
Let’s consider the problem from the book in which we don’t know whether it’s raining, but we 
know whether we’ve seen an umbrella. We also know a sensor model – how likely we are to see 
an umbrella if it’s raining – and we know a transition model – how likely it is to rain if it rained 
the day before. (Here, our timesteps = days.) 
 
Transition Model / Sensor Model 
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So if it rains on day n, there’s a 70% chance it will rain on day n+1. If it’s raining, the probability 
of seeing an umbrella is 90%. If it’s NOT raining, the probability of seeing an umbrella is 20%. 
 
So is it raining on day 2, if we saw umbrellas on days 1 and 2? 
 
The basic idea is that, for each day, you can work out the probability that it is raining, given (1) 
the evidence (whether you see an umbrella), and (2) whether it rained the day before. But you 
don’t know if it rained the day before! So, you can work out whether it rained the day before 
given that day’s umbrella sighting and the rain from the day before that... and so on recursively 
back to the beginning of time, when you have some distribution over whether it “started out” 
raining (the prior). So you are always working out the probability of Rt for a single day, t, 
working forward to the final day. The “recursive factors” are the information from the previous 
days. So let’s do the math forward instead of trying to do it recursively. 
 
P(R1) 
 
First, we predict whether it rained the first day. We give it 50/50 odds that it started out raining, 
so the prior is <0.5, 0.5> (that is, P(R=t) = 0.5, P(R=f) = 0.5.) Before we consider any evidence, 
we already have a belief, P(Rain) = <Rain = true, Rain=false>. We sum over the possible values 
for R0 (true or false): 
 
P(R1)  = Σr0 P(R1|r0) P(r0) 
 = ⟨0.7,0.3⟩×0.5 + ⟨0.3,0.7⟩×0.5  
 = ⟨0.35,0.15⟩ + ⟨0.15,0.35⟩ 
 = ⟨0.5,0.5⟩  
 
This is what we intuitively expected. We haven’t made any umbrella observations yet, so our 
prediction of it raining hasn’t changed from our initial guess. So this gives us the probability of 
rain when we don’t have any evidence. 
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P(R1|U1) 
 
But once we observe an umbrella, U1 = true, so we can update our belief based on what we just 
calculated, PLUS our model of rain causing umbrella sightings (our sensor model). We start with 
Bayes rule and then plug in numbers from the tables and from the prediction we just made: 
 
P(R1|U1) = αP(u1|R1)P(R1) 
    = α⟨0.9,0.2⟩⟨0.5,0.5⟩ 
    = α⟨0.45,0.1⟩ 
    ≈ ⟨0.818,0.182⟩	
 
So, since umbrella is strong evidence for rain, the probability of rain is much higher once we 
take the observation into account: P(rain on day 1 = true) = 0.818, P(rain on day 1 = false) = 
0.182. (Alpha is just a normalizing constant that makes the probabilities add up to 1. We get it by 
dividing each element by the sum of both elements, e.g., 0.45/(0.45+0.1) ≈ 0.818.) 
 
P(R2|U1) 
 
We can then carry out the same computation for Day 2. First we predict whether it will rain 
given (1) what we know from the previous day and (2) our belief about whether it is likely to 
rain given the previous day’s weather (the transition model). We’re summing over R1 this time: 
 
P(R2|u1) = Σr1 P(R2|r1)P(r1|u1)  
   = ⟨0.7,0.3⟩	× 0.818 + ⟨0.3,0.7⟩	× 0.182 
   ≈ ⟨0.627,0.373⟩ 
 
So even without evidence on the second day there is a more than 50/50 probability of rain, 
because rain tends to follow rain, and we have an increased belief that it rained on R1 because we 
saw an umbrella.  
 
P(R2|U1,U2) 
 
But then we take into account the fact that we DID see an umbrella at t=2, which we combine 
with our pre-observation expectation about whether it’s raining (what we just calculated): 
 
P(R2|u1,u2) = αP(u2|R2)P(R2|u1) 
       = α⟨0.9, 0.2⟩⟨0.627, 0.373⟩  
       = α⟨0.565, 0.075⟩  
       ≈ ⟨0.883, 0.117⟩ 
 
And this is the correct answer for “What is the probability of rain on day 2, given umbrella 
sightings on day 1 and day 2” – P(R2=t) = 0.883. The whole idea of factors is that you can start 
from the last calculation and work backwards, recursively evaluating for previous timesteps as 
they come up in the calculation, but doing it forward works for small values of t. 


