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How is the Bayesian network created?

1. Getan expert to design it
* Expert must determine the structure of the Bayesian network
* This is best done by modeling direct causes of a variable as its parents
* Expert must determine the values of the CPT entries
* These values could come from the expert’s informed opinion
* Or an external source like census information
» Orthey are estimated from data
* Or acombination of the above

2. Learn it from data

* Thisis a much better option but it usually requires a large amount of data
* This is where Bayesian statistics comes in!

Probability, redux

*  Worlds, random variables, events, sample space

» Joint probabilities of multiple connected variables

» Conditional probabilities of a variable, given another variable(s)
* Marginalizing out unwanted variables

* Inference from the joint probability

The big idea: figuring out the probability
of variable(s) taking certain value(s)
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Review: Independence

What does it mean for A and B to be independent?
« P(A) 1L P(B)
A and B do not affect each other’s probability

« P(A A B) = P(A) P(B)

Review: Conditioning

What does it mean for A and B to be conditionally
independent given C?

A and B don’t affect each other if C is known

« PAABIC)=PAIC)PBIC)
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Review: Bayes' Rule

What is Bayes’ Rule?
P(E,|H)P(H))
P(E))

P(H,|E,)=

What’s it useful for?
Diagnosis

Effect is perceived, want to know (probability of) cause

P(effect | cause)P(cause)

P(causel effect) = Pleffect)
effec

Review: Bayes' Rule

What is Bayes’ Rule?
P(E;|H)P(H))
P(E))

P(H,|E,)=

What’s it useful for?
Diagnosis

Effect is perceived, want to know (probability of) cause

P(observed | hidden)P(hidden)

P(hidden | observed) =
P(observed)




9/26/24

Review: Joint Probability

* Whatis the joint probability of A and B?

- P(AB)

* The probability of any pair of legal assignments.

* Generalizing to > 2, of course

« Booleans: expressed as a matrix/table

A B
alarm | ~alarm T | T |009
burglary| 009 | 001 — | 7| F Jo1
= burglary | 0.1 0.8 FlT|oot
F F 0.8
» Continuous domains: probability functions
10
Next Up
* Bayesian networks
* Network structure and independence
* Inference in Bayesian networks A A
* Exactinference £/ \\ g .
. . B /(D - D
* Approximate inference P %
v "/ ’// J‘ ' v
C Y —{E C - E
K]
Fy (G F) (G
DAG: In a Bayes net, the links may form
loops, but they may not form cycles.
11



9/26/24

Review: Bayes’ Nets: Big Picture

* Problems with full joint distribution tables as our probabilistic models:
» Joint gets way too big to represent explicitly

* Unless there are only a few variables

* Hard to learn (estimate) anything empirically about more than a few
variables at a time

B| 0.01 | 0.08 | 0.001 [ 0.009
—-B| 0.01 { 0.09 | 0.01 | 0.79

12
Review: Bayes’' Nets
« Bayesian Network: BN = (DAG, CPD)
+ DAG: directed acyclic graph (BN’s structure)
* CPD: conditional probability distribution (BN’s parameters)
P(A)=0.001
P(B|A)=0.3 P(C|A)=0.2
P(B|-A) = 0.001 P(C|-A) = 0.005
P(=BJA) =0.7
P(=B|=A) =0.999
(E) P(E|C)=0.4
P(D|B,—C)=0.01
P(D|-B,C)=10.01
P(D|-B,—C) = 0.00001
13
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Review: Bayes’' Nets

e P(a,m,i,e,s)=P(a| m)*P(m]|ie)*P(i) *P(e) *P(s | i)

—e e —i i
0.7 0.3 e | 0.8 0.2
—m m\ / \ —S S
—i—e | 06 | 04 m S i | 075 | o025
—i, e 0.9 0.1 1 i 0.4 0.6
i, —e 05 | 05 —a a
m 09 | 0.1

14
The Chain Rule
P(ojAOLA...A0y) = P(oy) X

P(a, o) x
P(asl ogAQ,) X ... %
P((X,n | 0(1/\"'/\(Xn_l)
[Ticy o Pl 04 A- A )
P(x,,....x,)=11_ P(x; | ;)

15
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The Chain Rule

n
P(x,....x,)=1I_P(x,|m,)
* Decomposition: P(x,,...,x,)=P(x,)P(x, | x,)P(x; | x,,x2)...

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

* With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

* Bayes’ nets express conditional independences

* (Assumptions) @ @

16
Chaining: Example

Computing the joint probability for all variables is easy:

P(a,b,c,d,e) =P(e| a,b, ¢, d)P(a,b,c, d) «— By product rule
=P(e | ¢)P(a, b, c, d) < By conditional
=P(e | c)P(d | a, b,¢) P(a, b, ¢) independence
=P(e | c)P(d | b,c)P(c | a,b) P(a, b) assumption
=P(e| c)P(d | b,c)P(c| a)P(b | a)P(a)

We’re reducing distributions—P(x,y)—to single values.

17
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Bayesian Networks

Two important properties:

1. Encodes the conditional independence
relationships between the variables in the
graph structure

2. Is a compact representation of the joint
probability distribution over the variables

18

Topological Semantics

* A node is conditionally independent of
its non-descendants given its parents

* A node is conditionally independent of
all other nodes in the network given its
parents, children, and children’s

parents (also known as its Markov
blanket)

19



9/26/24

The Joint Probability Distribution

* Due to the Markov condition, we can compute the joint probability
distribution over all the variables X, ..., X,, in the Bayesian net using the

formula:

P(X, =x,..X, =x,) :HP(XZ. = x, | Parents(X,))

i=1

Where Parents(X;) means the values of the Parents of the

node X, with respect to the graph

21

Independence and Causal Chains

* Important question about a BN:

Are two nodes independent given certain evidence?
If yes, we can it prove using algebra (tedious)

* If no, can prove it with a counter-example

* Question: are X and Z necessarily independent?
No.
Ex: Clouds (X) cause rain (Y), which causes traffic (Z)

X can influence Z, Z can influence X (via Y)

» This configuration is a “causal chain”

22

10
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Two More Main Patterns

« Common Cause:
* Y causes X and Y causes Z
* Are X and Z independent? No
* Are X and Z independent given Y? Yes

« Common Effect:
* Two causes of one effect
* Are X and Z independent? Yes
* Are X and Z independent given Y?
* Nol!

* Observing an effect “activates” influence between possible causes.

23
Conditionality Example
« Hidden: A, B, E. You don’t know:
* If there’s a burglar. B E
* If there was an earthquake. <\ P
« If the alarm is going off.
* Observed: Jand M. / \
« John and/or Mary have some chance of calling if J M
the alarm rings.
*  You know who called you.
24

11
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Conditionality Example 2

« At first (before observations):

* Isthe probability of John calling affected by B E
whether there’s an earthquake? Yes
* Is the probability of Mary calling affected by
John calling? Yes / \
* Then: Your alarm is going off! (observation)
* Is the probability of Mary calling affected by J M
John calling? No
25
Conditionality Example 3
« At first (before observations):
* Is whether there’s an earthquake affected by B E
whether there’s a burglary in progress (and vice
versa)? No N <«
* Then: Your alarm is going off! (observation) / \
* Does the probability a burglary is happening
depend on whether there’s an earthquake? J M
26

12
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A Set of Tables for Each Node

A P(A) A B P(B|A)
false | 0.6 false | false | 0.01 Each node X/ has a
true | 0.4 false |true |0.99 conditional probablllty
‘.” true | false |0.7 distribution
S T T 0 P(X; | Parents(X))) that
quantifies the effect of the
B C P(C|B) ‘e, g

parents on the node
false | false | 0.4

false |true | 0.6 The parameters are the

probabilities in these
conditional probability
tables (CPTs)

true | false | 0.9

true | true 0.1

B D P(D|B)
false | false |0.02
false | true 0.98
true | false | 0.05

true | true 0.95

28
Using a Bayesian Network Example
* Using the network in the example, suppose you want to calculate:
P(A = true, B = true, C = true, D = true)
This is from
the graph
_ _ k _ —_ *
= P(A = true) * P(B = true | A =true) / structure
P(C =true | B =true) P( D =true | B =true)
=(0.4)*(0.3)*(0.1)*(0.95) o
— /
1 (0)
These numbers are from
the conditional probability e Q
tables
29

13
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Representational Extensions

Conditional probability tables (CPTs) for large networks can require a
large number of parameters
+ 0O(2%) where k is the branching factor of the network

There are ways of compactly representing CPTs
* Deterministic relationships

*  Noisy-OR

*  Noisy-MAX

What about continuous variables?
¢ Discretization

* Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian
networks (with discrete and continuous variables)

30

Bayes’ Net Inference

31

14
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What Are We Trying To Do?

* Now we know the semantics of Bayes’ nets

* But how do we use it?

* Say we have some evidence (that is, some variables are instantiated)
*  We usually want to know the probability of some other variables

* Why?
Reason about hidden (non-observed) information

What caused something?
What is the probability of something?

32

Inference

* Instead of computing the joint, suppose we just want the probability for
one variable (or a subset)

» Using a Bayesian network to compute probabilities is called inference
* In general, inference involves queries of the form:

P( x&k E = The evidence

variable(s)

X = The query
variable(s)

33

15
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Inference

dasPneumonig

asDifficultyBreathing

* An example of a query would be:

ChestXrayPositive

P(HasPneumonia = true | HasFever = true, HasCough = true)

* Note: Even though HasDifficultyBreathing and ChestXrayPositive are in
the Bayesian network, they are not given values in the query (ie. they do
not appear either as query variables or evidence variables)

* They are treated as unobserved variables

34
Inference Techniques
* Exact inference: Analytically compute the conditional probability
distribution over the variables we care about
» Approximate inference: Sometimes exact inference is too hard
* Come up with approximate solutions based on statistical sampling
Exact inference Approximate inference
. «  Stochastic simulation / sampling
*  Enumeration methods
« Belief propagation in polytrees *  Markov chain Monte Carlo methods
e Variable elimination *  Geneticalgorithms
. o . *  Neural networks
e Clustering / join tree algorithms Simulated annealing
Mean field theory
35

16
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Query Types

Given a Bayesian network, what questions might we want to ask?

* Conditional probability query: P(x | e)

¢ Given instantiations for some of the variables (e = values of all instantiated
variables; it doesn’t have to be just one), what is the probability that node X has
a particular value x?

36
Query Types
Given a Bayesian network, what questions might we want to ask?
* Conditional probability query: P(x | e)
* Given instantiations for some of the variables (e = values of all instantiated
variables; it doesn’t have to be just one), what is the probability that node X has
a particular value x?
« Maximum a posteriori probability: What value of x maximizes P(x|e) ?
*  What is the most likely explanation for some evidence?
* Thatis, what is the value of node(s) X that maximizes the probability that you
would have seen the evidence you did?
* This is called a maximum a posteriori probability or MAP query
37

17
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Query Types

Given a Bayesian network, what questions might we want to ask?
* Conditional probability query: P(x | e)

« Maximum a posteriori probability: What value of x maximizes P(x|e) ?

* General question: What’s the whole probability distribution over
variable X given evidence e — what is P(X | e)?

38
Inference Tasks
«  Simple queries: Compute posterior marginal P(X; | E=value)
« E.g, P(NoGas | Gauge=empty, Lights=on, Starts=false)
* Conjunctive queries:
+ P(X, X; | E=value) = P(X; | E=value) P(X; | Xi, E=value)
* Optimal decisions:
*  Decision networks include utility information
*  Probabilistic inference gives P(outcome | action, evidence)
« Value of information: Which evidence should we seek next?
* Sensitivity analysis: Which probability values are most critical?
* Explanation: Why do | need a new starter motor?
39

18
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Using the joint distribution

* To answer any query involving a conjunction of variables, sum over the
variables not involved in the query

40

Using the joint distribution

* To answer any query involving a conjunction of variables, sum over the
variables not involved in the query

Pr(d) = ) Pr(a,b,c,d)

ABC

= Z Z ZPr(A:a/\sz/\Czc)

aedom(4 )bedom(B)cedom(C)

41

19
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Using the joint distribution

* To answer any query involving a conjunction of variables, sum over the
variables not involved in the query

Pr(d) <> Pr(a,b,c,d) ]

ABC

= Z Z ZPr(A:a/\sz/\C:c)

aedom(4 )bedom(B)cedom(C)

42
Using the joint distribution
* To answer any query involving a conjunction of variables, sum over the
variables not involved in the query
Pr(d) = ) Pr(a,b,c,d)
ABC
= Z Z ZPr(A:a/\sz/\Czc)
aedom(4)bedom(B)cedom(C) Summing over A and C,
because b and d are
Zpr(a b o / instantiated in the query
Pr(b,d =
Pr(d | b) = -224) _
Pr(b) ZPr(a,b,c, d)
ACD
43

20
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. Reminder: P(E) is known
Inference by Enumeration (observed), so 1/P(E) is a
constant that makes
« Add all of the terms (atomic event Seryiinaisumiioplsitic
probabilities) from the full joint distribution SEOTIREII CORe

* IfE are the evidence (observed) variables and Y are the other
(unobserved) variables, then:
- PXIE)=aPX,E)=a3 P(X,E,Y)

* Each P(X, E, Y) term can be computed using the chain rule

* Computationally expensive!

44
Example 2: Enumeration
* Recipe:
State the marginal probabilities you need
Figure out ALL the atomic probabilities you need
* Calculate and combine them
* Example:
P B E
.\ _ P(+b, +j +m) N
P(+b | 4j, +m) = P(+j, +m) A
"
J M
45

21
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Example 2 cont'd

P(+b,+j,+m) =
P(+b)P(+e) P(+al+b, +e) P(+j[+a) P(+m|+a)+ Y\ Because E and A
P(4b)P(+e) P(—al+b, +e) P(+j|—a) P(+m|—a)+ are unobserved,
P(+b)P(—e)P(+al+b, —e) P(+j|+a) P(+m|+a)+ [ Wehave to
_ consider all cases
P(+b)P(—e)P(—a|+b,—e)P(+j|—a)P(+m|—a)

B E

N~
P(+m | +b, +e)? /A\

J M

46

Example 2 cont'd

P(+b,+j,+m) =
P(4b) P(+¢) P(4a|+b, +€) P(+j|+a) P(+m|4+0)+ )  Because E and A
P(+b)P(+e)P(—al+b,+e)P(+il—a)P(+ml|—a)+ are unobserved,
P(+b)P( The number of possible we have to
P(+b) P assignments is exponential in the consider all cases
unobserved variables.

That is, unfortunately, the best we
can do. General querying of
Bayesian networks is NP-complete

47

22
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Example 3: Enumeration

reminder:
7T, = parents of x;

© P(x) =25 P(x; | m) P(7m)

« Say we want to know P(D=t¢)

* Only E 1s given as true

« P(dle)=aXZspcP(a,b,c,d,e)
= a ZapgcP(a) P(bla) P(cla)P(dIb,c)Pelc)

«  With simple iteration, that’s a lot of repetition!

* P(elc) has to be recomputed every time we iterate over C=true

reminder:
o= 1/P(e)
48
Better: Variable Elimination
» Basically just enumeration with caching of local calculations
* Linear for polytrees (singly connected BNs)
* Potentially exponential for multiply connected BNs
Exact inference in Bayesian networks is still NP-hard!
* Join tree algorithms are an extension of variable elimination methods
that compute posterior probabilities for all nodes in a BN
simultaneously
49

23
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Simple Case

50

Simple Case

Pr(d)= D _Pr(a,b,c,d)

51

24
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Simple Case

Pr(d)= D _Pr(a,b,c,d)

ABC

= Y Pr(d | c)Pr(c|b)Pr(b|a)Pr(a)

ABC

52

Simple Case

Pr(d)= D _Pr(a,b,c,d)

ABC

= Y Pr(d | c)Pr(c|b)Pr(b|a)Pr(a)

ABC

53

25
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Simple Case

Pr(d)= D _Pr(a,b,c,d)

ABC

= Y Pr(d | c)Pr(c|b)Pr(b|a)Pr(a)

ABC

=Y > > Pr(d | c)Pr(c|b)Pr(b | a)Pr(a)

C B 4

54

Simple Case

Pr(d)= D _Pr(a,b,c,d)

ABC

= Y Pr(d | c)Pr(c|b)Pr(b|a)Pr(a)

ABC

=Y > > "Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)

C B 4

= Pr(d |¢)D_Pr(c| b)) Pr(b|a)Pr(a)

55

26
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Simple Case

° Q G Q How can we

do better?

Pr(d)= D _Pr(a,b,c,d)

ABC

= Y Pr(d | c)Pr(c|b)Pr(b|a)Pr(a)

ABC

=Y > > Pr(d | c)Pr(c|b)Pr(b | a)Pr(a)

C B 4

= Pr(d |¢)D_Pr(c| b)) Pr(b|a)Pr(a)

56

Simple Case

Pr(d) = Y Pr(d|c))_Pr(c|b)Y Pr(b|a)Pr(a)

- J
Y

LPr(bl |a)Pr(a))  Pr(b | a,)Pr(a, )J
Pr(b, [ a,)Pr(a,) Pr(b,|a,)Pr(a,)

57

27
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Simple Case

Pr(d) =) ,Pr(d |c)) Pr(c| b)Y Pr(b|a)Pr(a)

N\ J
Y

2 Pr(b, | a)Pr(a)
ZA: Pr(b, | a) Pr(a)

58

Simple Case

Pr(d) = Y Pr(d|c))_Pr(c|b)Y Pr(b|a)Pr(a)

A\ J

-
Sid)

59

28
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Simple Case

Pr(d) =) Pr(d|c))_Pr(c|b) f,(b)

60

Simple Case

Pr(d) =D Pr(d |c)) Pr(c|b) f(b)

\\. J
Y

J2(0)

61

29
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Simple Case

Pr(d) = Pr(d|c) fx(c)

62
Markov Chains
* A Markov chain is a special kind of BBN
* X, represents state at time t
» Its dependence structure gives: P(X;| X, ..., Xi.1) = P(X¢| X¢.1)
This CPD is called the state transition probability
What is the probability of going from a particular state to the next?
Intuitively, X; conveys all information about the past that can affect future states
* JPD of a Markov chain: P(Xy,...,X;) = P(Xy) X II}_, P(X{X..q)
63

30
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Markov Chains

« Stationary Markov chain: all state transition probability tables are the same
* P(X3]X3) = P(X3|X1) = P(X1]Xo) = ...
o FOF a“ t > 0, t’ > 0: P(thxt_l) = P(Xt' | Xt’,l)

* We only need to specify P(Xg) and P(X;| X:.1)
e Simple, easy model to specify
»  Often the natural model
* The network can extend indefinitely through time

» Consider: weather; stock prices

64
Variable Elimination Algorithm
* Given a Bayesian network, and an elimination order for the non-query
variables
66
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Variable Elimination Algorithm

* Given a Bayesian network, and an elimination order for the non-query
variables, compute

22K 2] [Pr(x; | Pa(x,))

Xl XZ Xm

67
Variable Elimination Algorithm
* Given a Bayesian network, and an elimination order for the non-query
variables, compute
22K 2] [Prx; | Pax))
X X Xy T
* Fori=mdownto 1
68
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Variable Elimination Algorithm

* Given a Bayesian network, and an elimination order for the non-query
variables, compute

22K 2] [Pr(x; | Pa(x,))

Xl XZ Xm
* Fori=mdownto 1
* remove all the factors that mention X;

* multiply those factors, getting a value for each combination of mentioned
variables

69
Variable Elimination Algorithm
* Given a Bayesian network, and an elimination order for the non-query
variables, compute
> YK S I Prcs, | Pat )
X X, Xy T
* Fori=mdownto1
* remove all the factors that mention X;
* multiply those factors, getting a value for each combination of mentioned
variables
* sumover X;
70
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Variable Elimination Algorithm

* Given a Bayesian network, and an elimination order for the non-query
variables, compute

22K 2 | [Pr(x; | Pacx)))
X X Xy T
* Fori=mdownto1

remove all the factors that mention X;

multiply those factors, getting a value for each combination of mentioned
variables

sum over X;

put this new factor into the factor set

71
Variable Elimination: Example
P(w) = E P(w |1,8)P(r| c)P(s | ¢)P(c)
- §CP(W |1,5)(> P(r|c)P(s|c)P(c factors
— §P(w | 1,9)f,(1,5) f,(r,s)
Sprinkler > CRain >
WetGrass >

72
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Factors

A factor is a function from a tuple of random variables to real numbers

We write a factor as f(Xy,...X;)

* Example:
. P(Z|X,Y) is a factor f (X,Y,Z) A A N
— Factors do not have to sum to one : : : g';
— P(Z|X,Y) is a set of probability ¢ ; ‘ 0'2
distributions: one for each '
combination of values of X and Y t f f 08
f t t 0.4
. SX Y) 7 f t f | 06
« P(Z=fIX)Y) is a factor f(X,Y) ; ; ¢ | 03
f f f 07
73
A More Complex Example
)\
74
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A More Complex Example

@) rs)
© G = )
/‘\ Ore

Z Pr(d | a,b)Pr(a|t,l)Pr(b|s)Pr(l|s)Pr(s)

Pr(d) = —=Pr(x | a)Pr(t | v) Pr(v)

75

A More Complex Example

@) &
© ) = &,
/’\ Dry

Pr(d | a,b) Pr(a | £,) Pr(b | s)Pr(l | s) Pr(s)
Pr(d) = Pr(x | a)>_ Pr(z | v) Pr(v)

ABLTSX
V%(_/
S0

76
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A More Complex Example

Pr(d) Z Pr(d | a,b)Pr(a|t,l)Pr(b|s)Pr(l|s)Pr(s)
T =
A,B,L,T,S,XPr(x | a) £ (1)

77

A More Complex Example

Pr(d | a,b)Pr(a|t,l)Pr(b| s)Pr(/|s)Pr(s)f ()
Pr(d)= 2, D Pr(x|a)

ABLTS

SR
1

78
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A More Complex Example

)

Dysp
nea

Pr(d) = ZPr(d | a,b)Pr(a|t,l)Pr(b|s)Pr(l|s)Pr(s)f (¢)

AB,.LT,S

79
A More Complex Example
Pr(d)= Y Pr(d|a,b)Pr(a|t,l)f,(t)Y_Pr(b|s)Pr(l|s)Pr(s)
AB,LT S J
'
80
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A More Complex Example

& o L

Dysp
nea

Pr(d)= Y, Pr(d|a,b)Pr(a|t])f ()Y Pr(b|s)Pr(l|s)Pr(s)
AB,LT S J
Y

ja(khl)

81
A More Complex Example
Pr(d)= D Pr(d|a,b)Pr(a|t,])f(t) f(b])
ABLT
83

39
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A More Complex Example

@
.\

Pr(d)= Y, Pr(d | a,b) f,(b,1)Y Pr(a | t,]) (1)

ABL \T J

.y
fi(al)

84
A More Complex Example
Pr(d)= D_Pr(d | a,b)f,(b,))f,(a,l)
AB,L
85

40
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A More Complex Example

0\ @

Pr(d) = D Pr(d | a,b)D f,(b,]) f;(as])

A,B U J

s
fi(a,b)

86
A More Complex Example
Pr(d) =D Pr(d | a,b)) f,(b.]) f;(a,])
A,B L N J
Ji(a,b)
87
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A More Complex Example

______________________ :

Dysp
nea

Pr(d) =D Pr(d | a,b)f,(a,b)

88
A More Complex Example
Pr(d) = 2.2 Pr(d | a,b)f,(a,b)
N Y
Y
/s(@)
89
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A More Complex Example

Dysp
nea

Pr(d) =D f,(a)

90
Properties of Variable Elimination
* Time is exponential in size of largest factor
* Bad elimination order can generate huge factors
* NP Hard to find the best elimination order
* Even the best elimination order may generate large factors
* There are reasonable heuristics for picking an elimination order (such as
choosing the variable that results in the smallest next factor)
* Inference in polytrees (nets with no cycles) is linear in size of the
network (the largest CPT)
91
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Lungs Finale f

«  We want to compute P(d)

+ Nees Variable elimination is just
Initial f . . .
enumeration with caching of local
calculations!

A

Order in which variables are

Elimin:
Comp eliminated can strongly affect
efficiency.
100
Dealing with Evidence SR>
T L
How do we deal with evidence?

And what is “evidence?” o o
Variables whose value has been observed o °

102
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Evidence: The Core Idea

We can make new factors out of an existing factor

* By assigning some or all of the variables What is the result of
assigning X=t ?
X | Y | z | va X | Y | z|val
t t t | 01 t t t | 0.1 fXELY.Z) =X, Y, Z)x-
t t f 0.9 t t f 0.9 Y Z val
t f t 0.2 t f t 0.2 t t 0.1
t f f 081  f(X,Y,2): t f f | 08 t f 1009
f t t 0.4 f t t 04 f t 0.2
f t f 106 f t f—66 f £ | os
f f t 0.3 F F ¢ .3
f f f 0.7 . ¢ : o7 Factor of Y, Z
103
Dealing with Evidence SR>
T L
 How do we deal with evidence?
* And what is “evidence?” o O
* Variables whose value has been observed o o
» Suppose we are given evidence: V=¢tS=f D =t
* Wewanttocompute P(L,V=tS=fD=t)
* (What is the probability of lung cancer, given a visit
to someplace risky, no history of smoking, and
dyspnea?)
104
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Dealing with Evidence SR
T L
*  We start by writing the factors:
PW)P(s)P(tIv)P(L1s)P(bls)P(alt,l)P(x1a)P(d|a,b) o o
)

* Since we know that V =t, we don’t need to eliminate V

* Instead, we can replace the factors P(V) and P(T |V) with
Joy =PV =) foqu) () =PT1V =1)

* Note that fpy) is a constant, so does not appear in elimination of other
variables

105
Dealing with Evidence SR>
T L
« Sonow...
* Givenevidence V=t S=f D=t o ©
« Compute P(L,V=t,S=f,D=t) (X)) (D)
+ Initial factors, after setting evidence:
fP(v)fP(s)fP(sz)(t)fP(lls)(l)fP(bls)(b)P(a l2,[)P(x| a)fP(dIa,b)(a’b)
106
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Dealing with Evidence

Given evidence V' =t, S =f D =t, we want to compute P(L, V=t S=f D =t)

Initial factors, after setting evidence:

TS o e O S e D f oy (DIP(@l t,P(X 1 @) fr g0 (a, D)

Eliminating x, we get

fP(v)fP(s)fP v (t)fP(lls)(l)fP(bls)(b)P(a lz,D) f, (a)fP(dla,b)(a’b)

Eliminating ¢, we get

fP(v)fP(s)fP(Ils)(l)fP(bls)(b)ﬁ (a,l)f, (a)fP((ﬂg p(a,b)

Eliminating a, we get

Seen ey S ey DS o (D) ], (D, 1)

Eliminating b, we get

S S ean DI, 0

-

[P(L, V=t8=fD=t)= fpw)frefol)frqs ) ]

107
Learning CPTs from Data
* Given a data set, can you learn
what a Bayesian network with
variables A, B, C and D would
look like?
A B C D
true | false | false | true
Sa)’ we true | false | true false
true | false | false | true
collect a lot
false | true | false | false
Of samPIES: false | true | false | true
false | true | false | false
false | true | false | false

109
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Learning Bayesian Networks from Data

* Given a data set, can you learn

what a Bayesian network with
variables A, B, C and D would
look like?

Say we

collect a lot
Of samPIeS: false | true | false | true

true | false | false | true

true | false | true false

true | false | false | true

false | true | false | false

false | true | false | false

false | true | false | false

or

or (0]

r

.2

110
Learning Bayesian Networks from Data
* Each possible structure contains
° e e Q information about the
conditional independence
or or or relationships between A, B, C
and D
° e ° * We would like a structure that
P, contains conditional
Tt independence relationships that
e e are supported by the data
* Note that we still need to learn
e e o the values in the CPTs from
data
111
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B

D

P(D[B)

false

false

0.02

false

true

0.98

true

false

0.05

true

true

0.95

Learning Bayesian Networks from Data

 How does Bayesian statistics help?

4

1. I might have a prior belief about what the
structure should look like.

2. I might have a prior belief about what the
values in the CPTs should be.

These beliefs get updated as I see more data

112
Learning Bayesian Networks from Data
« We won’t have enough time to describe how we actually learn
Bayesian networks from data ®
* Some references:
* Gregory F. Cooper and Edward Herskovits. A Bayesian Method for the
Induction of Probabilistic Networks from Data. Machine Learning,
9:309-347, 1992.
* David Heckerman. A Tutorial on Learning Bayesian Networks. Technical
Report MSR-TR-95-06, Microsoft Research. 1995. (Available online)
113
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Other Inference Methods

* Convert network to a polytree

* Ina polytree no two nodes have more than one path between them
*  For such a graph there is a linear time algorithm

* However, converting into a polytree requires a large increase in the size of the graph
(number of nodes)

* Why is inference in polytrees easy?

* Given a variable X we can always divide the other variables into two sets:

e E+: Variables ‘above’ X
e E-: Variables ‘below’ X

* These sets are mutually exclusive

» Using these sets we can efficiently compute conditional and joint distributions

114
Summary
* Bayes nets
e Structure
e Parameters
* Conditional independence
* Chaining
* BN inference
¢ Enumeration
* Variable elimination
*  Sampling methods..?
115
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Constructing a BBN: Paper Delivery

» Bill has noticed that his morning newspaper delivery has been sporadic

* Delivery is dependent on the paper having been successfully printed the
previous night

* Possible explanations for a paper not having been printed are a
malfunction at the printing press, or the end of civilization as we know it

*  The prior probability of a printer malfunction is 0.05
» Bill expects the end of civilization with a probability of 0.001 (!)
* If the end of civilization is here, then the paper not be printed

* If thereis a printing malfunction and no end of civilization, there is a
probability of 0.05 that the paper will be printed

* If there is no malfunction and no end of civilization, there is a probability
of 0.99 that the paper will be printed

* If the paper is not printed it will not be delivered
» Ifitis printed, there is a probability of 0.9 that it will be delivered

What
variables
should we
include?

What does
our BN look
like?

What do the

(complete)
CPTs look
like?

116

Constructing a BBN: Paper Delivery

End of
Civilization

v

Printer
Malfunction

N\

Paper
Printed

!

Paper
Delivered

* Bill’s paper fails to arrive one morning. He’d like to know
the probability that civilization has ended. What are the
observed variable(s), and what is the query variable(s)?

117
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Constructing a BBN: Paper Delivery

Printer End of
: R The
Malfunction Civilization
observed
\ / variable is
Paper Paper
Printed P_
Delivered
1 and the
Paper query is
Delivered =il o
. _ ) . o Civilization
» Bill's paper fails to arrive one morning. He’d like to know
the probability that civilization has ended. What are the
observed variable(s), and what is the query variable(s)?
118
Inference in a BBN: Paper Delivery
* What are the initial factors (prior to
variable elimination)? Printer End of
Malfunction Civilization
fo(Malfunction), f;(EndOfCiv),
f,(Malfunction,endOfCiv,paperPrinted), Paper
f;(paperPrinted,paperDelivered) P”Ied
* Carry out variable elimination for this Paper

inference problem. Specify the elimination

ordering you are using. Show each step of
your work.

Delivered

119
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Inference in a BBN: Paper Delivery

» fo(Malfunction), f;(EndOfCiv),

f,(Malfunction,endOfCiv,paperPrinted),

f3(paperPrinted,paperDelivered)

*  First assign the value false to paperDelivered. f; is

Printer
Malfunction

End of
Civilization

removed and a new factor f,(paperPrinted) is added. Paper
«  We can next sum out Malfunction, which removes Princed
factors fy and f,. A new factor f5(EndOfCiv,paperPrinted) ‘
is added. DF’Iéper )
* If we next sum out paperPrinted, then f, and f5 are ek
removed and fg(EndOfCiv) is added.
» At this point we are left with just two factors,
f1(EndOfCiv) and fg(EndOfCiv). Note that f; corresponds
to the prior for that variable.
*  We then just need to multiply those final factors f; and
fe to get f; and normalize to get fg.
120
Exercise: Variable Elimination
p(smart)=.8 p(study)=.6
p(fair)=.9
Fp(prep|...) | smart —smart
study 9 Vi
—study 5 A
o " smart —smart
p(pass|...) prep | —prep | prep | —prep Query: What is the
por . - - 5 probability that a student
ar i ' i ' studied, given that they
121
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Exercise: Variable Elimination

p(smart)=.8

p(study)=.6

p(fair)=.9
Fp(prep|...) | smart —smart
study 9 i
—study 5 A

“““ smart =—Ssmart
p(pass|...)
prep | —prep |prep |—prep
fair 9 7 7 2
—fair 1 1 .1 1

Query: What is the
probability that a student
is smart, given that they
pass the exam?

122
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