a darter fish, because that is the only
move method to which it would have access. Similarly, if the changeLocation method
were private in Fish, a redefined move method in a subclass would not be allowed
to invoke it. The protected keyword allows inherited methods in superclasses to
call methods that dynamically bind to methods in subclasses, and allows methods in
subclasses to call inherited methods in superclasses. The public keyword would allow
this also, but the protected keyword is an indication that the access is not meant to be
open to all classes. Unfortunately, Java does not guarantee that objects of other classes,
like the Simulation class, do not make use of protected methods. This meant that I
needed to be very careful to check for myself that I used protected methods only in
subclasses, as intended, and that I did not use them in client code.

Once I understood dynamic binding and how I should use protected methods in the
marine biology simulation program, I felt comfortable implementing DarterFish and
SlowFish as subclasses of the Fish class.

DarterFish
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Darter Fish

Implementation of the DarterFish Class

The first thing I needed to do was create the empty DarterFish subclass, specifying
that it extends the Fish class.

    public class DarterFish extends Fish
    {
    }

A subclass inherits its superclass’s data, can inherit or redefine its methods, and
can define new data and methods. In the case of DarterFish, I knew I wanted to
inherit most of the Fish methods but redefine the move method. According to the
specification, a darter can only move forward. It moves two spaces forward if it can,
and one space forward if it can’t move two spaces. If it can’t move at all, because the
cell in front of it is not empty, then it reverses its direction without moving.

I decided that my first step would be to modify the nextLocation method, which
defines how the fish chooses where to move. My redefined method finds the location
in front of the darter (in other words, the neighbor of the current location in the same
direction that the fish is facing) and the location in front of that (the neighbor of the one
 in front, in the same direction). The new nextLocation method then checks whether
those spaces are empty. If neither location is empty, nextLocation returns the darter’s
current location because it was unable to move. (My logic for deciding when a darter is
unable to move was incorrect, though, as I discovered later.)

The code below shows the first draft of my redefined nextLocation method, without
debugging messages.

    protected Location nextLocation()     // first draft!
                                          // (warning: buggy!)
    {
        Environment env = environment();
        Location oneInFront = env.getNeighbor(location(), direction());
        Location twoInFront = env.getNeighbor(oneInFront, direction());
        if ( env.isEmpty(twoInFront) )
            return twoInFront;
        else if ( env.isEmpty(oneInFront) )
            return oneInFront;
        else
            return location();     // can’t move, stay in
                                   // current location
    }
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I also needed to write a new move method for DarterFish, so that if the darter did not
change location, then it reversed its direction. Here is the new move method without
debugging messages.

    protected void move()
    {
        // Find a location to move to.
        Location nextLoc = nextLocation();

        // If the next location is different, move there.
        if ( ! nextLoc.equals(location()) )
        {
            changeLocation(nextLoc);
        }
        else
        {
            // Otherwise, reverse direction.
            changeDirection(direction().reverse());
        }
    }

The move method for DarterFish was simple to write because the logical structure is
the same as the move method for Fish. The code is simpler, though, because when a
darter moves, its direction does not change.

I also needed to write one or more constructors for the DarterFish class, because
constructors are not inherited like other methods. Each class must explicitly define its
own constructors. The original Fish class has three constructors: one that specifies the
environment and initial location, one that also specifies the initial direction, and a third
that specifies environment, location, direction, and a color. For testing purposes I
decided to make all darter fish yellow. This was fine with the biologists; they had
primarily been using color to make the simulation more interesting, not to represent
meaningful information. At first I thought that because all darters would be the same
color, I didn’t need to provide the third constructor. Then I decided to go ahead and
provide it anyway, in case the biologists wanted to define darters with other colors later.

Below is the code for the first constructor. The only thing it has to do is to call the
appropriate superclass constructor (using the super keyword) to initialize the attributes
inherited from Fish, such as the location, direction, and color. The expression to get a
random direction is the same as that found in the two-parameter Fish constructor. The
code for the other constructors is practically the same, so it is not shown here.

    public DarterFish(Environment env, Location loc)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, env.randomDirection(), Color.yellow);
    }
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Finally, I redefined the generateChild method to construct a new DarterFish rather
than a new Fish object, as shown below (without the debugging message). Everything
else about the method is the same. With the redefined generateChild method, I did
not need to copy or redefine the rest of fish breeding behavior but could inherit it from
the Fish class.

    protected void generateChild(Location loc)
    {
        // Create new fish, which adds itself to the environment.
        DarterFish child = new DarterFish(environment(), loc,
                           environment().randomDirection(), color());
    }

Analysis Question Set 1:

1. What is the logic error in Pat’s first draft of the nextLocation method?

2. A darter can only swim east and west or north and south. How might we
change the darter so that it usually continues east and west, or north and
south, but occasionally switches?

Testing the DarterFish Class

The new code for the DarterFish class seemed pretty simple, so I thought I would test
it by just running it a number of times and seeing if the behavior seemed right. It did,
and I was about to move on to the SlowFish class when I noticed something odd. One
of the darters had hopped right over another fish! I ran the program a few more times
and saw the same behavior again.

I turned on debugging at the beginning of the step method in the Simulation class
(and restored it before returning) to help trace fish activity throughout the simulation.
To help clarify when and where darters were moving and when they were blocked, I
added some debugging statements to the nextLocation method in DarterFish. I ran
the program and analyzed my results more carefully and realized that there were two
different situations that could cause these results, one of which was an error. One
situation was that the darter could have moved forward through an empty cell to get to
the second cell, and then another fish could have slipped from the side into the first
empty cell. This would be acceptable behavior, according to the program specification.
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The second situation was that the darter could have hopped over a fish to get to an
empty cell beyond it, because I had written nextLocation incorrectly. The code I had
written did not check that both the cell immediately in front of the darter and the cell
beyond that were empty. The corrected code appears below.

    protected Location nextLocation()     // corrected code!
    {
        Environment env = environment();
        Location oneInFront = env.getNeighbor(location(), direction());
        Location twoInFront = env.getNeighbor(oneInFront, direction());
        if ( env.isEmpty(oneInFront) )
        {
            if ( env.isEmpty(twoInFront) )
                return twoInFront;
            else
                return oneInFront;
        }

        // Only get here if there isn't a valid location to move to.
        return location();
    }

Because I had almost missed the error in nextLocation, I decided to go back to testing
more thoroughly, as the original programmer had done. I first developed black box test
cases to test the DarterFish class, basing them on the test cases for the Fish class.
Only the new or modified test cases are shown below.

• A file with a single darter fish should run with no errors. (The behavior of the
fish will depend on its starting location and direction.)

• A file with two or more darter fish, or with one darter and one non-darter fish,
in the same location should generate an error.

• A file with either normal or darter fish in every location in the environment (but
only one in every location) should run with no errors. Whether they may move
or not depends on whether breeding and dying have been implemented (see the
appropriate test case from either Chapter 2 or Chapter 3). Any darters that do
not move should reverse direction.

• A darter that does not breed and that has two empty neighboring locations in
front of it should always move forward two spaces. A darter that does not
breed and that has only one empty neighboring location in front of it should
always move into that location. A darter that does not breed and does not
change location should reverse its direction. This leads to a visual pattern
that is easy to spot — darter fish appear to pace back and forth in the
bounded environment.

• All darter fish should be yellow. (This is actually based on an implementation
decision, not on the original problem specification.)
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I then considered the code in the new move and nextLocation methods to see if I
needed to develop additional test cases. It seemed that the black box cases listed above
would cover the new code. I decided to start my testing by rerunning my previous tests
with normal fish to verify that the results were the same and that my modifications had
not broken working code. This kind of testing is known as regression testing.

As I had with my previous test runs, I seeded the random number generator to get
predictable results (see Exercise 1 in Exercise Set 5 of Chapter 2). For the regression
tests it was important to use the same seed, and there was no reason to change the seed
for the new tests. I had already turned on debugging to find the bug in nextLocation.
Finally, I made a copy of fish.dat and changed the six fish to six darter fish. I thought
that if I used the same seed and the same initial configuration of fish, then I would see
the same behavior for breeding and dying, although the movement would be different.
Then I ran the program. This time the darters moved exactly where I expected them to
move in each timestep.

To test breeding and dying, which are probabilistic, I needed to keep statistics for a
number of timesteps, as I had done for the normal fish. My results are below.

Total Total
1 2 3 4 5 6 7 8 9 10 after 10 after 20

Number of darter actions 6 9 11 16 16 19 23 31 42 45 218 733

Number of breed attempts 1 1 2 1 2 2 4 6 7 4 30 114

Number of deaths 1 1 3 2 1 2 3 6 11 9 39 139

After ten timesteps, the percentage of darters in all timesteps that had attempted
to breed was 13.8% (30 attempts at breeding in 218 calls to the act method); the
percentage that had died was 17.9%. This corresponded reasonably well to the 1 in 7
chance of breeding (14.3%) and the 1 in 5 chance of dying (20%) specified in the
problem description. I continued the test up to 20 timesteps. This time the percentages
were 15.6% for breeding and 19% for dying.

What surprised me, though, was that the numbers recorded for breeding and dying
darter fish were different from the earlier tests with normal fish, even though the
probabilities remained the same, the initial configuration was the same (except for the
name of the class), and I had used the same seed. I realized that the difference was that
the original breeding and dying fish use random numbers for movement as well as for
breeding and dying, but darters do not. Consequently, the random numbers used for
breeding and dying are different for the two populations of fish.
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Exercise Set 1:

1. Draw two diagrams illustrating each of the situations Pat discovered in which
a darter could hop over, or appear to hop over, another fish.

2. Run the marine biology simulation with the darter.dat and the
darterAndNormalFish.dat initial configuration files to see how the
behavior is different. (The difference is more obvious if you use the original
Fish class rather than the one from the breeding and dying chapter or if
the probabilities of breeding and dying are both set to zero. Or you can
temporarily comment out the lines of code in the Fish act method that
deal with breeding and dying.) [Reminder: In the distributed version
of the case study, the class containing the main method is MBSGUI.
You can edit MBSGUI.java and follow the directions in the comments
to make darter fish appear different from normal fish or to include
darter fish as an option when creating a new environment using the
graphical user interface.]

3. If you’re running a user interface that has a “Save” function, run the
simulation with the fish.dat configuration file and save a copy of the
results after 5 timesteps. Use the same seed you used in Chapter 3
(see Exercise 2 in Exercise Set 1). Give the file a descriptive name, like
chap4after5steps.dat. Run the program for 10 timesteps and save the
results in another file with a descriptive name. Compare the files you saved
in Chapter 3 with the files you just saved. Are the fish movements the same?
Why or why not? Run the program with the darter.dat configuration file
and save the results in a file for future regression testing. (Be sure to give the
file a name that will allow you to identify it later.)

4. If you have added constructors to the Fish class in addition to the three
original constructors from Chapter 2, analyze which of these constructors
should be added to the DarterFish class as well. Add them.

5. Redefine the toString method in DarterFish to clarify that this is a darter.
This makes it easier to keep track of darters and normal fish in the debugging
output. Turn on debugging in the step method in Simulation, as you did in
Chapter 3, and run the simulation again. This will let you observe the changed
behavior at a greater level of detail.

6. Choose a different seed for the random number generator and rerun your tests.
What effect does this have on the behavior of the simulation?

7. The darters always move east and west or always move north and south.
Create a subclass of the DarterFish class, called TurningDarter, that
behaves like DarterFish except that there is a probability of 0.1 that a
turning darter turns right or left (each with equal probability) before it tries
to move forward. To use the Random class, you will need to import
java.util.Random.
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Slow Fish

Implementation of the SlowFish Class

The behavior of a slow fish is very similar to the behavior of a normal fish, so again
I knew I wanted to inherit most of the Fish methods but redefine how (and when) it
moved. According to the specification, a slow fish moves so slowly that it only has a 1
in 5 chance of moving out of its current cell into an adjacent cell in any given timestep
in the simulation. When it does move, however, it moves just like any other fish of the
Fish class.

To test whether the fish should move, I knew I would randomly pick a number and
compare it to the probability of moving. The first design decision I had to make,
though, was whether to put that test in the move method or in the nextLocation
method. If I put it in the move method, then 4 out of 5 times it would do nothing. If I
put it in the nextLocation method, then 4 out of 5 times it would return the current
location. Since it seemed like the test could go in either place, I decided to put it in the
lower-level, more specific method, nextLocation.

I decided to store the probability of moving, the mathematical value 1/5 represented
as a double, in an instance variable, just as I had with the probabilities of breeding
and dying. Then I redefined the nextLocation method to pick a double randomly
in the range of 0.0 to 1.0 (using the nextDouble method in java.util.Random),
and compare it to the instance variable representing the probability of moving. If
the randomly chosen number is less than the probability, the slow fish chooses a
new location in the usual way, otherwise it returns the current location. To choose
a new location, the slow fish calls super.nextLocation(), which executes the
nextLocation method in the Fish superclass. (Without the super keyword, the
call to nextLocation in the first return statement would be a recursive call to the
nextLocation method in SlowFish. The super keyword forces the call to use the
inherited nextLocation method, which in this case is defined in Fish.)
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The code below shows the new instance variable and the redefined nextLocation
method without debugging messages.

    // Instance Variables: Encapsulated data for EACH slow fish
    private double probOfMoving;    // defines likelihood in each
                                    // timestep

    protected Location nextLocation()
    {
        // There's only a small chance that a slow fish will actually
        // move in any given timestep, defined by probOfMoving.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() < probOfMoving )
            return super.nextLocation();
        else
           return location();
    }

The SlowFish class also needed new constructors, not only because constructors aren’t
inherited like other methods, but also because I needed to initialize the probOfMoving
instance variable. Each SlowFish constructor calls the four-parameter superclass
constructor (using the super keyword) to initialize the instance variables inherited
from Fish. To make slow fish easier to spot when testing, I decided to make them red.
The code below shows the two-parameter SlowFish constructor; the other constructors
are similar.

    public SlowFish(Environment env, Location loc)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, env.randomDirection(), Color.red);

        // Define the likelihood that a slow fish will move in any given
        // timestep.  For now this is the same value for all slow fish.
        probOfMoving = 1.0/5.0;      // 1 in 5 chance in each timestep
    }

Finally, I redefined the generateChild method to construct a new SlowFish rather
than a new Fish, just as I had for DarterFish.



Chapter 4 74

Analysis Question Set 2:

1. What do you think are the advantages or disadvantages of putting the test for
whether to move in the nextLocation method instead of the move method?
Would the advantages or disadvantages be different if the problem
specification had said that slow fish randomly change direction when they do
not move beyond their cell?

2. Pat did not create an accessor method for the probOfMoving instance
variable. What problem would this cause if you were to create a subclass of
SlowFish that redefined the nextLocation method again? Pat also did not
create accessor methods for the probOfBreeding and probOfDying instance
variables in Chapter 3. Under what conditions would this lack of accessor
methods cause problems?

3. If you were to create accessor methods for these instance variables, would
you make them public or protected?

Testing the SlowFish Class

As usual, I developed the black box test cases for the SlowFish class based on the test
cases for the Fish class. Only the new or modified test cases are shown below.

• A file with a single slow fish should run with no errors. (The behavior of the
fish will depend on its starting location.)

• A file with two or more slow fish, or with one slow and one other fish, in the
same location should generate an error.

• A file with a fish in every location in the environment (but only one in every
location) should run with no errors, regardless of the types of the fish. Whether
they may move or not depends on whether breeding and dying have been
implemented (see the appropriate test case from either Chapter 2 or Chapter 3).

• A slow fish that does not breed and that has one or more empty neighboring
locations in front of it or to its sides should move to one of its neighbors
approximately 20% of the time. In other words, in each timestep approximately
one fifth of the slow fish that don’t breed should move. When a slow fish does
move, it should have an equal probability of moving to each of its valid empty
neighbors.

I then considered the code in the SlowFish nextLocation method to see if I needed
to develop additional test cases. It seemed that my final black box case would cover the
new code. I would still need to include all the test cases for normal fish when testing
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slow fish, though, because of the call to super.nextLocation(). As usual, I decided
to start with regression testing (rerunning my previous tests) to verify that the results
were the same and that my modifications had not broken working code.

To help clarify why various fish failed to move, I added a debugging statement to the
nextLocation method in SlowFish to notify me when fish appeared not to move
because they were moving too slowly. Finally, I developed a new initial configuration file
that contained seven normal fish and seven slow fish. Then I ran the program with the
seeded random number generator. My results are below.

Total Total
1 2 3 4 5 6 7 8 9 10 after 10 after 20

Number of slow fish actions 6 5 5 9 11 17 15 16 15 20 119 523
Number of breed attempts 0 0 1 1 2 1 2 1 4 4 16 76
... that were successful 0 0 1 1 2 0 1 1 4 4 14 64
Number of calls to move 6 5 4 8 9 17 14 15 11 16 105 459

2 0 0 1 0 2 2 1 5 4 17 94

... but were blocked 0 0 0 0 0 0 0 0 1 1 2 22
Number of deaths 1 0 0 1 1 2 2 2 5 3 17 96

After ten timesteps, the percentage that had attempted to breed was 13.4% (16
attempts at breeding in 119 calls to the act method). Only 14 of the 16 attempts were
successful; two fish did not breed because there were no empty neighboring locations.
This led to 105 move attempts. Of these, 16.2% attempted to move out of their current
cell (17 out of 105), which was a little lower than I expected, given the 1 in 5 chance of
trying to move. The number of fish that actually moved was somewhat lower than the
number that attempted to move; twice there were fish that were blocked from moving
by other fish in neighboring locations. The percentage of slow fish that died in the first
ten timesteps was 14.3%, which was also low.

I continued the test up to 20 timesteps. This time the numbers (shown in the table
above) were much closer to what I expected.

Analysis Question Set 3:

1. In Chapter 3, Pat added breeding and dying behavior by modifying the Fish
class. Another alternative would have been to create a subclass of Fish
with breeding and dying behavior, leaving Fish unchanged. What are the
advantages and disadvantages of the two alternatives? What would be the
impact on DarterFish and SlowFish?

2. A method is deterministic if, given the inputs to it, you can tell exactly what
its result will be. A method is probabilistic if, given the inputs, there are various
probabilities of different results. Of the nextLocation methods in Fish,
DarterFish, and SlowFish, which are deterministic? Which are probabilistic?

... that attempted to move
beyond cell
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 Exercise Set 2:

1. If you have added constructors to the Fish class in addition to the three
mentioned above, analyze which of these constructors should be added to the
SlowFish class as well. Add them.

2. Run the marine biology simulation with the slowAndNormalFish.dat
and 3species.dat initial configuration files to see how the behavior has
changed. (Again, you may find it easier to see the differences between types
of movement without breeding and dying behavior.)

3. Redefine the toString method in SlowFish to clarify that this is a slow fish.
This makes it easier to keep track of slow and normal fish in the debugging
output. Turn on debugging in the step method in Simulation, as you did in
Chapter 3, and run the simulation again. This will let you observe the changed
behavior at a greater level of detail.

4. Choose a different seed for the random number generator and rerun your tests.
What effect does this have on the behavior of the simulation?

5. Using Pat’s table of test run results, which may or may not match your own
results, calculate the following for 20 timesteps.
• What percentage of slow fish attempted to breed in each timestep? (We’re

interested in the average over all 20 timesteps, not in the actual percentage
for any one timestep.) Does this percentage correspond with the specified
1 in 7 chance of breeding?

• Consider the number of times the act method was called for slow fish over
those 20 timesteps, the number of fish that tried to breed, and the number
that bred successfully. Given these values, is the number of calls to the
move method what you would expect? In other words, is move being
called the correct number of times?

• How many times was the nextLocation method in SlowFish called over
the 20 timesteps? (Under what conditions is nextLocation called?)

• How many times was the nextLocation method in Fish called over the 20
timesteps? (Under what conditions is the Fish nextLocation method called?)

• Of the slow fish that did not breed, what percentage moved too slowly to
attempt to leave their cells? What percentage attempted to move beyond
their own cell (either successfully or unsuccessfully)? What percentages
would you expect, given the problem specification? Do the actual results
correspond to the expected results?

• On average, what percentage died? What percentage would you expect,
given the problem specification? Does the actual result correspond to the
expected result?

• Compared to the test results for 10 timesteps, are the actual results over 20
timesteps closer to the expected results as Pat claimed?
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6. A slow fish moves in each timestep, even when it doesn’t move far enough
to leave its current cell. As it moves slowly in its own cell, it may change
direction. Modify the SlowFish class so that even when it doesn’t move
outside its cell it may still turn right or left (or continue in its current direction).

7. Implement breeding and dying behavior by creating a subclass of the original
Fish class. (See Question 1 in Analysis Question Set 3 above.)

8. Define a new CircleFish subclass of Fish that constantly swims in a circle
(as much as is possible in a rectangular grid). In each timestep, the circle fish
moves to the location forward and to the right, on a diagonal from its current
location, if possible. It also changes its direction by turning 90 degrees to
the right. If the fish cannot move as described above, it stays in its current
location, but still turns 90 degrees to the right. Make the constructor give all
circle fish the same color, so they can easily be distinguished from other fish.

9. Refine the CircleFish class to make the movement look more like a circle.
In the first timestep, a circle fish moves forward one location (if possible),
without turning. During the next timestep, it moves to the location forward
and to the right (if possible), as described in Exercise 8. If the fish cannot
move, it stays in its current location, but turns 90 degrees to the right. After
the fish has moved and turned, or just turned without moving, its next
movement will be to move forward one location. The fish continually
alternates these moves (except when it is unable to move and only turns).
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Quick Reference for Specialized Fish Subclasses

This quick reference lists the constructors and methods associated with the specialized
fish classes, DarterFish and SlowFish, introduced in this chapter. Public methods
are in regular type. Private and protected methods are in italics. (Complete class
documentation for the marine biology simulation classes can be found in the
Documentation folder.)

DarterFish Class (extends Fish)

public DarterFish(Environment env, Location loc)
public DarterFish(Environment env, Location loc, Direction dir)
public DarterFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()

SlowFish Class (extends Fish)

public SlowFish(Environment env, Location loc)
public SlowFish(Environment env, Location loc, Direction dir)
public SlowFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected Location nextLocation()
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Marine Biology Simulation
Case Study

Chapter 5

Environment Implementations

About a month after my summer job with the marine biologists ended, they contacted

me to ask if I would return to work part time on another task. They wanted the

simulation enhanced to support unbounded environments as well as bounded ones.

For example, if the biologists were to study fish movement in a specific portion of

the Pacific Ocean, then a bounded, two-dimensional environment would not be an

appropriate model. In the real world, fish would swim in and out of the area they

were studying.

Over the summer, I had not studied how the environment was implemented, so

I decided to ask Jamie for an overview of the existing code before I got started.

The first part of this chapter is Jamie’s explanation of the Environment interface

and BoundedEnv implementation. The second half of the chapter describes an

implementation class that I wrote called UnboundedEnv.

Overview of the Existing Design and Code

An Environment object models a rectangular grid that contains objects at various

grid locations. Although the original program only modeled bounded rectangular

environments, the author of the code knew that the marine biologists might want

to model unbounded environments in the future.

According to Jamie, the original programmer considered three ways to represent an

environment internally.

• The internal data representation for an environment could be a bounded,

rectangular data structure, such as a two-dimensional array, corresponding to

the grid-like environment being modeled. Objects could be located in the data

structure based on their location in the simulated environment. For example,

the following two-dimensional grid represents a tic-tac-toe game in progress.

O O

X
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• Alternatively, an environment could model objects in a conceptual grid by

storing the objects and their locations in a list. For example, the tic-tac-toe

game above could be represented as the following list of object, location pairs.

O, (0, 2) X, (1, 1) O, (0, 0)

• If the objects being stored in the environment were all identical, the internal

representation could just be a list of the locations, without storing the objects at

all, as shown on the right in the following diagram. This representation would

not work for the tic-tac-toe game described above. If the locations of walls in

a small maze were being modeled, however, any of the three representations

below might be used.

 

The original simulation programmer rejected the third model (because the fish being

represented in the environment are not identical) and decided to implement the fish

environment using the first of these representations — a two-dimensional array

corresponding to the grid. Knowing, however, that the marine biologists might

want to model other types of environments in the future, the original programmer

decided to create Environment as an interface. The two-dimensional array

representation, which the original programmer called the BoundedEnv class, is

just one possible implementation of the interface. (Chapter 2 introduced the

concept of interfaces, and a more detailed description is in the next section.)

Analysis Question Set 1:

1. What are the relative merits of the first two internal representations described

above for each of the following kinds of simulation?

• A simulation with a relatively small bounded environment.

• A simulation with a very large bounded environment and many objects

in it.

• A simulation with a very large bounded environment but very few

objects in it.

• A simulation of an environment whose boundaries are not known or

are irregular.

2. What representation would be appropriate if more than one object could

occupy each location in the environment?

Wall

Wall

Wall

Wall, (0, 1) Wall, (0, 2) Wall, (1, 1) (0, 1) (0, 2) (1, 1)
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The Environment Interface

An interface looks a little like a class, but it only specifies what methods should be

implemented without actually implementing them. Because an interface doesn’t have

any instance variables and doesn’t have code for its methods, you can’t create objects

of an interface directly. Instead, a program that uses an interface needs to also have at

least one class that implements the interface. In other words, it is necessary to create a

class that provides implementations for all the methods that the interface specifies. Any

object of the implementation class satisfies the interface and can be used where an

object of the interface type is expected. Often a program has several classes that

implement an interface, each in a different way. Those classes may have additional

methods as well as any instance variables they need for the implementation of their

methods.

For the marine biology simulation, the Environment interface specifies what methods

any environment class needs to provide. The BoundedEnv class is one implementation

of that interface. The Simulation and Fish classes could refer directly to objects of

the BoundedEnv class, but then they would have to be rewritten if the implementation

were to change. Instead they always refer generically to the Environment interface and

stick to the methods specified there. Their parameters and instance variables of type

Environment actually refer to an object of some class that implements the interface.

That object is constructed in the driver (user interface or main function), which is the

only place that must explicitly specify the environment’s implementation class.

The full interface is shown below, with documentation comments removed. It includes

the methods mentioned in Chapter 2 and some additional ones. All interface methods

are public.

    public interface Environment
    {
      // accessor methods for determining environment dimensions
      int numRows();
      int numCols();

      // accessor methods for navigating around this environment
      boolean isValid(Location loc);
      int numCellSides();
      int numAdjacentNeighbors();
      Direction randomDirection();
      Direction getDirection(Location fromLoc, Location toLoc);
      Location getNeighbor(Location fromLoc, Direction compassDir);
      ArrayList neighborsOf(Location ofLoc);

      // accessor methods that deal with objects in this environment
      int numObjects();
      Locatable[] allObjects();
      boolean isEmpty(Location loc);
      Locatable objectAt(Location loc);
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CS

      // modifier methods
      void add(Locatable obj);
      void remove(Locatable obj);
      void recordMove(Locatable obj, Location oldLoc);
    }

Many of these methods were described in Chapter 2 but a few are new, including the

first two methods, numRows and numCols. If the environment is bounded, numRows

and numCols return the dimensions of the environment. Otherwise, they return -1,

indicating that the number of rows and number of columns are not fixed.

The second set of methods deals with navigating around the environment from cell to

cell. The isValid method tests whether a cell location is valid; for example, whether

it is in the bounds of a bounded environment. The numCellSides method defines the

shape of the cells in the environment, while the numAdjacentNeighbors method

specifies how many neighbors there are around each location. For example, a cell in an

environment with square cells has four sides and, by default, four adjacent neighbors. A

hexagonal cell, on the other hand, would have six sides and, generally, six neighbors. The

last four methods in this set are for navigating from a particular cell in the environment.

The randomDirection method, mentioned in Chapter 2, returns one of the directions

that leads from an environment cell to its adjacent neighbors. The getDirection

method returns the direction to go to get to a particular neighboring location,

getNeighbor returns the neighboring location in a given direction, and neighborsOf

returns a list of all the immediate neighboring locations of the given location.

The next set of methods provides access to the objects in an environment or indicates

whether a particular cell in the environment is empty. All objects in the environment

must be Locatable, meaning that they must be instances of classes that implement the

Locatable interface (in other words, they must provide a location method). The

numObjects method returns the number of Locatable objects in the environment,

allObjects returns those objects in an array, the isEmpty method indicates whether

a particular location in the grid is empty, and objectAt returns the object in a given

location if it is not empty. If the location is empty, objectAt returns a null reference.

Finally, there are three methods that modify the environment: add, which adds a new

object to the environment; remove, which removes an object from the environment;

and recordMove, which records the fact that an object moved from one location to

another. The recordMove method is necessary to ensure that the environment and the

Locatable objects in it are in a consistent state when an object moves.
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Analysis Question Set 2:

1. Consider using an environment as a container for objects other than fish, such

as band members marching on a field, physics particles moving in a small

space, or blocks of colored material in a quilt. What are the requirements for

the classes representing the band members, physics particles, or color blocks

in order to put objects of those classes into an environment?

2. Location is another class that implements an interface, the standard Java

Comparable interface. Research the Comparable interface to discover what

methods it includes. When would it be useful to specify that an object or a

parameter must be Comparable?

3. In Chapter 2, Pat said that EnvDisplay is also an interface. What are the

benefits of making EnvDisplay an interface?

4. The step method in the Simulation class gets a list of Locatable objects

from the Environment allObjects method and then casts each of them to

a Fish. It does this because the Locatable interface does not have an act

method, but Fish does. Consider an alternative design that includes an

Actable interface, with a single act method. In this design, the Fish

class would implement both Locatable and Actable. The step method

in Simulation would cast the Locatable objects to Actable before

invoking the act method. What are the advantages and disadvantages

of the two designs?

5. Another alternative design, in addition to the one in Exercise 4, would be to

add the act method to the Locatable interface. What are the advantages and

disadvantages of this design, compared to the other two?



Chapter 5 84

The BoundedEnv Class (and SquareEnvironment)

The first thing Jamie pointed out about the BoundedEnv class is that it extends (is

a subclass of) another class called SquareEnvironment. SquareEnvironment is an

abstract class implementing the Environment interface, meaning that it does not

implement all of the methods specified by Environment. Just as one can’t create an

instance of an interface, one can’t create an instance of an abstract class either, since

both have unimplemented methods.

The SquareEnvironment abstract class implements only those Environment

methods needed to define an environment of square cells whose neighbors

are to the north, south, east, and west. These methods are numCellSides,

numAdjacentNeighbors, randomDirection, getDirection, getNeighbor,

and neighborsOf. The only “navigational” method that SquareEnvironment does

not implement is the isValid method, which tests the validity of a location, since

that depends in part on other factors, such as whether the environment is bounded.

SquareEnvironment implements none of the other Environment methods, so those

must be implemented by subclasses such as BoundedEnv. Even though it is abstract,

SquareEnvironment does have two constructors. The first constructor creates an

environment in which there are four adjacent neighbors around each cell, each sharing

one of the cell’s sides. The second constructor provides a way to create an environment

with either four adjacent neighbors around each cell or eight (the four that share sides

with the cell and the four on the diagonals, which share only a single point with the cell.)

Jamie told me that I would be able to use SquareEnvironment for my unbounded

environment without any modifications, so I could treat it as a black box class. I

decided to do this, studying the class documentation for SquareEnvironment, but not

its implementation.

Instance variables, constructor, and the simplest accessor methods — numRows,

numCols, numObjects, and isValid:

Unlike the Environment interface, the BoundedEnv class has instance variables and

a constructor. BoundedEnv implements the conceptual two-dimensional grid of the

environment as a two-dimensional array. It also keeps a separate count of the number

of objects in the grid. The instance variables for BoundedEnv appear below.

    private Locatable[][] theGrid;  // grid representing the environment
    private int objectCount;        // # of objects in current environment
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The two sets of square brackets in the declaration for theGrid indicate that this is

a two-dimensional array. To refer to a specific element (or, more precisely, to a

Locatable object at a specific location) in the 2-D array, we use two indices that

indicate the row and column within the array, respectively. For example, the expression

theGrid[r][c] refers to the Locatable object in row r and column c of the array.

Both rows and columns start at 0. Thus, the object in the first row and first column is

referred to internally as theGrid[0][0]; the object in the third row and the seventh

column is referred to as theGrid[2][6]. To construct a two-dimensional array, we

specify the number of rows and number of columns in square brackets, as in the

constructor below. (The constructor, like those in DarterFish and SlowFish, calls

super to initialize any inherited attributes in SquareEnvironment. In this case the call

isn’t required, because the default constructor would be called automatically, but it

makes the behavior of the constructor clearer.)

    public BoundedEnv(int rows, int cols)
    {
        super();

        theGrid = new Object[rows][cols];
        objectCount = 0;
    }

Three of the next four accessor methods in BoundedEnv are fairly straightforward.

The numRows and numCols methods use standard Java constructs for determining

the number of rows and columns in a two-dimensional array. The number of rows

is written theGrid.length, while the number of columns is theGrid[0].length

(in other words, the length of the first row). This only works if there is a first row;

otherwise, theGrid[0] is undefined. Fortunately, the precondition on the BoundedEnv

constructor states that the number of rows must be greater than zero. The numObjects

method is even simpler than numRows and numCols; it merely returns the objectCount.

    public int numRows()
    {
        return theGrid.length;
    }

    public int numCols()
    {
        return theGrid[0].length;
    }

    public int numObjects()
    {
        return objectCount;
    }
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The isValid method is slightly more complicated. First of all, methods that check the

validity of a parameter should be able to accept a full range of both valid and invalid

values. A null reference is one kind of invalid location; a location that is out of bounds is

another. Valid locations are in the bounds of the environment, which are the same as the

bounds of the internal 2-D array.

    public boolean isValid(Location loc)
    {
        if ( loc == null )
            return false;

        return (0 <= loc.row() && loc.row() < numRows()) &&
(0 <= loc.col() && loc.col() < numCols());

    }

Accessor methods that deal with a single location — objectAt and isEmpty:

The objectAt method, shown below, receives a location as a parameter, loc, and

returns either the object at that location or a null reference if the location is not valid

or if no object exists at location loc. First objectAt checks that the location is in the

bounds of the environment, using the isValid method described above. If the location

is valid, objectAt returns the object at the grid location indicated by loc’s row and

column attributes.

    public Object objectAt(Location loc)
    {
        if ( ! isValid(loc) )
            return null;

        return theGrid[loc.row()][loc.col()];
    }

The isEmpty method is similar to objectAt; it takes a location as a parameter and

returns true or false depending on whether the location is empty or contains an

object. Like objectAt, isEmpty first checks whether the location parameter is in the

bounds of the environment. An out-of-bounds location causes isEmpty to return false

because, although it does not contain an object, it is not a valid empty location in the

environment. If the location is valid, isEmpty calls objectAt; if objectAt returns

null, then there is no object at the location and isEmpty returns true. Otherwise, it

returns false.

    public boolean isEmpty(Location loc)
    {
        return isValid(loc) && objectAt(loc) == null;
    }
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Analysis Question Set 3:

1. Why does isEmpty check whether the location is valid? Why doesn’t it rely

on the fact that objectAt does this already?

Searching through the grid — allObjects and toString:

The allObjects method, shown below, creates a list of all the objects in the

environment by stepping through the entire grid. Since it knows how many objects

it should find in the environment, it can store them in an array (theObjects),

which it initializes to be the correct size. It also creates a second local variable

(tempObjectCount) to keep track of how many objects have been copied over to

the array so far; this serves as an index into theObjects as it is filled.

The allObjects method uses two nested for loops. This is a common pattern for

traversing a two-dimensional, indexed data structure. These loops check all the

locations for objects to be added to the array. The outer loop steps through all the rows

in the grid. For each row, the inner loop steps through all the column positions. (This is

called row-major order.) Inside the inner loop is the code that must be executed for

each cell in the grid. First, allObjects retrieves the contents of the location indicated

by the row and column. If there is an object at that location, it is added to the array of

objects to be returned.

    public Object[] allObjects()
    {
        Locatable[] theObjects = new Locatable[numObjects()];
        int tempObjectCount = 0;

        // Look at all grid locations.
        for ( int r = 0; r < numRows(); r++ )
        {
            for ( int c = 0; c < numCols(); c++ )
            {
                // If there’s an object at this location,
                // put it in the array.
                Locatable obj = theGrid[r][c];
                if ( obj != null )
                {
                    theObjects[tempObjectCount] = obj;
                    tempObjectCount++;
                }
            }
        }

        return theObjects;
    }
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The toString method creates a single string representing all the objects in the

environment. It could have the same nested for loops as allObjects, but instead

it calls that method, letting it do the work of traversing the two-dimensional data

structure. The toString method then steps through the array created by allObjects

to generate the string.

    public String toString()
    {
        Locatable[] theObjects = allObjects();
        String s = "Environment contains " + numObjects() + " objects: ";
        for ( int index = 0; index < theObjects.length; index++ )
            s += theObjects[index].toString() + " ";
        return s;
    }

Analysis Question Set 4:

1. Would an array be a good choice of data representation for the list created by

allObjects if it did not know the number of objects in the environment right

from the start? Why or why not?

2. Read the documentation for the accessor methods. Do the allObjects

or toString methods guarantee the order in which they return the

environment objects?

Modifying an environment — add, remove, and recordMove:

The add method adds an object, obj, to a specified location, loc.

    public void add(Locatable obj)
    {
        // Check precondition.  Location should be empty.
        Location loc = obj.location();
        if ( ! isEmpty(loc) )
            throw new IllegalArgumentException("Location " + loc +
                " is not a valid empty location");

        // Add object to the environment.
        theGrid[loc.row()][loc.col()] = obj;
        objectCount++;
    }
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First, add verifies the precondition from the documentation comment (not shown)

that loc is a valid, empty location. A precondition is a condition that must be met

when the method is called in order for it to work as expected. Technically, making

sure a precondition is met is the responsibility of the calling method, but the original

simulation programmer chose to check the preconditions in add, remove, and

recordMove. If add didn’t check this condition, the new object would simply replace

the existing object and the program would continue as if no error had occurred. Rather

than allow the program to run with missing data, add throws an exception to notify the

user of the error when the precondition is not met. IllegalArgumentException is a

standard Java exception class whose objects represent run-time program errors. These

are serious errors that the program cannot handle and is not meant to handle, so

throwing the run-time exception causes the program to halt. Not all anomalous

conditions are errors that should cause the program to stop running, though. For

example, a fish at the edge of the environment might pass out-of-bounds locations

to isEmpty when it is trying to find its empty neighbors. In this case, it is perfectly

valid to have an invalid location as a parameter.

If the location is empty, as it should be, add inserts the object into the grid at the row

and column indicated by the location. The add method then increments the count of

how many objects are in the environment.

The remove method reverses the task accomplished by the add method. The

precondition for remove is that the object to be removed must be in the environment,

but the check in the code is actually more explicit — the object must be in the

environment at the correct location or else the method throws an exception. Whereas

the body of add puts the new object in the grid and increments objectCount; the body

of remove puts a null reference in the grid and decrements objectCount.

    public void remove(Locatable obj)
    {
        Location loc = obj.location();
        if ( objectAt(loc) != obj )
            throw new IllegalArgumentException("Cannot remove " +
                obj + "; not there");

        theGrid[loc.row()][loc.col()] = null;
        objectCount--;
    }

Finally, there’s the recordMove method, which should be called by any Locatable

object when it moves. The purpose of recordMove is to ensure that the environment

and the object are in a consistent state; in other words, that they agree on where the

object is. The method takes two parameters: the moving object, obj, and its old

location. Its precondition is slightly more complicated than the others: the object’s

new location (obj.location()) must be a valid location in the environment, and

there shouldn’t be any other object there. The object itself should either be in that

environment location already or the environment should move it there. In either case,

at the end of the method the object and the environment should be in a consistent state.
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If the object did not in fact move (the old location is the same as the new location),

then recordMove doesn’t have to do anything. Otherwise, recordMove double-checks

that the object is still at the old location and that there isn’t any other object at the new

location. If everything is okay, the method moves the object by putting it (or, actually,

a reference to it) into the grid at the row and column specified by the new location

(obj.location()), and by putting a null reference into the old location. The code,

with comments removed, appears below.

    public void recordMove(Locatable obj, Location oldLoc)
    {
        Location newLoc = obj.location();
        if ( newLoc.equals(oldLoc) )
            return;

        Locatable foundObject = objectAt(oldLoc);
        if ( ! (foundObject == obj && isEmpty(newLoc)) )
            throw new IllegalArgumentException("Precondition violation " +
                           "moving " + obj + " from " + oldLoc);

        theGrid[newLoc.row()][newLoc.col()] = obj;
        theGrid[oldLoc.row()][oldLoc.col()] = null;
    }

Analysis Question Set 5:

1. What would happen if the parameter passed to add were a null reference?

Would an exception be thrown? Would the null reference be added to the

environment? Would this invalidate the objectCount instance variable?

2. Why does the add method call the isEmpty method to check its precondition,

while remove calls objectAt?

3. Consider implementing a new removeFrom method in BoundedEnv that

would take a location as its parameter. The removeFrom method would

remove whatever object was at the specified location from the environment.

If the specified location were empty, removeFrom would just return without

generating an error. How would the efficiency of this method compare to that

of the existing remove method? In other words, how many steps would each

method have to execute in order to remove an object?

       public void removeFrom(Location loc)
       {
           // implementation goes here
       }
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Test Plan for the BoundedEnv Class

The test plan for the BoundedEnv class developed by the original programmer

included black box and code-based test cases. The “black box” in this case, though,

is the  BoundedEnv class rather than the whole application. Thus, the black box test

cases were developed by looking at the method descriptions, preconditions, and

postconditions in the class documentation, and the code-based test cases were

developed by looking at the method implementations.

An environment implementation is difficult to test in isolation, because the

environment needs objects stored in it. Those objects could be anything that

is Locatable — fish, band members, physics particles, or color blocks. The

original programmer tested BoundedEnv in the context of the marine biology

simulation program.

Black Box Test Cases

The class documentation for BoundedEnv yields black box test cases and informal

expected results like those in the following incomplete list.

• The numRows and numCols methods for a BoundedEnv object should return

r and c, where r and c are the first and second parameters passed to the

constructor, respectively.

• The isValid method should return false when passed a location with a

negative number for either the row or column value, when passed a location

whose row value is greater than or equal to numRows, or when passed a location

whose column value is greater than or equal to numCols. One clever example

that tests all of these cases is a fish in location (0, 0) of a 1 x 1 bounded

environment that asks for all its neighbors [(-1, 0), (0, 1), (1, 0) and (0, -1)].

The isValid method returns false for all four of these neighbors.

• The isValid method should return true if both the row and column values are

greater than or equal to zero and less than numRows or numCols, respectively.

One clever example that tests all of these cases is a fish in location (1, 1) of a

3 x 3 bounded environment that asks for all its neighbors [(0, 1), (1, 2), (2, 1)

and (1, 0)]. The isValid method returns true for all four of these neighbors.

• The numObjects method should return the number of objects that have been

added to the environment minus the number of objects that have been removed.

If no objects have been added to the environment, numObjects should return

zero. This can be tested with a number of different initial configuration files,

including one that specifies environment dimensions but no fish.

• The allObjects method should return a list of the objects that have been added

to the environment and not yet removed. If no objects have been added to

the environment or if all the added objects have been removed, allObjects

should return an empty list. An initial configuration file that specifies no

fish, combined with sample runs of fish breeding and dying, will test this

method thoroughly.
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• The objectAt method returns objects at various locations. It returns null for

an invalid location or a valid, empty location. The allObjects method tests

objectAt for all valid locations (and also tests the numRows and numCols

methods). Only the case of an invalid location remains untested.

• The add method adds the new object if the location is empty. Any run of the

simulation program with at least one fish in it tests the proper use of the add

method. The black box test case from Chapter 2 that specifies two fish in the

same location tests the violation of the precondition.

These are just a few of the test cases for the BoundedEnv class. Running the marine

biology simulation program with the test cases described in Chapter 2 addresses many

of the test cases for BoundedEnv. For example, calling the Simulation step method

on both an empty environment and on a non-empty environment will test the

allObjects method and, based on our knowledge of the implementation of

allObjects, will also test the numRows and numCols methods and some of the test

cases for objectAt. Similarly, when a fish in location (0, 0) asks for all its neighbors,

this tests that isValid works correctly for a negative row, a negative column, and,

assuming that the environment is bigger than 1 x 1, two valid locations. When the fish

asks if its two neighboring locations are empty, the simplest test cases for isEmpty and

objectAt are also tested.

An Unbounded Environment: Problem Specification

Once Jamie explained the details of the BoundedEnv implementation to me and I had

taken time to look it over more carefully, I was ready to think about the problem of

implementing an unbounded environment.

The two-dimensional array representation used in the BoundedEnv class is appropriate

for a simulation of a relatively small, roughly rectangular environment or even a large

rectangular environment as long as it has many fish in it. If, however, the simulation

is very large and has relatively few fish, then the two-dimensional array wastes space.

The 2-D array representation is also inappropriate if the environment is so big that it is

essentially unbounded (such as the ocean) or if its shape is very irregular.

As I thought about the problem of implementing an unbounded environment, I realized

that I needed more information from the marine biologists. Did they want to only keep

track of the fish within a bounded area, such as a fixed section of the Pacific Ocean,

but allow fish to swim in and out of the area? If we weren’t keeping track of the fish

outside the area, the simulation could occasionally create new fish at the boundaries

to represent fish swimming in and delete fish from the environment whenever they

swam out. Or, did the biologists want to keep track of all the fish in the environment,

regardless of where they swam, without imposing any boundaries on the environment?

This might be more useful to the biologists if they were studying a certain population,

such as a school of whales, as they moved throughout the ocean.
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I talked to the biologists to clarify this point, and discovered that they wanted to track

fish wherever they went in the environment, not just within certain boundaries. They

also verified that they still wanted to be able to simulate fish movement in a bounded

environment when that was more appropriate. I made the following list of requirements

and verified it with the biologists before starting my design.

• The environment should continue to be modeled as a conceptual grid of cells,

with fish moving from cell to cell in the grid.

• The program should support a bounded, rectangular environment for simulations

where that is appropriate.

• The program should also support an unbounded environment for simulations

where that is more appropriate.

• Regardless of the type of environment, the simulation should keep track of all the

fish from the time they are born until they die.

Design and Implementation of the Unbounded Environment

I decided to review the environment design alternatives that Jamie had described to me.

They included the two-dimensional representation that the original programmer used, a

list of the objects and their locations, and a list of just locations. The original marine

biology simulation programmer had decided that the third design was not appropriate

because the fish in the environment are not all identical. The second design, though,

seemed like it would be a good choice for an unbounded environment because it had

no explicit boundaries.

X

X

X

X, (0, 1) X, (0, 2) X, (1, 1) (0, 1) (0, 2) (1, 1)
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The UnboundedEnv Class

Instance variables, constructors, and the simplest accessor methods — numRows,

numCols, isValid, and numObjects:

Now I was ready to implement the UnboundedEnv class. I started by copying

BoundedEnv.java. Because the internal data representation for the new class would

be different, it was obvious that the instance variables would change. Instead of a two-

dimensional array containing fish and empty cells (where the fish’s location in the array

corresponds to its location in the conceptual grid of the environment), I needed a list of

all the fish and their locations. Actually, because a fish keeps track of its own location,

as do all Locatable objects, all I needed was a list of Locatable objects.

The next question was how to represent the list. I could have used a one-dimensional

array, but that didn’t seem a good choice since the number of fish in the environment

changes every time a fish is born or dies. Arrays cannot change size after they are

constructed. Instead I decided to use an ArrayList. This is a dynamic data structure

that can grow and shrink as the simulation runs. (I had already seen ArrayList objects,

because Environment and Fish use them for their lists of neighboring locations.) So,

the key instance variable in the UnboundedEnv class is an ArrayList of Locatable

objects called objectList. In fact, it is the only instance variable in this class. I

realized I didn’t need the objectCount instance variable because the expression

objectList.size() provides the same information.

    private ArrayList objectList; // list of Locatable objects in environment

The constructor for UnboundedEnv is a default constructor because it doesn’t make

sense to specify the number of rows and number of columns for an unbounded

environment. The constructor simply calls super() to initialize any inherited attributes

and then creates an empty ArrayList. It does not initialize objectCount because that

instance variable doesn’t exist.

The numRows, numCols, isValid, and numObjects methods are just as simple. The

numRows and numCols methods return -1, an invalid dimension indicating that the

environment is unbounded. The isValid method which tests locations always returns

true (unless the location is null) because all locations are valid in the unbounded

environment, including ones with negative indices. The numObjects method returns the

size of objectList.
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Analysis Question Set 6:

1. Pat created the UnboundedEnv class by first copying the BoundedEnv

class and then modifying it. Would it have been appropriate to create

UnboundedEnv as a subclass of BoundedEnv, rather than as a subclass

of SquareEnvironment? Why, or why not?

2. Pat chose to return -1 for the number of rows and number of columns of an

unbounded environment, as specified by documentation in the Environment

interface. The interface documentation could, however, have specified a

different value for an undefined number of rows or number of columns.

For example, the program could use Integer.MAX_VALUE. What are the

advantages and disadvantages of each of these implementation alternatives?

Searching through the environment — isEmpty, objectAt, allObjects,

and toString:

In the bounded environment, with its two-dimensional array implementation, the

isEmpty and objectAt methods do not need to search through the internal data

structure to find the appropriate location to check. They can go directly to the specified

row and column in the 2-D array. With the list implementation of the unbounded

environment, however, they must search through the list for the object with the

appropriate location.
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In BoundedEnv, isEmpty returns true if the given location is in bounds and is empty.

For UnboundedEnv, it is enough to just check whether the given location is empty, since

all locations are “in bounds.” That left the question of how to determine whether a

location is empty. The BoundedEnv programmer chose to use the more general

objectAt method to implement isEmpty, and I chose to do the same. My first draft

of the objectAt method looped through the list, comparing the location of each

Locatable object with the parameter, loc. When it found an object with a matching

location (using the equals method in the Location class), it returned the object.

Here’s my first version of the code for isEmpty and objectAt.

    public boolean isEmpty(Location loc)
    {
        return (objectAt(loc) == null);
    }

    public Locatable objectAt(Location loc)     // first draft!
    {
        // Look through the list to find the object at
        // the given location.
        for ( int index = 0; index < objectList.size(); index++ )
        {
            Locatable obj = (Locatable) objectList.get(index);
            if ( obj.location().equals(loc) )
            {
                // Found the object — return it.
                return obj;
            }
        }

        // No such object found.
        return null;
    }

The allObjects method seemed at first to be trivial; I could just return the

objectList instance variable. Then I realized that objectList is an ArrayList,

but allObjects needs to return the objects in a one-dimensional array. As a result,

allObjects creates a new array of the appropriate size, and, in a loop, copies objects

from the ArrayList to the array. The code appears below.

    public Locatable[] allObjects()
    {
        Locatable[] ObjectArray = new Locatable[objectList.size()];

        for ( int index = 0; index < objectList.size(); index++ )
        {
            ObjectArray[index] = (Locatable) objectList.get(index);
        }

        return ObjectArray;
    }
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The order of the objects in the list returned by the allObjects method is the same

as their order in the internal ArrayList, but might not be the same as the order

returned by the allObjects method in the BoundedEnv class. This does not violate

the Environment interface, since it only states that the allObjects method

“Returns all the objects in this environment.” It does not specify the order in

which they are returned.

The allObjects method had at first seemed trivial, but the toString method really

was. I did not have to make any modifications to it from the BoundedEnv version.

Analysis Question Set 7:

1. Why did Pat’s first draft of the objectAt method use the equals method in

Location rather than the == operator?

2. The lists returned by the BoundedEnv and UnboundedEnv versions of the

allObjects method might have their objects in different orders. How

could this difference lead to different behavior in the marine biology

simulation, even if the initial configuration of fish and the random number

seed were the same?

Modifying an environment — add, remove, and recordMove:

The add method in UnboundedEnv is very similar to that in BoundedEnv. The only

difference is that it uses the ArrayList add method to add the object to the list rather

than putting it in the appropriate spot in the two-dimensional grid.

Next I turned to the remove method. The first thing it needs to do is to determine where

the object to be removed is located in the list of Locatable objects. This is similar to

what happens in objectAt, except that objectAt is passed a location and remove

is passed the actual object, from which it can get the location. In fact, my first

draft of remove called objectAt to check the precondition that the object is in the

environment, just as the remove method of the BoundedEnv class does. Then it called

the same ArrayList remove method that was used in the nextLocation method of

Fish, passing it the object to remove.

    public void remove(Locatable obj)         // first draft!
    {
        // Make sure that the object is there to remove.
        Location loc = obj.location();
        if ( objectAt(loc) != obj )
            throw new IllegalArgumentException("Cannot remove " +
                obj + "; not there");

        // Remove the object.
        objectList.remove(obj);
    }
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After thinking about the performance of my draft remove method, I decided to modify

it. Rather than have it step through the list twice, once to check that the object was

there and once to remove it, I decided to step through the list once. I would find the

index of the object in the list while checking the precondition, and then use that index

to remove the object directly, without doing a second search. Then I decided that rather

than writing two versions of the code to step through the list, one in objectAt looking

for an object and one in remove looking for an index, I would write it once in a helper

method and call the helper method from both objectAt and remove. Since it is easy

and efficient to get an object from an ArrayList given its index, the new method,

indexOf, returns the index of the Locatable object for a given location, or -1 if

no such object exists. Its code is based on my first draft of objectAt. The new

objectAt method merely returns the object at that index, while remove calls the

ArrayList remove method that takes an index as a parameter. The code for indexOf

and the modified objectAt and remove methods, with some comments removed,

appears below.

    protected int indexOf(Location loc)
    {
        // Look through the list to find the object at
        // the given location.
        for ( int index = 0; index < objectList.size(); index++ )
        {
            Locatable obj = (Locatable) objectList.get(index);
            if ( obj.location().equals(loc) )
            {
                // Found the object — return its index.
                return index;
            }
        }

        // No such object found.
        return -1;
    }

    public Locatable objectAt(Location loc)     // final draft!
    {
        int index = indexOf(loc);
        if ( index == -1 )
            return null;

        return (Locatable) objectList.get(index);
    }

    public void remove(Locatable obj)         // final draft!
    {
        int index = indexOf(obj.location());
        if ( index == -1 )
            throw new IllegalArgumentException("Cannot remove " +
                obj + "; not there");

        objectList.remove(index);
    }
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Finally I moved on to the recordMove method. If this method didn’t check its

precondition and postcondition, it wouldn’t have to do anything at all! The unbounded

environment does not keep track of an object’s location in any way, it just makes use

of the fact that all the objects in it are Locatable and therefore keep track of their own

locations. If an object modifies its own location, then it has moved, and there’s nothing in

the environment that needs to be updated as a result.

So, the only thing I needed to do in recordMove was to check the precondition and

postcondition. Just as a precondition is a condition that must be true before the method

executes, a postcondition is one that must be true after the method executes. The

precondition and postcondition for a method are sometimes called its contract, since

they state that if the precondition is met when the method begins executing, then the

method will make sure that the postcondition is met when it is done. Checking the

precondition and postcondition for recordMove isn’t as trivial as it sounds. The

precondition states that “obj.location() is a valid location and there is no other

object there.” The first part of the condition does not actually need to be checked,

since all locations are valid in an unbounded environment. To check the second half,

though, requires verifying that the object itself is in the list and that there is no other

object in the list at that location. That means checking all the objects in the list.

The postcondition for recordMove states that “obj is at the appropriate location

(obj.location()), and either oldLoc is equal to obj.location() (there was no

movement) or oldLoc is empty.” Again, the first part of this condition does not require

any checking; if the object is in the list at all, it must be at the appropriate location. The

second part of the condition requires looking through the list to see if there is an object

whose location is the same as oldLoc. If there is, it should be the object that “moved”

(or, rather, didn’t move).

My first draft of recordMove, shown below, was simple but, unfortunately, incomplete

and inefficient.

    public void recordMove(Locatable obj, Location oldLoc)
                                          // incomplete draft!
    {
        // Simplest case: There was no movement.
        Location newLoc = obj.location();
        if ( newLoc.equals(oldLoc) )
            return;

        // Otherwise, the object at newLoc should be the object that is
        // moving and oldLoc should be empty.
        Locatable objectAtNewLoc = objectAt(obj.location());
        Locatable objectAtOldLoc = objectAt(oldLoc);
        if ( ! (objectAtNewLoc == obj && isEmpty(oldLoc)) )
            throw new IllegalArgumentException("Precondition violation " +
                           "moving " + obj + " from " + oldLoc);
    }
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This version of recordMove checks that the object is in the list and that oldLoc is

either equal to the object’s location (no movement) or empty. It does not, however,

verify that there aren’t two objects at the new location, which could happen if an object

moved to a location without first checking that it was empty. After some thought, I

implemented the version of recordMove shown below. This version makes a single

pass through the list, looking for all objects in either the object’s new location or its old

location. At the end of the pass, it checks that there was exactly one object at the new

location. It also checks that the old location is either the same as the new location (in

which case we know that there is exactly one object there) or that it is empty.

    public void recordMove(Locatable obj, Location oldLoc)
                                          // final draft!
    {
        int objectsAtOldLoc = 0;
        int objectsAtNewLoc = 0;

        // Look through the list to find how many objects are at old
        // and new locations.
        Location newLoc = obj.location();
        for ( int index = 0; index < objectList.size(); index++ )
        {
            Locatable thisObj = (Locatable) objectList.get(index);
            if ( thisObj.location().equals(oldLoc) )
                objectsAtOldLoc++;
            if ( thisObj.location().equals(newLoc) )
                objectsAtNewLoc++;
        }

        // There should be one object at newLoc.  If oldLoc equals
        // newLoc, there should be one at oldLoc; otherwise, there
        // should be none.
        if ( ! ( objectsAtNewLoc == 1 &&
               ( oldLoc.equals(newLoc) || objectsAtOldLoc == 0 ) ) )
        {
            throw new IllegalArgumentException("Precondition violation " +
                           "moving " + obj + " from " + oldLoc);
        }
    }
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Analysis Question Set 8:

1. Why didn’t Pat make the indexOf method public?

2. Pat claimed that the first draft of the remove method is inefficient because it

steps through the list twice. Why does it do this and how?

3. Pat explained why the first draft of recordMove was incomplete, but not how

it was inefficient. How is the first draft of recordMove less efficient than the

final draft?

4. How would you characterize the performance of the first and second drafts of

remove and recordMove? (AB only)

 O(1) log n O(n) n2

1st draft of remove

2nd draft of remove

1st draft of recordMove

2nd draft of recordMove

Displaying an Unbounded Environment

How does one display an unbounded environment, or even an extremely large bounded

environment? I decided to ask Jamie about this. It turns out that the graphical display

class I was using to display the fish in the environment always uses the same size

display window and tries to fit the entire environment in that window. It adjusts the

size of the cells in the environment depending on how many cells there are in the

environment. For example, a 10 x 10 environment would have much smaller cells than

a 5 x 5 environment. If the environment has so many cells that they would be too tiny

to see, however, the display class abandons its attempt to display all the cells and only

shows a portion of the environment. In other words, cell size gets smaller and smaller

as the environment gets larger and larger, until the cell size hits a predefined minimum.

According to Jamie, if numRows and numCols return unreasonable values, either

negative numbers or unacceptably large positive numbers, the display defaults to

the minimum cell size and shows whatever portion of the environment fits in the

window with location (0, 0) in the upper left-hand corner.
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Choosing an Appropriate Environment Representation

One question I still had was how the program would know whether a bounded or

unbounded environment was more appropriate? I talked with the marine biologists

and they said that they would specify in the initial configuration files whether an

environment should be bounded or unbounded. They would specify a bounded

environment by putting the word “bounded” in the first line with the environment’s

dimensions, as they were already doing. They would specify an unbounded

environment by putting the word “unbounded” in the first line, without any

dimensions. Because it is the responsibility of the program driver (main method,

applet, or graphical user interface) to read in the initial configuration file and construct

the environment, the driver code would need to change. I was using a graphical user

interface that the original programmer had written and was not familiar with that code;

Jamie offered to update it for me.

Testing the UnboundedEnv Class

The black box test cases for the UnboundedEnv class are the same as for the

BoundedEnv class, although the expected results are often different. For example, a

fish in location (0, 0) in a bounded environment should have two valid neighboring

locations, while the same fish in an unbounded environment will have four. The list

below describes the black box behavior of the UnboundedEnv class relative to the

behavior of the BoundedEnv class.

• The numRows and numCols methods for an UnboundedEnv object always return -1.

• The isValid method should always return true.

• The numObjects and allObjects methods should return the same values as

they do for a bounded environment.

• The isEmpty and objectAt methods should work just as they do for a bounded

environment, except that all non-null locations are valid.

• The toString method should work just as it does for a bounded environment.

• The add, remove, and recordMove methods should work just as they do for a

bounded environment.

The first thing I did to test the unbounded environment was to run it with the same tests

that I had used to test my previous modifications to the simulation program. For all

cases where the fish had been somewhere in the middle of the bounded environment I

expected to see similar types of results, although not exactly the same. The differences

in behavior that I was most interested in, though, were with fish along the edges or

boundaries of the bounded environment.
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To test the changed behavior for an unbounded environment I created a new initial

configuration file (boundaryFish.dat) with fish lined up along row 0 and down

column 0 (what had been the top row and the left-most column of the bounded

environment). I also turned on debugging for just the Fish move method. I expected

about half of the fish to move out of the display area in the first timestep, and for some

of them to move back into the display area in later timesteps. I found that fish did move

out of the display area as I had expected. To my surprise, at least until I thought more

about it, not a single fish moved back into the display area during the second timestep,

although some did in the third and fourth timesteps.

Analysis Question Set 9:

1. When Pat was testing the UnboundedEnv class, why didn’t any fish that

moved out of the display area in the first timestep move back into it in the

second timestep?

2. Why might the behavior of a fish that had been in the middle of a bounded

environment be different in an unbounded environment?

3. What kind of test program would you write if you wanted to test the

UnboundedEnv class on its own before using it in the marine biology

simulation program?

4. How would you implement a very large bounded environment class? Would

you represent the environment internally using a two-dimensional array, an

ArrayList, or some other data structure? If you were to use an ArrayList,

what methods could you use from UnboundedEnv? What methods could you

use from BoundedEnv?

5. What is the performance of the objectAt method if the environment is a

BoundedEnv object? What if it is an UnboundedEnv object?

6. What is the performance of the allObjects method if the environment is a

BoundedEnv object? What if it is an UnboundedEnv object?

7. What is the performance of the Fish isInEnv method if the environment is a

BoundedEnv object? What if it is an UnboundedEnv object?

8. Consider representing objectList in other ways. What would be the effect

on the performance of methods like objectAt, allObjects, add, and remove

if the list were kept in sorted order? If the list were represented as a binary

search tree? If it were represented as a hash map?
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Exercise Set 1:

1. Run the marine biology simulation with data files from the

UnboundedEnvDataFiles folder inside the DataFiles folder. Run the

same tests you ran in Chapters 1– 4. What differences do you observe?

2. Run the simulation with the boundaryFish.dat file from the

UnboundedEnvDataFiles folder. What behavior do you observe?

3. Implement a class to represent a very large bounded environment that contains

relatively few fish in one of two ways.

• Define a VLBoundedEnv class that extends UnboundedEnv. You will

need to add a constructor and modify all methods that depend on the

bounds. [Alternative: Because a very large bounded environment is not

a specialized type of unbounded environment, a cleaner design would

be to have an abstract ListEnv class that implements only the methods

that support the ArrayList representation, regardless of whether the

environment is bounded or unbounded. Then have both UnboundedEnv

and VLBoundedEnv extend ListEnv.]

• Define an SMBoundedEnv class that uses a sparse matrix. This version

should extend SquareEnvironment and should use an array of linked

lists to represent the grid of Locatable objects. Each element in the

array should be a linked list of the objects that occur in that row of the

grid, in increasing column order. (AB only)

[Note: If you are using the graphical user interface distributed with the

case study, edit the MBSGUI class and add VLBoundedEnv or SMBoundedEnv

to the list of classes that can represent bounded environments. Now when

you read in a file specifying a bounded environment, you will be given a

choice as to which representation you would like to use.] 

4. Define a SLUnboundedEnv class that uses a sorted list. Make sure that your

objectAt method takes advantage of the sorted nature of the list. (AB only)

[Note: If you are using the graphical user interface distributed with the

case study, edit the MBSGUI class and add SLUnboundedEnv to the list of

classes that can represent unbounded environments.]

5. Define a BSTUnboundedEnv class that uses a binary search tree. (AB only)

[Note: If you are using the graphical user interface distributed with the

case study, edit the MBSGUI class and add BSTUnboundedEnv to the list of

classes that can represent unbounded environments.]

6. Define a HMUnboundedEnv class that uses a hash map. (AB only)

[Note: If you are using the graphical user interface distributed with the

case study, edit the MBSGUI class and add HMUnboundedEnv to the list of

classes that can represent unbounded environments.]
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Quick Reference for Core Classes and Interfaces

This quick reference lists the constructors and methods associated with the core classes

described in this chapter. Public methods are in regular type. Private and protected methods

are in italics. (Complete class documentation for the marine biology simulation classes can

be found in the Documentation folder).

Environment Interface

public int numRows()
public int numCols()

public boolean isValid(Location dir)
public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc, Direction compassDir)
public ArrayList neighborsOf(Location ofLoc)

public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)

public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)

SquareEnvironment Abstract Class (implements Environment) (Black Box)

public SquareEnvironment()
public SquareEnvironment(boolean includeDiagonalNeighbors)

public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc, Direction compassDir)
public ArrayList neighborsOf(Location ofLoc)
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BoundedEnv Class (extends SquareEnvironment)

public BoundedEnv(int rows, int cols)

public int numRows()
public int numCols()

public boolean isValid(Location loc)

public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
public String toString()

public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)

UnboundedEnv Class (extends SquareEnvironment)

public UnboundedEnv()

public int numRows()
public int numCols()

public boolean isValid(Location loc)

public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
public String toString()

public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)

protected int indexOf(Location loc)
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Quick Reference for Utility Classes and Interfaces

(public constants, constructors, and methods only)

This quick reference lists the public constants, constructors, and methods

associated with the utility classes described in this chapter. The marine biology

simulation program also uses subsets of the following standard Java classes:

java.util.ArrayList, java.util.Random, and java.awt.Color. (Complete

class documentation for the marine biology simulation classes can be found in the

Documentation folder).

Case Study Utility Classes and Interfaces

Locatable Interface

Location location()

Location Class

Location(int row, int col)
int row()
int col()
boolean equals(Object other)
int compareTo(Object other)
String toString()

The following is not tested:

int hashCode()

RandNumGenerator Class

static Random getInstance()

Debug Class

static boolean isOn()
static boolean isOff()
static void turnOn()
static void turnOff()
static void restoreState()
static void print(String message)
static void println(String message)

EnvDisplay Interface

void showEnv()

Direction Class

NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, SOUTHWEST

Direction()
Direction(int degrees)
Direction(String str)
int inDegrees()
boolean equals(Object other)
Direction toRight()
Direction toRight(int degrees)
Direction toLeft()
Direction toLeft(int degrees)
Direction reverse()
String toString()
static Direction randomDirection()

The following are not tested:

FULL_CIRCLE
int hashCode()
Direction roundedDir(int numDirections,

Direction startingDir)
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Java Library Utility Classes

java.util.ArrayList Class (Partial)

boolean add(Object o)
void add(int index, Object o)
Object get(int index)
Object remove(int index)
boolean remove(Object o)
Object set(int index, Object o)
int size()

java.awt.Color Class (Partial)

black, blue, cyan, gray, green,
magenta, orange, pink, red,
white, yellow

Color(int r, int g, int b)

java.util.Random Class (Partial)

int nextInt(int n)
double nextDouble()
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Marine Biology Simulation
Case Study

Appendix A

Testable Classes and Concepts

The AP Computer Science Course Description and AP Computer Science Java Subset list the topics,

concepts, and Java language constructs that are part of the AP Computer Science A and AB curricula

and may be tested on the AP Exams. This appendix lists additional classes and terms from the marine

biology simulation case study that may be tested on the exams. It also lists classes and terms that

appear in the case study code, class documentation, or narrative but will not be tested. Items labeled

(AB only) may be tested on the AB exam but will not be tested on the A exam.

 

Classes and Terminology

Chapter May appear in test questions Will NOT be tested

1 SimpleMBSDemo1

SimpleMBSDemo2

MBSGUI

terms: driver

  

2 Simulation (implementation) Fish: nextAvailableID class

Environment (documentation)     variable

Fish (implementation) Direction: FULL_CIRCLE

Debug (documentation)     constant; hashCode and

Direction (documentation)     roundedDir methods

EnvDisplay (documentation) Location: hashCode method

Locatable (documentation) visibility rules of protected

Location (documentation)     keyword

RandNumGenerator implementation of black-box

    (documentation)     classes

ArrayList: remove(Object) terms: black box, black-box

    method (and other methods     and code-based tests,

    in the AP subset)     class variable, consistent

Color: constructor and constants     and inconsistent state,

    in Quick Reference     pseudo-random, seed

terms: boundary tests, client

    code, dynamic binding, field,

    instance variable, override,

    pseudo-code, redefine,

    timestep



Appendix A A2

Chapter May appear in test questions Will NOT be tested

3 Fish (modified implementation)

terms: pseudo-code  

4 DarterFish (implementation) terms: regression testing,

SlowFish (implementation)      probabilistic vs.

redefinition of public and     deterministic methods

    protected methods

terms: dynamic binding,

    override, redefine

5 Environment (complete SquareEnvironment

    interface) terms: row-major order,

BoundedEnv (implementation)     contract

    (AB only)

UnboundedEnv (implementation)

    (AB only)
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Appendix B

Source Code for Visible Classes

This appendix contains implementations of the visible core classes covered in Chapters 1 – 4:

Simulation, Fish, DarterFish, and SlowFish. Information about Environment, which is black box,

can be found in Appendix C.

Simulation.java

/**
 *  Marine Biology Simulation:
 *  A Simulation object controls a simulation of fish
 *  movement in an Environment.
 *
 *  @version 1 July 2002
 **/

public class Simulation
{
    // Instance Variables: Encapsulated data for each simulation object
    private Environment theEnv;
    private EnvDisplay  theDisplay;

    /** Constructs a Simulation object for a particular environment.
     *  @param env     the environment on which the simulation will run
     *  @param display an object that knows how to display the environment
     **/
    public Simulation(Environment env, EnvDisplay display)
    {
        theEnv = env;
        theDisplay = display;

        // Display the initial state of the simulation.
        theDisplay.showEnv();
        Debug.println("———— Initial Configuration ————");
        Debug.println(theEnv.toString());
        Debug.println("———————————————————");
    }

    /** Runs through a single step of this simulation. **/
    public void step()
    {
        // Get all the fish in the environment and ask each
        // one to perform the actions it does in a timestep.
        Locatable[] theFishes = theEnv.allObjects();
        for ( int index = 0; index < theFishes.length; index++ )
        {
            ((Fish)theFishes[index]).act();
        }

        // Display the state of the simulation after this timestep.
        theDisplay.showEnv();
        Debug.println(theEnv.toString());
        Debug.println("———— End of Timestep ————");
    }
}
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Fish.java (includes breeding and dying modifications from Chapter 3)

import java.awt.Color;
import java.util.ArrayList;
import java.util.Random;

/**
 *  Marine Biology Simulation:
 *  A Fish object represents a fish in the Marine Biology
 *  Simulation. Each fish has a unique ID, which remains constant
 *  throughout its life. A fish also maintains information about its
 *  location and direction in the environment.
 *
 *  Modification History:
 *  - Modified to support a dynamic population in the environment:
 *    fish can now breed and die.
 *
 *  @version 1 July 2002
 **/

public class Fish implements Locatable
{

    // Class Variable: Shared among ALL fish
    private static int nextAvailableID = 1;   // next avail unique identifier

    // Instance Variables: Encapsulated data for EACH fish
    private Environment theEnv;        // environment in which the fish lives
    private int myId;                  // unique ID for this fish
    private Location myLoc;            // fish's location
    private Direction myDir;           // fish's direction
    private Color myColor;             // fish's color
// THE FOLLOWING TWO INSTANCE VARIABLES ARE NEW IN CHAPTER 3 !!!
    private double probOfBreeding;     // defines likelihood in each timestep
    private double probOfDying;        // defines likelihood in each timestep

  // constructors and related helper methods

    /** Constructs a fish at the specified location in a given environment.
     *  The Fish is assigned a random direction and random color.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     **/
    public Fish(Environment env, Location loc)
    {
        initialize(env, loc, env.randomDirection(), randomColor());
    }
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    /** Constructs a fish at the specified location and direction in a
     *  given environment.  The Fish is assigned a random color.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     **/
    public Fish(Environment env, Location loc, Direction dir)
    {
        initialize(env, loc, dir, randomColor());
    }

    /** Constructs a fish of the specified color at the specified location
     *  and direction.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     *  @param col    color of the new fish
     **/
    public Fish(Environment env, Location loc, Direction dir, Color col)
    {
        initialize(env, loc, dir, col);
    }

    /** Initializes the state of this fish.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which this fish will live
     *  @param loc    location of this fish in env
     *  @param dir    direction this fish is facing
     *  @param col    color of this fish
     **/
    private void initialize(Environment env, Location loc, Direction dir,
                            Color col)
    {
        theEnv = env;
        myId = nextAvailableID;
        nextAvailableID++;
        myLoc = loc;
        myDir = dir;
        myColor = col;
        theEnv.add(this);

        // object is at location myLoc in environment

    // THE FOLLOWING INITIALIZATIONS ARE NEW IN CHAPTER 3 !!!
        // For now, every fish is equally likely to breed or die in any given
        // timestep, although this could be individualized for each fish.
        probOfBreeding = 1.0/7.0;   // 1 in 7 chance in each timestep
        probOfDying = 1.0/5.0;      // 1 in 5 chance in each timestep
    }
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    /** Generates a random color.
     *  @return       the new random color
     **/
    protected Color randomColor()
    {
        // There are 256 possibilities for the red, green, and blue attributes
        // of a color. Generate random values for each color attribute.
        Random randNumGen = RandNumGenerator.getInstance();
        return new Color(randNumGen.nextInt(256),    // amount of red
                         randNumGen.nextInt(256),    // amount of green
                         randNumGen.nextInt(256));   // amount of blue
    }

  // accessor methods

    /** Returns this fish's ID.
     *  @return        the unique ID for this fish
     **/
    public int id()
    {
        return myId;
    }

    /** Returns this fish's environment.
     *  @return        the environment in which this fish lives
     **/
    public Environment environment()
    {
        return theEnv;
    }

    /** Returns this fish's color.
     *  @return        the color of this fish
     **/
    public Color color()
    {
        return myColor;
    }

    /** Returns this fish's location.
     *  @return        the location of this fish in the environment
     **/
    public Location location()
    {
        return myLoc;
    }

    /** Returns this fish's direction.
     *  @return        the direction in which this fish is facing
     **/
    public Direction direction()
    {
        return myDir;
    }
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    /** Checks whether this fish is in an environment.
     *  @return  true if the fish is in the environment
     *           (and at the correct location); false otherwise
     **/
    public boolean isInEnv()
    {
        return environment().objectAt(location()) == this;
    }

    /** Returns a string representing key information about this fish.
     *  @return  a string indicating the fish's ID, location, and direction
     **/
    public String toString()
    {
        return id() + location().toString() + direction().toString();
    }

  // modifier method

// THE FOLLOWING METHOD IS MODIFIED FOR CHAPTER 3 !!!
//     (was originally a check for aliveness and a simple call to move)
    /** Acts for one step in the simulation.
     **/
    public void act()
    {
        // Make sure fish is alive and well in the environment — fish
        // that have been removed from the environment shouldn't act.
        if ( ! isInEnv() )
            return;

        // Try to breed.
        if ( ! breed() )
            // Did not breed, so try to move.
            move();

        // Determine whether this fish will die in this timestep.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() < probOfDying )
            die();
    }
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  // internal helper methods

// THE FOLLOWING METHOD IS NEW FOR CHAPTER 3 !!!
    /** Attempts to breed into neighboring locations.
     *  @return    true if fish successfully breeds;
     *             false otherwise
     **/
    protected boolean breed()
    {
        // Determine whether this fish will try to breed in this
        // timestep.  If not, return immediately.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() >= probOfBreeding )
            return false;

        // Get list of neighboring empty locations.
        ArrayList emptyNbrs = emptyNeighbors();
        Debug.print("Fish " + toString() + " attempting to breed.  ");
        Debug.println("Has neighboring locations: " + emptyNbrs.toString());

        // If there is nowhere to breed, then we're done.
        if ( emptyNbrs.size() == 0 )
        {
            Debug.println("  Did not breed.");
            return false;
        }

        // Breed to all of the empty neighboring locations.
        for ( int index = 0; index < emptyNbrs.size(); index++ )
        {
            Location loc = (Location) emptyNbrs.get(index);
            generateChild(loc);
        }

        return true;
    }

// THE FOLLOWING METHOD IS NEW FOR CHAPTER 3 !!!
    /** Creates a new fish with the color of its parent.
     *  @param loc    location of the new fish
     **/
    protected void generateChild(Location loc)
    {
        // Create new fish, which adds itself to the environment.
        Fish child = new Fish(environment(), loc,
                              environment().randomDirection(), color());
        Debug.println("  New Fish created: " + child.toString());
    }
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    /** Moves this fish in its environment.
     **/
    protected void move()
    {
        // Find a location to move to.
        Debug.print("Fish " + toString() + " attempting to move.  ");
        Location nextLoc = nextLocation();

        // If the next location is different, move there.
        if ( ! nextLoc.equals(location()) )
        {
            // Move to new location.
            Location oldLoc = location();
            changeLocation(nextLoc);

            // Update direction in case fish had to turn to move.
            Direction newDir = environment().getDirection(oldLoc, nextLoc);
            changeDirection(newDir);
            Debug.println("  Moves to " + location() + direction());
        }
        else
            Debug.println("  Does not move.");
    }

    /** Finds this fish's next location.
     *  A fish may move to any empty adjacent locations except the one
     *  behind it (fish do not move backwards). If this fish cannot
     *  move, nextLocation returns its current location.
     *  @return    the next location for this fish
     **/
    protected Location nextLocation()
    {
        // Get list of neighboring empty locations.
        ArrayList emptyNbrs = emptyNeighbors();

        // Remove the location behind, since fish do not move backwards.
        Direction oppositeDir = direction().reverse();
        Location locationBehind = environment().getNeighbor(location(),
                                                            oppositeDir);
        emptyNbrs.remove(locationBehind);
        Debug.print("Possible new locations are: " + emptyNbrs.toString());

        // If there are no valid empty neighboring locations, then we're done.
        if ( emptyNbrs.size() == 0 )
            return location();

        // Return a randomly chosen neighboring empty location.
        Random randNumGen = RandNumGenerator.getInstance();
        int randNum = randNumGen.nextInt(emptyNbrs.size());
        return (Location) emptyNbrs.get(randNum);
    }
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    /** Finds empty locations adjacent to this fish.
     *  @return    an ArrayList containing neighboring empty locations
     **/
    protected ArrayList emptyNeighbors()
    {
        // Get all the neighbors of this fish, empty or not.
        ArrayList nbrs = environment().neighborsOf(location());

        // Figure out which neighbors are empty and add those to a new list.
        ArrayList emptyNbrs = new ArrayList();
        for ( int index = 0; index < nbrs.size(); index++ )
        {
            Location loc = (Location) nbrs.get(index);
            if ( environment().isEmpty(loc) )
                emptyNbrs.add(loc);
        }

        return emptyNbrs;
    }

    /** Modifies this fish's location and notifies the environment.
     *  @param  newLoc    new location value
     **/
    protected void changeLocation(Location newLoc)
    {
        // Change location and notify the environment.
        Location oldLoc = location();
        myLoc = newLoc;
        environment().recordMove(this, oldLoc);

        // object is again at location myLoc in environment
    }

    /** Modifies this fish's direction.
     *  @param  newDir    new direction value
     **/
    protected void changeDirection(Direction newDir)
    {
        // Change direction.
        myDir = newDir;
    }

// THE FOLLOWING METHOD IS NEW FOR CHAPTER 3 !!!
    /** Removes this fish from the environment.
     **/
    protected void die()
    {
        Debug.println(toString() + " about to die.");
        environment().remove(this);
    }

}
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DarterFish.java

import java.awt.Color;

/**
 *  Marine Biology Simulation:
 *  The DarterFish class represents a fish in the Marine
 *  Biology Simulation that darts forward two spaces if it can, moves
 *  forward one space if it can't move two, and reverses direction
 *  (without moving) if it cannot  move forward. It can only "see" an
 *  empty location two cells away if the cell in between is empty also.
 *  In other words, if both the cell in front of the darter and the cell
 *  in front of that cell are empty, the darter fish will move forward
 *  two spaces. If only the cell in front of the darter is empty, it
 *  will move there. If neither forward cell is empty, the fish will turn
 *  around, changing its direction but not its location.
 *
 *  DarterFish objects inherit instance variables and much
 *  of their behavior from the Fish class.
 *
 *  @version 1 July 2002
 **/

public class DarterFish extends Fish
{

  // constructors

    /** Constructs a darter fish at the specified location in a
     *  given environment. This darter is colored yellow.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     **/
    public DarterFish(Environment env, Location loc)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, env.randomDirection(), Color.yellow);
    }

    /** Constructs a darter fish at the specified location and direction in a
     *  given environment. This darter is colored yellow.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     **/
    public DarterFish(Environment env, Location loc, Direction dir)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, dir, Color.yellow);
    }
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    /** Constructs a darter fish of the specified color at the specified
     *  location and direction.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     *  @param col    color of the new fish
     **/
    public DarterFish(Environment env, Location loc, Direction dir, Color col)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, dir, col);
    }

  // redefined methods

    /** Creates a new darter fish.
     *  @param loc    location of the new fish
     **/
    protected void generateChild(Location loc)
    {
        // Create new fish, which adds itself to the environment.
        DarterFish child = new DarterFish(environment(), loc,
                                          environment().randomDirection(),
                                          color());
        Debug.println("  New DarterFish created: " + child.toString());
    }

    /** Moves this fish in its environment.
     *  A darter fish darts forward (as specified in nextLocation) if
     *  possible, or reverses direction (without moving) if it cannot move
     *  forward.
     **/
    protected void move()
    {
        // Find a location to move to.
        Debug.print("DarterFish " + toString() + " attempting to move.  ");
        Location nextLoc = nextLocation();

        // If the next location is different, move there.
        if ( ! nextLoc.equals(location()) )
        {
            changeLocation(nextLoc);
            Debug.println("  Moves to " + location());
        }
        else
        {
            // Otherwise, reverse direction.
            changeDirection(direction().reverse());
            Debug.println("  Now facing " + direction());
        }
    }
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    /** Finds this fish's next location.
     *  A darter fish darts forward two spaces if it can, otherwise it
     *  tries to move forward one space. A darter fish can only move
     *  to empty locations, and it can only move two spaces forward if
     *  the intervening space is empty. If the darter fish cannot move
     *  forward, nextLocation returns the fish's current
     *  location.
     *  @return    the next location for this fish
     **/
    protected Location nextLocation()
    {
        Environment env = environment();
        Location oneInFront = env.getNeighbor(location(), direction());
        Location twoInFront = env.getNeighbor(oneInFront, direction());
        Debug.println("  Location in front is empty? " +
                        env.isEmpty(oneInFront));
        Debug.println("  Location in front of that is empty? " +
                        env.isEmpty(twoInFront));
        if ( env.isEmpty(oneInFront) )
        {
            if ( env.isEmpty(twoInFront) )
                return twoInFront;
            else
                return oneInFront;
        }

        // Only get here if there isn't a valid location to move to.
        Debug.println("  Darter is blocked.");
        return location();
    }

}
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SlowFish.java

import java.awt.Color;
import java.util.ArrayList;
import java.util.Random;

/**
 *  Marine Biology Simulation:
 *  The SlowFish class represents a fish in the Marine Biology
 *  Simulation that moves very slowly. It moves so slowly that it only has
 *  a 1 in 5 chance of moving out of its current cell into an adjacent cell
 *  in any given timestep in the simulation. When it does move beyond its
 *  own cell, its movement behavior is the same as for objects of the
 *  Fish class.
 *
 *  SlowFish objects inherit instance variables and much of
 *  their behavior from the Fish class.
 *
 *  @version 1 July 2002
 **/

public class SlowFish extends Fish
{

    // Instance Variables: Encapsulated data for EACH slow fish
    private double probOfMoving;    // defines likelihood in each timestep

  // constructors

    /** Constructs a slow fish at the specified location in a
     *  given environment. This slow fish is colored red.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     **/
    public SlowFish(Environment env, Location loc)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, env.randomDirection(), Color.red);

        // Define the likelihood that a slow fish will move in any given
        // timestep.  For now this is the same value for all slow fish.
        probOfMoving = 1.0/5.0;       // 1 in 5 chance in each timestep
    }
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    /** Constructs a slow fish at the specified location and direction in a
     *  given environment. This slow fish is colored red.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     **/
    public SlowFish(Environment env, Location loc, Direction dir)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, dir, Color.red);

        // Define the likelihood that a slow fish will move in any given
        // timestep.  For now this is the same value for all slow fish.
        probOfMoving = 1.0/5.0;       // 1 in 5 chance in each timestep
    }

    /** Constructs a slow fish of the specified color at the specified
     *  location and direction.
     *  (Precondition: parameters are non-null; loc is valid
     *  for env.)
     *  @param env    environment in which fish will live
     *  @param loc    location of the new fish in env
     *  @param dir    direction the new fish is facing
     *  @param col    color of the new fish
     **/
    public SlowFish(Environment env, Location loc, Direction dir, Color col)
    {
        // Construct and initialize the attributes inherited from Fish.
        super(env, loc, dir, col);

        // Define the likelihood that a slow fish will move in any given
        // timestep. For now this is the same value for all slow fish.
        probOfMoving = 1.0/5.0;       // 1 in 5 chance in each timestep
    }

  // redefined methods

    /** Creates a new slow fish.
     *  @param loc    location of the new fish
     **/
    protected void generateChild(Location loc)
    {
        // Create new fish, which adds itself to the environment.
        SlowFish child = new SlowFish(environment(), loc,
                                      environment().randomDirection(),
                                      color());
        Debug.println("  New SlowFish created: " + child.toString());
    }
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    /** Finds this fish's next location. A slow fish moves so
     *  slowly that it may not move out of its current cell in
     *  the environment.
     **/
    protected Location nextLocation()
    {
        // There's only a small chance that a slow fish will actually
        // move in any given timestep, defined by probOfMoving.
        Random randNumGen = RandNumGenerator.getInstance();
        if ( randNumGen.nextDouble() < probOfMoving )
            return super.nextLocation();
        else
        {
            Debug.println("SlowFish " + toString() +
                          " not attempting to move.");
            return location();
        }
    }

}
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Appendix C

Black Box Classes

This appendix contains summary class documentation for the Environment interface and the marine
biology simulation utility classes covered in Chapters 1 – 4 (Debug, Direction, EnvDisplay,
Locatable, Location, and RandNumGenerator).

Environment interface
public int numRows()

Returns number of rows in this environment (-1 if the environment is unbounded).

public int numCols()

Returns number of columns in this environment (-1 if the environment is unbounded).

public boolean isValid(Location dir)

Returns true if loc is valid in this environment; otherwise returns false.

public int numCellSides()

Returns the number of sides around each cell.

public int numAdjacentNeighbors()

Returns the number of adjacent neighbors around each cell.

public Direction randomDirection()

Generates a random direction. The direction returned by randomDirection reflects the
direction from a cell in the environment to one of its adjacent neighbors.

public Direction getDirection(Location fromLoc, Location toLoc)

Returns the direction from one location to another.

public Location getNeighbor(Location fromLoc, Direction compassDir)

Returns the adjacent neighbor of a location in the specified direction (whether valid or invalid).

public java.util.ArrayList neighborsOf(Location ofLoc)

Returns the adjacent neighbors of a specified location. Only neighbors that are valid locations in
the environment will be included.

public int numObjects()

Returns the number of objects in this environment.

public Locatable[] allObjects()

Returns all the objects in this environment.

public boolean isEmpty(Location loc)

Returns true if loc is a valid location in the context of this environment and is empty; false otherwise.

public Locatable objectAt(Location loc)

Returns the object at location loc; null if loc is not in the environment or is empty.

public void add(Locatable obj)

Adds a new object to this environment at the location it specifies.
(Precondition: obj.location() is a valid empty location.)
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public void remove(Locatable obj)

Removes the object from this environment.
(Precondition: obj is in this environment.)

public void recordMove(Locatable obj, Location oldLoc)

Updates this environment to reflect the fact that an object moved.
(Precondition: obj.location() is a valid location and there is no other object there.
 Postcondition: obj is at the appropriate location (obj.location()), and either oldLoc is equal to

obj.location() (there was no movement) or oldLoc is empty.)

Debug class
public static boolean isOn()

Checks whether debugging is on (not necessary when using Debug.print and Debug.println).

public static boolean isOff()

Checks whether debugging is off (not necessary when using Debug.print and Debug.println).

public static void turnOn()

Turns debugging on.

public static void turnOff()

Turns debugging off.

public static void restoreState()

Restores the previous debugging state. If there is no previous state to restore, restoreState
turns debugging off.

public static void print(java.lang.String message)

Prints debugging message without appending a newline character at the end. If debugging is
turned on, message is printed to System.out without a newline.

public static void println(java.lang.String message)

Prints debugging message, appending a newline character at the end. If debugging is turned on,
message is printed to System.out followed by a newline.
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Direction class

Constants: EAST, NORTH, NORTHEAST, NORTHWEST, SOUTH, SOUTHEAST, SOUTHWEST,
WEST, FULL_CIRCLE (FULL_CIRCLE will not be tested on the AP Exam)

public Direction()

Constructs a default Direction object facing North.

public Direction(int degrees)

Constructs a Direction object — initial compass direction in degrees.

public Direction(java.lang.String str)

Constructs a Direction object — compass direction specified as a string, e.g., “North”.

public int inDegrees()

Returns this direction value in degrees.

public boolean equals(java.lang.Object other)

Indicates whether some other Direction object is “equal to” this one.

public int hashCode()

Generates a hash code for this direction (will not be tested on the AP Exam).

public Direction toRight()

Returns the direction that is a quarter turn to the right of this Direction object.

public Direction toRight(int deg)

Returns the direction that is deg degrees to the right of this Direction object.

public Direction toLeft()

Returns the direction that is a quarter turn to the left of this Direction object.

public Direction toLeft(int deg)

Returns the direction that is deg degrees to the left of this Direction object.

public Direction reverse()

Returns the direction that is the reverse of this Direction object.

public java.lang.String toString()

Returns a string indicating the direction.

public Direction roundedDir(int numDirections, Direction startingDir)

Rounds this direction to the nearest “cardinal” direction (will not be tested on the AP Exam).

public static Direction randomDirection()

Returns a random direction.
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EnvDisplay interface
public void showEnv()

Shows the current state of the environment.

Locatable interface
public Location location()

Returns the location of this object.

Location class
public Location(int row, int col)

Constructs a Location object.

public int row()

Returns the row coordinate of this location.

public int col()

Returns the column coordinate of this location.

public boolean equals(java.lang.Object other)

Returns true if other is at the same row and column as the current location; false otherwise.

public int hashCode()

Generates a hash code for this location (will not be tested on the AP Exam).

public int compareTo(java.lang.Object other)

Compares this location to other for ordering. Returns a negative integer, zero, or a positive
integer as this location is less than, equal to, or greater than other. Locations are ordered in
row-major order.
(Precondition: other is a Location object.)

public java.lang.String toString()

Returns a string indicating the row and column of the location in (row, col) format.

RandNumGenerator class
public static java.util.Random getInstance()

Returns a random number generator. Always returns the same Random object to provide a better
sequence of random numbers.
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Appendix D

Environment Implementations

This appendix contains source code for the Environment implementations covered in Chapter 5:

BoundedEnv and UnboundedEnv. It also contains summary class documentation for the black box

SquareEnvironment class.

BoundedEnv.java

/**
 *  Marine Biology Simulation:
 *  The BoundedEnv class models a bounded, two-dimensional,
 *  grid-like  environment containing locatable objects. For example,
 *  it could be an environment of fish for a marine biology simulation.
 *
 *  @version 1 July 2002
 **/

public class BoundedEnv extends SquareEnvironment
{

    // Instance Variables: Encapsulated data for each BoundedEnv object
    private Locatable[][] theGrid;  // grid representing the environment
    private int objectCount;        // # of objects in current environment

  // constructors

    /** Constructs an empty BoundedEnv object with the given dimensions.
     *  (Precondition: rows > 0 and cols > 0.)
     *  @param rows        number of rows in BoundedEnv
     *  @param cols        number of columns in BoundedEnv
     **/
    public BoundedEnv(int rows, int cols)
    {
        // Construct and initialize inherited attributes.
        super();

        theGrid = new Locatable[rows][cols];
        objectCount = 0;
    }

  // accessor methods

    /** Returns number of rows in the environment.
     *  @return   the number of rows, or -1 if this environment is unbounded
     **/
    public int numRows()
    {
        return theGrid.length;
    }
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    /** Returns number of columns in the environment.
     *  @return   the number of columns, or -1 if this environment is unbounded
     **/
    public int numCols()
    {
        // Note: according to the constructor precondition, numRows() > 0, so
        // theGrid[0] is non-null.
        return theGrid[0].length;
    }

    /** Verifies whether a location is valid in this environment.
     *  @param  loc    location to check
     *  @return true if loc is valid; false otherwise
     **/
    public boolean isValid(Location loc)
    {
        if ( loc == null )
            return false;

        return (0 <= loc.row() && loc.row() < numRows()) &&
               (0 <= loc.col() && loc.col() < numCols());
    }

    /** Returns the number of objects in this environment.
     *  @return   the number of objects
     **/
    public int numObjects()
    {
        return objectCount;
    }

    /** Returns all the objects in this environment.
     *  @return    an array of all the environment objects
     **/
    public Locatable[] allObjects()
    {
        Locatable[] theObjects = new Locatable[numObjects()];
        int tempObjectCount = 0;

        // Look at all grid locations.
        for ( int r = 0; r < numRows(); r++ )
        {
            for ( int c = 0; c < numCols(); c++ )
            {
                // If there's an object at this location, put it in the array.
                Locatable obj = theGrid[r][c];
                if ( obj != null )
                {
                    theObjects[tempObjectCount] = obj;
                    tempObjectCount++;
                }
            }
        }

        return theObjects;
    }
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    /** Determines whether a specific location in this environment is empty.
     *  @param loc  the location to test
     *  @return     true if loc is a valid location in the context of this
     *              environment and is empty; false otherwise
     **/
    public boolean isEmpty(Location loc)
    {
        return isValid(loc) && objectAt(loc) == null;
    }

    /** Returns the object at a specific location in this environment.
     *  @param loc    the location in which to look
     *  @return       the object at location loc;
     *                null if loc is not in the environment or is empty
     **/
    public Locatable objectAt(Location loc)
    {
        if ( ! isValid(loc) )
            return null;

        return theGrid[loc.row()][loc.col()];
    }

    /** Creates a single string representing all the objects in this
     *  environment (not necessarily in any particular order).
     *  @return    a string indicating all the objects in this environment
     **/
    public String toString()
    {
        Locatable[] theObjects = allObjects();
        String s = "Environment contains " + numObjects() + " objects: ";
        for ( int index = 0; index < theObjects.length; index++ )
            s += theObjects[index].toString() + " ";
        return s;
    }

  // modifier methods

    /** Adds a new object to this environment at the location it specifies.
     *  (Precondition: obj.location() is a valid empty location.)
     *  @param obj the new object to be added
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void add(Locatable obj)
    {
        // Check precondition.  Location should be empty.
        Location loc = obj.location();
        if ( ! isEmpty(loc) )
            throw new IllegalArgumentException("Location " + loc +
                                    " is not a valid empty location");

        // Add object to the environment.
        theGrid[loc.row()][loc.col()] = obj;
        objectCount++;
    }
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    /** Removes the object from this environment.
     *  (Precondition: obj is in this environment.)
     *  @param obj     the object to be removed
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void remove(Locatable obj)
    {
        // Make sure that the object is there to remove.
        Location loc = obj.location();
        if ( objectAt(loc) != obj )
            throw new IllegalArgumentException("Cannot remove " +
                                               obj + "; not there");

        // Remove the object from the grid.
        theGrid[loc.row()][loc.col()] = null;
        objectCount—;
    }

    /** Updates this environment to reflect the fact that an object moved.
     *  (Precondition: obj.location() is a valid location and there is no
     *  other object there.
     *  Postcondition: obj is at the appropriate location (obj.location()),
     *  and either oldLoc is equal to obj.location() (there was no movement)
     *  or oldLoc is empty.)
     *  @param obj       the object that moved
     *  @param oldLoc    the previous location of obj
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void recordMove(Locatable obj, Location oldLoc)
    {
        // Simplest case: There was no movement.
        Location newLoc = obj.location();
        if ( newLoc.equals(oldLoc) )
            return;

        // Otherwise, oldLoc should contain the object that is
        //   moving and the new location should be empty.
        Locatable foundObject = objectAt(oldLoc);
        if ( ! (foundObject == obj && isEmpty(newLoc)) )
            throw new IllegalArgumentException("Precondition violation moving "
                + obj + " from " + oldLoc);

        // Move the object to the proper location in the grid.
        theGrid[newLoc.row()][newLoc.col()] = obj;
        theGrid[oldLoc.row()][oldLoc.col()] = null;
    }

}
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UnboundedEnv.java

import java.util.ArrayList;

/**
 *  Marine Biology Simulation:
 *  The UnboundedEnv class models an unbounded, two-dimensional,
 *  grid-like environment containing locatable objects. For example, it
 *  could be an environment of fish for a marine biology simulation.
 *
 *  Modification History:
 *  - Created to support multiple environment representations: this class
 *    represents a second implementation of the Environment interface.
 *
 *  @version 1 July 2002
 **/

public class UnboundedEnv extends SquareEnvironment
{

    // Instance Variables: Encapsulated data for each UnboundedEnv object
    private ArrayList objectList;   // list of Locatable objects in environment

  // constructors

    /** Constructs an empty UnboundedEnv object.
     **/
    public UnboundedEnv()
    {
        // Construct and initialize inherited attributes.
        super();

        objectList = new ArrayList();
    }

  // accessor methods

    /** Returns number of rows in this environment.
     *  @return   the number of rows, or -1 if the environment is unbounded
     **/
    public int numRows()
    {
        return -1;
    }

    /** Returns number of columns in this environment.
     *  @return   the number of columns, or -1 if the environment is unbounded
     **/
    public int numCols()
    {
        return -1;
    }
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    /** Verifies whether a location is valid in this environment.
     *  @param  loc    location to check
     *  @return true if loc is valid;
     *          false otherwise
     **/
    public boolean isValid(Location loc)
    {
        // All non-null locations are valid in an unbounded environment.
        return loc != null;
    }

    /** Returns the number of objects in this environment.
     *  @return   the number of objects
     **/
    public int numObjects()
    {
        return objectList.size();
    }

    /** Returns all the objects in this environment.
     *  @return    an array of all the environment objects
     **/
    public Locatable[] allObjects()
    {
        Locatable[] objectArray = new Locatable[objectList.size()];

        // Put all the environment objects in the list.
        for ( int index = 0; index < objectList.size(); index++ )
        {
            objectArray[index] = (Locatable) objectList.get(index);
        }

        return objectArray;
    }

    /** Determines whether a specific location in this environment is empty.
     *  @param loc  the location to test
     *  @return     true if loc is a valid location in the context of this
     *              environment and is empty; false otherwise
     **/
    public boolean isEmpty(Location loc)
    {
        return (objectAt(loc) == null);
    }

    /** Returns the object at a specific location in this environment.
     *  @param loc    the location in which to look
     *  @return       the object at location loc; null if loc is empty
     **/
    public Locatable objectAt(Location loc)
    {
        int index = indexOf(loc);
        if ( index == -1 )
            return null;

        return (Locatable) objectList.get(index);
    }
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    /** Creates a single string representing all the objects in this
     *  environment (not necessarily in any particular order).
     *  @return    a string indicating all the objects in this environment
     **/
    public String toString()
    {
        Locatable[] theObjects = allObjects();
        String s = "Environment contains " + numObjects() + " objects: ";
        for ( int index = 0; index < theObjects.length; index++ )
            s += theObjects[index].toString() + " ";
        return s;
    }

  // modifier methods

    /** Adds a new object to this environment at the location it specifies.
     *  (Precondition: obj.location() is a valid empty location.)
     *  @param obj the new object to be added
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void add(Locatable obj)
    {
        // Check precondition.  Location should be empty.
        Location loc = obj.location();
        if ( ! isEmpty(loc) )
            throw new IllegalArgumentException("Location " + loc +
                                    " is not a valid empty location");

        // Add object to the environment.
        objectList.add(obj);
    }

    /** Removes the object from this environment.
     *  (Precondition: obj is in this environment.)
     *  @param obj     the object to be removed
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void remove(Locatable obj)
    {
        // Find the index of the object to remove.
        int index = indexOf(obj.location());
        if ( index == -1 )
            throw new IllegalArgumentException("Cannot remove " +
                                               obj + "; not there");

        // Remove the object.
        objectList.remove(index);
    }
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    /** Updates this environment to reflect the fact that an object moved.
     *  (Precondition: obj.location() is a valid location and there is no
     *  other object there.
     *  Postcondition: obj is at the appropriate location (obj.location()),
     *  and either oldLoc is equal to obj.location() (there was no movement) or
     *  oldLoc is empty.)
     *  @param obj       the object that moved
     *  @param oldLoc    the previous location of obj
     *  @throws    IllegalArgumentException if the precondition is not met
     **/
    public void recordMove(Locatable obj, Location oldLoc)
    {
        int objectsAtOldLoc = 0;
        int objectsAtNewLoc = 0;

        // Look through the list to find how many objects are at old
        // and new locations.
        Location newLoc = obj.location();
        for ( int index = 0; index < objectList.size(); index++ )
        {
            Locatable thisObj = (Locatable) objectList.get(index);
            if ( thisObj.location().equals(oldLoc) )
                objectsAtOldLoc++;
            if ( thisObj.location().equals(newLoc) )
                objectsAtNewLoc++;
        }

        // There should be one object at newLoc.  If oldLoc equals
        // newLoc, there should be one at oldLoc; otherwise, there
        // should be none.
        if ( ! ( objectsAtNewLoc == 1 &&
                 ( oldLoc.equals(newLoc) || objectsAtOldLoc == 0 ) ) )
        {
            throw new IllegalArgumentException("Precondition violation moving "
                + obj + " from " + oldLoc);
        }
    }
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  // internal helper method

    /** Get the index of the object at the specified location.
     *  @param loc    the location in which to look
     *  @return       the index of the object at location loc
     *                if there is one; -1 otherwise
     **/
    protected int indexOf(Location loc)
    {
        // Look through the list to find the object at the given location.
        for ( int index = 0; index < objectList.size(); index++ )
        {
            Locatable obj = (Locatable) objectList.get(index);
            if ( obj.location().equals(loc) )
            {
                // Found the object — return its index.
                return index;
            }
        }

        // No such object found.
        return -1;
    }

}

SquareEnvironment Abstract Class (black box)

public SquareEnvironment()

Constructs a SquareEnvironment object in which cells have four adjacent neighbors.

public SquareEnvironment(boolean includeDiagonalNeighbors)

Constructs a SquareEnvironment object in which cells have four or eight adjacent neighbors.

If includeDiagonalNeighbors is true, cells have eight adjacent neighbors — the

immediately adjacent neighbors on all four sides and the four neighbors on the diagonals.

If includeDiagonalNeighbors is false, cells have only the four neighbors they would

have in an environment created with the default SquareEnvironment constructor.

public int numCellSides()

Returns the number of sides around each cell.

public int numAdjacentNeighbors()

Returns the number of adjacent neighbors around each cell.

public Direction randomDirection()

Generates a random direction.

public Direction getDirection(Location fromLoc, Location toLoc)

Returns the direction from fromLoc to toLoc.

public Location getNeighbor(Location fromLoc, Direction compassDir)

Returns the adjacent neighbor (whether valid or invalid) of a location in the specified direction.

public java.util.ArrayList neighborsOf(Location ofLoc)

Returns the adjacent neighbors of a specified location. Only neighbors that are valid locations in

the environment will be included.



Appendix E E1

Appendix E

Quick Reference for A Test

Quick Reference for Core Classes and Interfaces

Simulation Class

public Simulation(Environment env, EnvDisplay display)
public void step()

 

Environment Interface

public int numRows()
public int numCols()
 
public boolean isValid(Location loc)
public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc,
                Direction compassDir)
public ArrayList neighborsOf(Location ofLoc)
 
public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
 
public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)
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Quick Reference for Fish Class

Fish Class (implements Locatable)

public Fish(Environment env, Location loc)
public Fish(Environment env, Location loc, Direction dir)
public Fish(Environment env, Location loc, Direction dir, Color col)
private void initialize(Environment env, Location loc, Direction dir,

Color col)
protected Color randomColor()

public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()

public void act()

protected boolean breed()
protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)
protected void die()

Quick Reference for Specialized Fish Subclasses

DarterFish Class (extends Fish)

public DarterFish(Environment env, Location loc)
public DarterFish(Environment env, Location loc, Direction dir)
public DarterFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()

SlowFish Class (extends Fish)

public SlowFish(Environment env, Location loc)
public SlowFish(Environment env, Location loc, Direction dir)
public SlowFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected Location nextLocation()
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Quick Reference for Utility Classes and Interfaces

(public constants, constructors, and methods only

Case Study Utility Classes and Interfaces

Locatable Interface

Location location()

Location Class

Location(int row, int col)
int row()
int col()
boolean equals(Object other)
int compareTo(Object other)
String toString()

The following is not tested:

int hashCode()

RandNumGenerator Class

static Random getInstance()

Debug Class

static boolean isOn()
static boolean isOff()
static void turnOn()
static void turnOff()
static void restoreState()
static void print(String message)
static void println(String message)

Direction Class

NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, SOUTHWEST

Direction()
Direction(int degrees)
Direction(String str)
int inDegrees()
boolean equals(Object other)
Direction toRight()
Direction toRight(int degrees)
Direction toLeft()
Direction toLeft(int degrees)
Direction reverse()
String toString()
static Direction randomDirection()

The following are not tested:

FULL_CIRCLE
int hashCode()
Direction roundedDir(int numDirections,

Direction startingDir)

EnvDisplay Interface

void showEnv()
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Java Library Utility Classes

java.util.ArrayList Class (Partial)

boolean add(Object o)
void add(int index, Object o)
Object get(int index)
Object remove(int index)
boolean remove(Object o)
Object set(int index, Object o)
int size()

java.awt.Color Class (Partial)

black, blue, cyan, gray, green,
magenta, orange, pink, red,
white, yellow

Color(int r, int g, int b)

java.util.Random Class (Partial)

int nextInt(int n)
double nextDouble()
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Appendix F

Quick Reference for AB Test

Quick Reference for Core Classes and Interfaces

Simulation Class

public Simulation(Environment env, EnvDisplay display)
public void step()

 

Environment Interface

public int numRows()
public int numCols()
 
public boolean isValid(Location loc)
public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc,
                Direction compassDir)
public ArrayList neighborsOf(Location ofLoc)
 
public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
 
public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)
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SquareEnvironment Abstract Class (implements Environment) (Black Box)

public SquareEnvironment()
public SquareEnvironment(boolean includeDiagonalNeighbors)

public int numCellSides()
public int numAdjacentNeighbors()
public Direction randomDirection()
public Direction getDirection(Location fromLoc, Location toLoc)
public Location getNeighbor(Location fromLoc, Direction compassDir)

public ArrayList neighborsOf(Location ofLoc)

BoundedEnv Class (extends SquareEnvironment)

public BoundedEnv(int rows, int cols)

public int numRows()
public int numCols()

public boolean isValid(Location loc)

public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
public String toString()

public void add(Locatable obj)
public void remove(Locatable obj)

public void recordMove(Locatable obj, Location oldLoc)

UnboundedEnv Class (extends SquareEnvironment)

public UnboundedEnv()

public int numRows()
public int numCols()

public boolean isValid(Location loc)

public int numObjects()
public Locatable[] allObjects()
public boolean isEmpty(Location loc)
public Locatable objectAt(Location loc)
public String toString()

public void add(Locatable obj)
public void remove(Locatable obj)
public void recordMove(Locatable obj, Location oldLoc)

protected int indexOf(Location loc)
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Quick Reference for Fish Class

Fish Class (implements Locatable)

public Fish(Environment env, Location loc)
public Fish(Environment env, Location loc, Direction dir)
public Fish(Environment env, Location loc, Direction dir, Color col)
private void initialize(Environment env, Location loc, Direction dir,

Color col)
protected Color randomColor()

public int id()
public Environment environment()
public Color color()
public Location location()
public Direction direction()
public boolean isInEnv()
public String toString()

public void act()

protected boolean breed()
protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()
protected ArrayList emptyNeighbors()
protected void changeLocation(Location newLoc)
protected void changeDirection(Direction newDir)
protected void die()

Quick Reference for Specialized Fish Subclasses

DarterFish Class (extends Fish)

public DarterFish(Environment env, Location loc)
public DarterFish(Environment env, Location loc, Direction dir)
public DarterFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected void move()
protected Location nextLocation()

SlowFish Class (extends Fish)

public SlowFish(Environment env, Location loc)
public SlowFish(Environment env, Location loc, Direction dir)
public SlowFish(Environment env, Location loc, Direction dir, Color col)

protected void generateChild(Location loc)
protected Location nextLocation()
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Quick Reference for Utility Classes and Interfaces

(public constants, constructors, and methods only

Case Study Utility Classes and Interfaces

Locatable Interface

Location location()

Location Class

Location(int row, int col)
int row()
int col()
boolean equals(Object other)
int compareTo(Object other)
String toString()

The following is not tested:

int hashCode()

RandNumGenerator Class

static Random getInstance()

Debug Class

static boolean isOn()
static boolean isOff()
static void turnOn()
static void turnOff()
static void restoreState()
static void print(String message)
static void println(String message)

Direction Class

NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, SOUTHWEST

Direction()
Direction(int degrees)
Direction(String str)
int inDegrees()
boolean equals(Object other)
Direction toRight()
Direction toRight(int degrees)
Direction toLeft()
Direction toLeft(int degrees)
Direction reverse()
String toString()
Static Direction randomDirection()

The following are not tested:

FULL_CIRCLE
int hashCode()
Direction roundedDir(int numDirections,

Direction startingDir)

EnvDisplay Interface

void showEnv()
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Java Library Utility Classes

java.util.ArrayList Class (Partial)

boolean add(Object o)
void add(int index, Object o)
Object get(int index)
Object remove(int index)
boolean remove(Object o)
Object set(int index, Object o)
int size()

java.awt.Color Class (Partial)

black, blue, cyan, gray, green,
magenta, orange, pink, red,
white, yellow

Color(int r, int g, int b)

java.util.Random Class (Partial)

int nextInt(int n)
double nextDouble()
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Appendix G

Index for Source Code

This appendix provides an index for the Java source code found in Appendix B and Appendix D.

Simulation.java

Simulation(Environment env, EnvDisplay display) B1

step() B1

Fish.java

Fish(Environment env, Location loc B2

Fish(Environment env, Location loc, Direction dir) B3

Fish(Environment env, Location loc, Direction dir, Color col) B3

initialize(Environment env, Location loc, Direction dir, Color col) B3

randomColor() B4

id() B4

environment() B4

color() B4

location() B4

direction() B4

isInEnv() B5

toString() B5

act() B5

breed() B6

generateChild(Location loc) B6

move() B7

nextLocation() B7

emptyNeighbors() B8

changeLocation(Location newLoc) B8

changeDirection(Direction newDir) B8

die() B8

DarterFish.java

DarterFish(Environment env, Location loc) B9

DarterFish(Environment env, Location loc, Direction dir) B9

DarterFish(Environment env, Location loc, Direction dir, Color col) B10

generateChild(Location loc) B10

move() B10

nextLocation() B11
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SlowFish.java

SlowFish(Environment env, Location loc) B12

SlowFish(Environment env, Location loc, Direction dir) B13

SlowFish(Environment env, Location loc, Direction dir, Color col) B13

generateChild(Location loc) B13

nextLocation() B14

BoundedEnv.java

BoundedEnv(int rows, int cols) D1

numRows() D1

numCols() D2

isValid(Location loc) D2

numObjects() D2

allObjects() D2

isEmpty(Location loc) D3

objectAt(Location loc) D3

toString() D3

add(Locatable obj) D3

remove(Locatable obj) D4

recordMove(Locatable obj, Location oldLoc) D4

UnboundedEnv.java

UnboundedEnv() D5

numRows() D5

numCols() D5

isValid(Location loc) D6

numObjects() D6

allObjects() D6

isEmpty(Location loc) D6

objectAt(Location loc) D6

toString() D7

add(Locatable obj) D7

remove(Locatable obj) D7

recordMove(Locatable obj, Location oldLoc) D8

indexOf(Location loc) D9
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