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Inference in Bayes Nets
AI Class 10 (Ch. 14.1–14.4.2; skim 14.3)

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Matt E. Taylor @ WSU, Lise Getoor @ 
UCSC, Dr. P. Matuszek @ Villanova University, and Weng-Keen Wong at OSU. Based in part on 

www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt.
Many slides and commentary drawn from ocw.mit.edu/courses/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002

Weather Cavity

Toothache Catch
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Bookkeeping

• Last time
• Probability review
• Bayesian Belief Nets

• This class
• Review of BBNs
• The Chain Rule
• A little more about

conditional probability

• But mostly… inference 
in Bayes’ nets

2
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How is the Bayesian network created?

1. Get an expert to design it
• Expert must determine the structure of the Bayesian network

• This is best done by modeling direct causes of a variable as its parents
• Expert must determine the values of the CPT entries

• These values could come from the expert’s informed opinion
• Or an external source like census information
• Or they are estimated from data
• Or a combination of the above

2. Learn it from data
• This is a much better option but it usually requires a large amount of data
• This is where Bayesian statistics comes in!

3

3

Probability, redux

• Worlds, random variables, events, sample space

• Joint probabilities of multiple connected variables

• Conditional probabilities of a variable, given another variable(s)

• Marginalizing out unwanted variables

• Inference from the joint probability 

The big idea: figuring out the probability
of variable(s) taking certain value(s)

4
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Review: Independence

What does it mean for A and B to be independent?

• P(A) ⫫ P(B)

• A and B do not affect each other’s probability

• P(A Ù B) = P(A) P(B)

6

6

Review: Conditioning

What does it mean for A and B to be conditionally 
independent given C?

• A and B don’t affect each other if C is known

• P(A Ù B | C) = P(A | C) P(B | C)

7
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

8

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(cause | effect) = P(effect | cause)P(cause)
P(effect)

R&N, 495–496
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

9

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(hidden | observed) = P(observed | hidden)P(hidden)
P(observed)

R&N, 495–496
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Review: Joint Probability
• What is the joint probability of A and B?

• P(A,B)

• The probability of any pair of legal assignments.
• Generalizing to > 2, of course

• Booleans: expressed as a matrix/table

• Continuous domains: probability functions

10

A B

T T 0.09

T F 0.1

F T 0.01

F F 0.8

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8
≡

10

Next Up

• Bayesian networks
• Network structure and independence

• Inference in Bayesian networks
• Exact inference

• Approximate inference

11

DAG: In a Bayes net, the links may form 
loops, but they may not form cycles. 

www.norsys.com/tutorials/netica/secA/tut_A1.htm

11
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Review: Bayes’ Nets: Big Picture

• Problems with full joint distribution tables as our probabilistic models:
• Joint gets way too big to represent explicitly

• Unless there are only a few variables

• Hard to learn (estimate) anything empirically about more than a few 
variables at a time

12

A ¬A

E ¬E E ¬E
B 0.01 0.08 0.001 0.009

¬B 0.01 0.09 0.01 0.79

Slides derived from Matt E. Taylor, U Alberta
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Review: Bayes’ Nets

• Bayesian Network: BN = (DAG, CPD) 
• DAG: directed acyclic graph (BN’s structure)
• CPD: conditional probability distribution (BN’s parameters)

P(C|A) = 0.2    
P(C|¬A) = 0.005

P(B|A) = 0.3     
P(B|¬A) = 0.001
P(¬B|A) = 0.7  
P(¬B|¬A) = 0.999

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4  
P(E|¬C) = 0.002

A

B C

D E

13
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Review: Bayes’ Nets

• P(a, m, i, e, s) = P(a | m) * P(m | i, e) * P(i) * P(e) * P(s | i)

e

m

a

i

s

¬e e

0.7 0.3

¬m m

¬i, ¬e 0.6 0.4

¬i, e 0.9 0.1

i, ¬e 0.5 0.5

i, e 0.8 0.2

¬i i

0.8 0.2

¬s s

¬i 0.75 0.25

i 0.4 0.6

¬a a

¬m 0.6 0.4

m 0.9 0.1

www.upgrad.com/blog/bayesian-network-example/

14

• P(α1∧α2∧...∧αn) = P(α1) ×
P(α2 | α1) ×
P(α3 | α1∧α2) × ... ×
P(αn | α1∧···∧αn-1) 

= ∏i=1..n P(αi | α1∧···∧αi-1)

= 

15

P(x1,..., xn ) =Πi=1
n P(xi |π i )

artint.info/html/ArtInt_143.html

The Chain Rule

15
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The Chain Rule

• Decomposition: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

• With assumption of conditional independence: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

• Bayes’ nets express conditional independences
• (Assumptions) 

16

P(x1,..., xn ) =Πi=1
n P(xi |π i )

Slides derived from Matt E. Taylor, U Alberta

P(x1,..., xn ) = P(x1)P(x2 | x1)P(x3 | x1, x2)...

rain

traffic umbrella

16

Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c, d, e)   = P(e | a, b, c, d) P(a, b, c, d)
= P(e | c) P(a, b, c, d)
= P(e | c) P(d | a, b, c) P(a, b, c) 
= P(e | c) P(d | b, c) P(c | a, b) P(a, b)
= P(e | c) P(d | b, c) P(c | a) P(b | a) P(a)

We’re reducing distributions—P(x,y)—to single values.

A

B C

D E

By product rule
By conditional 
independence 
assumption

17



9/26/24

9

Bayesian Networks

Two important properties:

1. Encodes the conditional independence
relationships between the variables in the 
graph structure

2. Is a compact representation of the joint 
probability distribution over the variables

A

B C

D E

18

Topological Semantics

• A node is conditionally independent of 
its non-descendants given its parents

• A node is conditionally independent of 
all other nodes in the network given its 
parents, children, and children’s 
parents (also known as its Markov 
blanket)

Image: mjtsai1974.github.io/DevBlog/2018/07/11/bayesian-ml-net-profound

19



9/26/24

10

The Joint Probability Distribution

• Due to the Markov condition, we can compute the joint probability 
distribution over all the variables X1, …, Xn in the Bayesian net using the 
formula:

Where Parents(Xi) means the values of the Parents of the 
node Xi with respect to the graph 

Õ
=

====
n

i
iiinn XParentsxXPxXxXP

1
11 ))(|(),...,(

21

Independence and Causal Chains

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, we can it prove using algebra (tedious)

• If no, can prove it with a counter-example

• Question: are X and Z necessarily independent? 
• No. 
• Ex: Clouds (X) cause rain (Y), which causes traffic (Z)

• X can influence Z, Z can influence X (via Y)

• This configuration is a “causal chain” 

X

Y

Z

Slides derived from Matt E. Taylor, WSU
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Two More Main Patterns

• Common Cause:
• Y causes X and Y causes Z
• Are X and Z independent?
• Are X and Z independent given Y?

• Common Effect:
• Two causes of one effect
• Are X and Z independent?

• Are X and Z independent given Y?
• No!
• Observing an effect “activates” influence between possible causes.

X

Y

Z

X

Y

Z

No

Yes

Yes

Slides derived from Matt E. Taylor, WSU

23

Conditionality Example

• Hidden: A, B, E. You don’t know:
• If there’s a burglar.
• If there was an earthquake.

• If the alarm is going off.

• Observed: J and M.
• John and/or Mary have some chance of calling if 

the alarm rings. 
• You know who called you.

Slides derived from Matt E. Taylor, WSU

24
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Conditionality Example 2

• At first (before observations):
• Is the probability of John calling affected by 

whether there’s an earthquake?
• Is the probability of Mary calling affected by 

John calling?

• Then: Your alarm is going off! (observation)
• Is the probability of Mary calling affected by 

John calling?

Slides derived from Matt E. Taylor, WSU

No

Yes

Yes

25

Conditionality Example 3

• At first (before observations):
• Is whether there’s an earthquake affected by 

whether there’s a burglary in progress (and vice 
versa)?

• Then: Your alarm is going off! (observation)
• Does the probability a burglary is happening 

depend on whether there’s an earthquake?

Slides derived from Matt E. Taylor, WSU

No

YES!

26
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A Set of Tables for Each Node

Each node Xi has a 
conditional probability 
distribution 
P(Xi | Parents(Xi)) that 
quantifies the effect of the 
parents on the node

The parameters are the 
probabilities in these 
conditional probability 
tables (CPTs)

A P(A)

false 0.6
true 0.4

A B P(B|A)

false false 0.01
false true 0.99

true false 0.7

true true 0.3

B C P(C|B)
false false 0.4

false true 0.6
true false 0.9

true true 0.1

B D P(D|B)

false false 0.02
false true 0.98

true false 0.05

true true 0.95

A

B

C D

28

Using a Bayesian Network Example

• Using the network in the example, suppose you want to calculate:

P(A = true, B = true, C = true, D = true)

= P(A = true) * P(B = true | A = true) * 
P(C = true | B = true) P( D = true | B = true) 

= (0.4)*(0.3)*(0.1)*(0.95)

29

A

B

C D

This is from 
the graph 
structure

These numbers are from 
the conditional probability 
tables

29
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Representational Extensions

• Conditional probability tables (CPTs) for large networks can require a 
large number of parameters
• O(2k) where k is the branching factor of the network

• There are ways of compactly representing CPTs
• Deterministic relationships
• Noisy-OR 
• Noisy-MAX

• What about continuous variables?
• Discretization
• Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian 

networks (with discrete and continuous variables)

30

30

Bayes’ Net Inference

Some material from Lise Getoor

31
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What Are We Trying To Do?

• Now we know the semantics of Bayes’ nets

• But how do we use it?

• Say we have some evidence (that is, some variables are instantiated)

• We usually want to know the probability of some other variables

• Why?
• Reason about hidden (non-observed) information

• What caused something?
• What is the probability of something?

32

Inference

• Instead of computing the joint, suppose we just want the probability for 
one variable (or a subset)

• Using a Bayesian network to compute probabilities is called inference

• In general, inference involves queries of the form:

P( X | E )

33

X = The query 
variable(s)

E = The evidence 
variable(s)

33
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Inference

• An example of a query would be:

P(HasPneumonia = true | HasFever = true, HasCough = true)

• Note:  Even though HasDifficultyBreathing and ChestXrayPositive are in 
the Bayesian network, they are not given values in the query (ie. they do 
not appear either as query variables or evidence variables)

• They are treated as unobserved variables

34

HasPneumonia

HasCough HasFever HasDifficultyBreathing ChestXrayPositive

34

Inference Techniques

• Exact inference: Analytically compute the conditional probability 
distribution over the variables we care about

• Approximate inference: Sometimes exact inference is too hard
• Come up with approximate solutions based on statistical sampling

Exact inference 
• Enumeration
• Belief propagation in polytrees
• Variable elimination

• Clustering / join tree algorithms

Approximate inference
• Stochastic simulation / sampling 

methods
• Markov chain Monte Carlo methods
• Genetic algorithms
• Neural networks
• Simulated annealing
• Mean field theory

35
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Query Types

Given a Bayesian network, what questions might we want to ask? 

• Conditional probability query: P(x | e) 
• Given instantiations for some of the variables (e = values of all instantiated 

variables; it doesn’t have to be just one), what is the probability that node X has 
a particular value x? 

36

Query Types

Given a Bayesian network, what questions might we want to ask? 

• Conditional probability query: P(x | e) 
• Given instantiations for some of the variables (e = values of all instantiated 

variables; it doesn’t have to be just one), what is the probability that node X has 
a particular value x? 

• Maximum a posteriori probability: What value of x maximizes P(x|e) ? 
• What is the most likely explanation for some evidence? 
• That is, what is the value of node(s) X that maximizes the probability that you 

would have seen the evidence you did?
• This is called a maximum a posteriori probability or MAP query

37
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Query Types

Given a Bayesian network, what questions might we want to ask? 

• Conditional probability query: P(x | e) 

• Maximum a posteriori probability: What value of x maximizes P(x|e) ? 

• General question: What’s the whole probability distribution over 
variable X given evidence e — what is P(X | e)? 

38

Inference Tasks
• Simple queries: Compute posterior marginal P(Xi | E=value)

• E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

• Conjunctive queries:
• P(Xi, Xj | E=value) = P(Xi | E=value) P(Xj | Xi, E=value)

• Optimal decisions:
• Decision networks include utility information
• Probabilistic inference gives P(outcome | action, evidence)

• Value of information: Which evidence should we seek next?

• Sensitivity analysis: Which probability values are most critical?

• Explanation: Why do I need a new starter motor?

39

39
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Using the joint distribution

• To answer any query involving a conjunction of variables, sum over the 
variables not involved in the query

40

Using the joint distribution

• To answer any query involving a conjunction of variables, sum over the 
variables not involved in the query

10

Lecture 16 • 10

Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )
∑

b∈dom(B )
∑

a∈dom(A )
∑

So, in a domain with four variables, A, B, C, and D, the probability that variable D 
has value d is the sum over all possible combinations of values of the  other 
three variables of the joint probability of all four values.  This is exactly the 
same as the procedure we went through in the last lecture, where to compute the 
probability of cavity, we added up the probability of cavity and toothache and 
the probability of cavity and not toothache. 

41
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Using the joint distribution

To answer any query involving a conjunction of 
variables, sum over the variables not involved in 
the query.

Pr(d) = Pr(a,b,c,d )
ABC
∑

= Pr(A = a∧B = b∧C = c)
c∈dom(C )
∑

b∈dom(B )
∑

a∈dom(A )
∑

Pr(d | b) = Pr(b,d)
Pr(b)

=
Pr(a,b,c,d )

AC
∑

Pr(a,b,c,d)
ACD
∑

To compute a conditional probability, we reduce it to a ratio of conjunctive queries 
using the definition of conditional probability, and then answer each of those 
queries by marginalizing out the variables not mentioned.

Summing over A and C, 
because b and d are 

instantiated in the query

43
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Inference by Enumeration

• Add all of the terms (atomic event 
probabilities) from the full joint distribution

• If E are the evidence (observed) variables and Y are the other 
(unobserved) variables, then:

• P(X | E) = α P(X, E) = α ∑ P(X, E, Y)

• Each P(X, E, Y) term can be computed using the chain rule

• Computationally expensive!

Reminder: P(E) is known 
(observed), so 1/P(E) is a 
constant that makes 
everything sum to 1: the 
normalizing constant

44

Example 2: Enumeration

• Recipe:
• State the marginal probabilities you need
• Figure out ALL the atomic probabilities you need

• Calculate and combine them 

• Example:

• P(+b | +j, +m) =

Slides derived from Matt E. Taylor, WSU; Russell&Norvig

45

P(+b, +j, +m)
P(+j, +m)

45
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Example 2 cont’d

Slides derived from Matt E. Taylor, WSU; Russell&Norvig

Because E and A
are unobserved, 
we have to 
consider all cases

46

Example 2 cont’d

Slides derived from Matt E. Taylor, WSU; Russell&Norvig

Because E and A
are unobserved, 
we have to 
consider all cases

The number of possible 
assignments is exponential in the 
unobserved variables.

That is, unfortunately, the best we 
can do. General querying of 
Bayesian networks is NP-complete

47
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Example 3: Enumeration

• P(xi) = Σπ P(xi | πi) P(πi)

• Say we want to know P(D=t)

• Only E is given as true

• P (d | e) = a ΣABCP(a, b, c, d, e)
= a ΣABCP(a) P(b | a) P(c | a) P(d | b, c) P(e | c)

• With simple iteration, that’s a lot of  repetition! 

• P(e|c) has to be recomputed every time we iterate over C=true

A

B C

D E

i

reminder: 
a = 1/P(e)

reminder: 
πi = parents of xi

48

Better: Variable Elimination

• Basically just enumeration with caching of local calculations

• Linear for polytrees (singly connected BNs)

• Potentially exponential for multiply connected BNs
• Exact inference in Bayesian networks is still NP-hard!

• Join tree algorithms are an extension of variable elimination methods 
that compute posterior probabilities for all nodes in a BN 
simultaneously

49

49



9/26/24

24

Simple Case

20

Lecture 16 • 20

Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

How can we 
do better?
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
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∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Pr(b1 | a1) Pr(a1) Pr(b1 | a2 ) Pr(a2 )
Pr(b2 | a1) Pr(a1 ) Pr(b2 | a2 ) Pr(a2 )
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If you look, for a minute, at the terms inside the summation over A, you’ll see that 
we’re doing these multiplications over for each value of C, which isn’t 
necessary, because they’re independent of C.  Our idea, here, is to do the 
multiplications once and store them for later use.  So, first, for each value of A 
and B, we can compute the product, generating a two dimensional matrix.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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A B C D

Pr(d) = Pr(a,b,c,d)
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= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
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C
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= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
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Pr(b1 | a1) Pr(a1) Pr(b1 | a2 ) Pr(a2 )
Pr(b2 | a1) Pr(a1 ) Pr(b2 | a2 ) Pr(a2 )

ª 

¬ 
« 

º

¼
»

If you look, for a minute, at the terms inside the summation over A, you’ll see that 
we’re doing these multiplications over for each value of C, which isn’t 
necessary, because they’re independent of C.  Our idea, here, is to do the 
multiplications once and store them for later use.  So, first, for each value of A 
and B, we can compute the product, generating a two dimensional matrix.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Pr(b1 | a) Pr(a)
A
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Pr(b2 | a) Pr(a)
A
∑
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Then, we can sum over the rows of the matrix, yielding one value of the sum for 
each possible value of b. 
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
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∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
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= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
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∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
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∑

B
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C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
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If you look, for a minute, at the terms inside the summation over A, you’ll see that 
we’re doing these multiplications over for each value of C, which isn’t 
necessary, because they’re independent of C.  Our idea, here, is to do the 
multiplications once and store them for later use.  So, first, for each value of A 
and B, we can compute the product, generating a two dimensional matrix.

f1(b)
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Simple Case
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

f1(b)
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
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If you look, for a minute, at the terms inside the summation over A, you’ll see that 
we’re doing these multiplications over for each value of C, which isn’t 
necessary, because they’re independent of C.  Our idea, here, is to do the 
multiplications once and store them for later use.  So, first, for each value of A 
and B, we can compute the product, generating a two dimensional matrix.

f1(b)
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

f2(c)
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

f2(c)
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Markov Chains

• A Markov chain is a special kind of BBN

• Xt represents state at time t

• Its dependence structure gives: P(Xt|X1, …, Xt-1) = P(Xt|Xt-1)
• This CPD is called the state transition probability

• What is the probability of going from a particular state to the next?
• Intuitively, Xt conveys all information about the past that can affect future states

• JPD of a Markov chain:
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

X0 X1 X2 …

Markov Chains 

14 

X0 X1 X2 

  
…

Poole & Mackworth
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Markov Chains

• Stationary Markov chain: all state transition probability tables are the same
• P(X3|X2) = P(X2|X1) = P(X1|X0) = …
• For all t > 0, t’ > 0: P(Xt|Xt-1) = P(Xt’|Xt’-1)

• We only need to specify P(X0) and P(Xt|Xt-1) 
• Simple, easy model to specify
• Often the natural model
• The network can extend indefinitely through time

• Consider: weather; stock prices
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Simple Case

A B C D

Pr(d) = Pr(a,b,c,d)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
ABC
∑

= Pr(d | c)Pr(c | b)Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

= Pr(d | c) Pr(c | b) Pr(b | a)Pr(a)
A
∑

B
∑

C
∑

Then, by distributivity of addition over multiplication, we can push the summations 
in, so that the sum over A includes all the terms that mention A, but no others, 
and so on.  It’s pretty clear that this expression is the same as the previous one in 
value, but it can be evaluated more efficiently.  We’re still, eventually, 
enumerating all assignments to the three variables, but we’re doing somewhat 
fewer multiplications than before.  So this is still not completely satisfactory.

X0 X1 X2 …

Poole & Mackworth
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables 

66
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables, compute
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables, compute

• For i = m downto 1 
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Given a Bayesian network, and an elimination order
for the non-query variables, compute 

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables, compute

• For i = m downto 1
• remove all the factors that mention Xi

• multiply those factors, getting a value for each combination of mentioned 
variables 
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 
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We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables, compute

• For i = m downto 1
• remove all the factors that mention Xi

• multiply those factors, getting a value for each combination of mentioned 
variables 

• sum over Xi
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination Algorithm

• Given a Bayesian network, and an elimination order for the non-query 
variables, compute

• For i = m downto 1
• remove all the factors that mention Xi

• multiply those factors, getting a value for each combination of mentioned 
variables 

• sum over Xi

• put this new factor into the factor set 
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Variable Elimination Algorithm

Given a Bayesian network, and an elimination order
for the non-query variables, compute 

  
K Pr(x j | Pa(x j

j
∏

Xm

∑
X2

∑
X1

∑ ))

We can express the probability of the query variables as a sum over each value of 
each of the non-query variables of a product over each node in the network, of 
the probability that that variable has the given value given the values of its 
parents. 
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Variable Elimination: Example

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1

“factors”

72



9/26/24

35

Factors

• A factor is a function from a tuple of random variables to real numbers

• We write a factor as f(X1,…Xj)

• Example:

Poole & Mackworth

Factors 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  We write a factor on variables X1,… ,Xj as f(X1,… ,Xj)  

•  P(Z|X,Y) is a factor f (X,Y,Z) 
–  Factors do not have to sum to one 
–  P(Z|X,Y) is a set of probability  

distributions: one for each  
combination of values of X and Y 

•  P(Z=f|X,Y) is a factor f(X,Y)   

26 

3� 4� 5� :68�

9� 9� 9� ����
9� 9� 7� ��,�
9� 7� 9� ����
9� 7� 7� ����

7� 9� 9� ��
�
7� 9� 7� ��)�
7� 7� 9� ��	�
7� 7� 7� ���

 f(X, Y���� 
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A More Complex Example

36

Lecture 16 • 36

One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) Pr(t | v) Pr(v)A,B ,L,T ,S ,X ,V

∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.

drawn from ocw.mit.edu/courses/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002

74



9/26/24

36

A More Complex Example

36

Lecture 16 • 36

One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) Pr(t | v) Pr(v)A,B ,L,T ,S ,X ,V

∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.

36

Lecture 16 • 36

One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) Pr(t | v) Pr(v)A,B ,L,T ,S ,X ,V

∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

risky

Visit

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)

Pr(x | a) Pr(t | v) Pr(v)
V
∑

A,B ,L,T ,S ,X
∑

f1 (t)

So, we start by eliminating V.  We gather the two terms that mention V and see that 
they also involve variable T.  So, we compute the product for each value of T, 
and summarize those in the factor f1 of T.
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One more example
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Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
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∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) f1 (t)A,B ,L,T ,S ,X

∑

Now we can substitute that factor in for the summation, and remove the node from 
the network.
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One more example
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neaXray
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Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s)
Pr(x | a) f1 (t)A,B ,L,T ,S ,X

∑

Now we can substitute that factor in for the summation, and remove the node from 
the network.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
neaXray

chest

Abnrm

Tuber
culosis

Pr(d) =
Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s) f1(t)

Pr(x | a)
X
∑

A,B ,L,T ,S
∑

1

The next variable to be eliminated is X.  There is actually only one term involving 
X, and it also involves variable A.  So, for each value of A, we compute the sum 
over X of P(x|a).  But wait!  We know what this value is!  If we fix a and sum 
over x, these probabilities have to add up to 1.
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∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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∑

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) Pr(b | s) Pr(l | s) Pr(s) f1(t)
A,B ,L,T ,S
∑

So, rather than adding another factor to our expression, we can just remove the 
whole sum.  In general, the only nodes that will have an influence on the 
probability of D are its ancestors.
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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One more example

Smoke

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) Pr(a | t,l) f1(t) Pr(b | s) Pr(l | s) Pr(s)
S
∑

A,B ,L,T
∑

Now, it’s time to eliminate S.  We find that there are three terms involving S, and 
we gather them into the sum.  These three terms involve two other variables, B 
and L.  So we have to make a factor that specifies, for each value of B and L, the 
value of the sum of products.
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∑

Now, it’s time to eliminate S.  We find that there are three terms involving S, and 
we gather them into the sum.  These three terms involve two other variables, B 
and L.  So we have to make a factor that specifies, for each value of B and L, the 
value of the sum of products.

f2(b,l)
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Now, it’s time to eliminate S.  We find that there are three terms involving S, and 
we gather them into the sum.  These three terms involve two other variables, B 
and L.  So we have to make a factor that specifies, for each value of B and L, the 
value of the sum of products.

f2(b,l)
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One more example
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Pr(d) = Pr(d | a,b) Pr(a | t,l) f1(t) Pr(b | s) Pr(l | s) Pr(s)
S
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∑

Now, it’s time to eliminate S.  We find that there are three terms involving S, and 
we gather them into the sum.  These three terms involve two other variables, B 
and L.  So we have to make a factor that specifies, for each value of B and L, the 
value of the sum of products.

f2(b,l)
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Tuber
culosis

Pr(d) = Pr(d | a,b) f2 (b,l) Pr(a | t,l) f1(t)
T
∑

A,B ,L
∑

f3 (a,l)

Now we eliminate T.  It involves two terms, which themselves involve variables A 
and L.  So we make a new factor f3 of A and L.
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
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A More Complex Example
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One more example

Bronch
itis

Lung
cancer

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f2 (b,l) f3(a,l)
A,B ,L
∑

We can substitute in that factor and eliminate T.  We’re getting close!
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.

A More Complex Example

46

Lecture 16 • 46

One more example

Bronch
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Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f2 (b,l) f3 (a,l)
L
∑

A ,B
∑

f4 (a,b)

Next we eliminate L.  It involves these two factors, which depend on variables A 
and B.  So we make a new factor, f4 of A and B, and substitute it in.  We 
remove node L, but couple A and B.
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Next we eliminate L.  It involves these two factors, which depend on variables A 
and B.  So we make a new factor, f4 of A and B, and substitute it in.  We 
remove node L, but couple A and B.
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.

A More Complex Example
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One more example

Bronch
itis

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f4 (a,b)
A ,B
∑

At this point, we could just do the summations over A and B and be done.  But to 
finish out the algorithm the way a computer would, it’s time to eliminate variable B. 
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.
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One more example

Bronch
itis

Dysp
nea

chest

Abnrm

Pr(d) = Pr(d | a,b) f4 (a,b)
B
∑

A
∑

f5(a)

It involves both of our remaining terms, and it seems to depend on variables A and 
D.  However, in this case, we’re interested in the probability of a particular 
value, little d of D, and so the variable d is instantiated.  Thus, we can treat it as 
a constant in this expression, and we only need to generate a factor over a, 
which we’ll call f5 of a.  And we can now, in some sense, remove D from our 
network as well (because we’ve already factored it into our answer).
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We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, 
V.

A More Complex Example
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One more example

chest

Abnrm

Pr(d) = f5(a)
A
∑

Finally, to get the probability that variable D has value little d,  we simply sum 
factor f5 over all values of a.  Yay!  We did it.
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Properties of Variable Elimination 

• Time is exponential in size of largest factor 

• Bad elimination order can generate huge factors 

• NP Hard to find the best elimination order 

• Even the best elimination order may generate large factors 

• There are reasonable heuristics for picking an elimination order (such as 
choosing the variable that results in the smallest next factor) 

• Inference in polytrees (nets with no cycles) is linear in size of the 
network (the largest CPT) 
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Lungs Finale
• We want to compute P(d)

• Need to eliminate: a, b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: a,b

Compute: fa (b,d) = fl (a,b) fx (a)p(d | a,b)
a
∑ fb(d) = fa (b,d)

b
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fa (b,d)⇒ fb(d)

100

V S

LT

A B

X DVariable elimination is just 
enumeration with caching of local 

calculations!
Order in which variables are 

eliminated can strongly affect 
efficiency.

100

Dealing with Evidence

• How do we deal with evidence?
• And what is “evidence?”
• Variables whose value has been observed

102

V S
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A B

X D
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Evidence: The Core Idea

• We can make new factors out of an existing factor

• By assigning some or all of the variables

Operation 1: assigning a variable 
•  We can make new factors out of an existing factor 

•  Our first operation:  
we can assign some or all of the variables of a factor. 

3� 4� 5� :68�
9� 9� 9� ����
9� 9� 7� ��,�
9� 7� 9� ����

7�3�4�5 �� 9� 7� 7� ����
7� 9� 9� ��
�
7� 9� 7� ��)�
7� 7� 9� ��	�
7� 7� 7� ���

What is the result of  
assigning X= t   ? 

f(X=t,Y,Z) =f(X, Y, Z)X = t 
 

4� 5� :68�
9� 9� ����
9� 7� ��,�
7� 9� ����
7� 7� ����

Factor of Y, Z 

27 

Factors 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  We write a factor on variables X1,… ,Xj as f(X1,… ,Xj)  

•  P(Z|X,Y) is a factor f (X,Y,Z) 
–  Factors do not have to sum to one 
–  P(Z|X,Y) is a set of probability  

distributions: one for each  
combination of values of X and Y 

•  P(Z=f|X,Y) is a factor f(X,Y)   
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Dealing with Evidence

• How do we deal with evidence?
• And what is “evidence?”
• Variables whose value has been observed

• Suppose we are given evidence: V = t, S = f, D = t

• We want to compute P(L, V = t, S = f, D = t)

• (What is the probability of lung cancer, given a visit 
to someplace risky, no history of smoking, and 
dyspnea?)

104
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Dealing with Evidence 

• We start by writing the factors:

• Since we know that V = t, we don’t need to eliminate V

• Instead, we can replace the factors P(V) and P(T |V) with

• Note that fP(V) is a constant, so does not appear in elimination of other 
variables

105

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fP(V ) = P(V = t) fp(T |V ) (T ) = P(T |V = t)

V S
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A B

X D
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Dealing with Evidence 

• So now…
• Given evidence V = t, S = f, D = t

• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)
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• Given evidence V = t, S = f, D = t, we want to compute P(L, V = t, S = f, D = t )

• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

• Eliminating a, we get

• Eliminating b, we get

Dealing with Evidence 

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) fa (b, l)

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) ft (a, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(l|s) (l) fb(l)
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Learning CPTs from Data

• Given a data set, can you learn 
what a Bayesian network with 
variables A, B, C and D would 
look like?

A B C D

true false false true
true false true false

true false false true

false true false false
false true false true

false true false false
false true false false

: : : :

Say we 
collect a lot 
of samples:
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Learning Bayesian Networks from Data

• Given a data set, can you learn 
what a Bayesian network with 
variables A, B, C and D would 
look like?

A B C D

true false false true
true false true false

true false false true

false true false false
false true false true

false true false false
false true false false

: : : :

A B C D

A B

C

D

or or

A

B

C D

or

..?Say we 
collect a lot 
of samples:

110

Learning Bayesian Networks from Data

• Each possible structure contains 
information about the 
conditional independence 
relationships between A, B, C 
and D

• We would like a structure that 
contains conditional 
independence relationships that 
are supported by the data

• Note that we still need to learn 
the values in the CPTs from 
data

A B C D

A B

C

D

or or

A

B

C D

or

..?
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Learning Bayesian Networks from Data

• How does Bayesian statistics help?

112

A

B

C D

B D P(D|B)
false false 0.02

false true 0.98

true false 0.05
true true 0.95

1. I might have a prior belief about what the 
structure should look like.

2. I might have a prior belief about what the 
values in the CPTs should be.

These beliefs get updated as I see more data

112

Learning Bayesian Networks from Data

• We won’t have enough time to describe how we actually learn 
Bayesian networks from data L

• Some references:
• Gregory F. Cooper and Edward Herskovits. A Bayesian Method for the 

Induction of Probabilistic Networks from Data. Machine Learning, 
9:309-347, 1992. 

• David Heckerman. A Tutorial on Learning Bayesian Networks.  Technical 
Report MSR-TR-95-06, Microsoft Research.  1995. (Available online)

113
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Other Inference Methods 
• Convert network to a polytree 

• In a polytree no two nodes have more than one path between them 
• For such a graph there is a linear time algorithm 
• However, converting into a polytree requires a large increase in the size of the graph 

(number of nodes) 

• Why is inference in polytrees easy? 

• Given a variable X we can always divide the other variables into two sets: 
• E+: Variables ‘above’ X
• E-: Variables ‘below’ X 

• These sets are mutually exclusive 

• Using these sets we can efficiently compute conditional and joint distributions 

114

Summary

• Bayes nets
• Structure
• Parameters

• Conditional independence
• Chaining

• BN inference
• Enumeration

• Variable elimination
• Sampling methods..?

115
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Constructing a BBN: Paper Delivery
• Bill has noticed that his morning newspaper delivery has been sporadic
• Delivery is dependent on the paper having been successfully printed the 

previous night
• Possible explanations for a paper not having been printed are a 

malfunction at the printing press, or the end of civilization as we know it
• The prior probability of a printer malfunction is 0.05
• Bill expects the end of civilization with a probability of 0.001 (!)
• If the end of civilization is here, then the paper not be printed
• If there is a printing malfunction and no end of civilization, there is a 

probability of 0.05 that the paper will be printed
• If there is no malfunction and no end of civilization, there is a probability 

of 0.99 that the paper will be printed
• If the paper is not printed it will not be delivered
• If it is printed, there is a probability of 0.9 that it will be delivered

What 
variables 
should we 
include?

What does 
our BN look 
like?

What do the 
(complete) 
CPTs look 
like?

www.cs.ubc.ca/~mack/CS322/exercises/11_ex-varelim-sol.pdf
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Constructing a BBN: Paper Delivery

• Bill’s paper fails to arrive one morning. He’d like to know 
the probability that civilization has ended. What are the 
observed variable(s), and what is the query variable(s)?

Printer 
Malfunction

End of 
Civilization

Paper 
Printed

Paper 
Delivered

www.cs.ubc.ca/~mack/CS322/exercises/11_ex-varelim-sol.pdf
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Constructing a BBN: Paper Delivery

• Bill’s paper fails to arrive one morning. He’d like to know 
the probability that civilization has ended. What are the 
observed variable(s), and what is the query variable(s)?

The 
observed 
variable is 
Paper 
Delivered 
and the 
query is 
End of 
Civilization

Printer 
Malfunction

End of 
Civilization

Paper 
Printed

Paper 
Delivered

www.cs.ubc.ca/~mack/CS322/exercises/11_ex-varelim-sol.pdf
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Inference in a BBN: Paper Delivery

• What are the initial factors (prior to 
variable elimination)? 
• f0(Malfunction), f1(EndOfCiv), 

f2(Malfunction,endOfCiv,paperPrinted), 
f3(paperPrinted,paperDelivered)

• Carry out variable elimination for this 
inference problem. Specify the elimination 
ordering you are using. Show each step of 
your work.

www.cs.ubc.ca/~mack/CS322/exercises/11_ex-varelim-sol.pdf

Printer 
Malfunction

End of 
Civilization

Paper 
Printed

Paper 
Delivered
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Inference in a BBN: Paper Delivery
• f0(Malfunction), f1(EndOfCiv), 

f2(Malfunction,endOfCiv,paperPrinted), 
f3(paperPrinted,paperDelivered)

• First assign the value false to paperDelivered. f3 is 
removed and a new factor f4(paperPrinted) is added. 

• We can next sum out Malfunction, which removes 
factors f0 and f2. A new factor f5(EndOfCiv,paperPrinted) 
is added. 

• If we next sum out paperPrinted, then f4 and f5 are 
removed and f6(EndOfCiv) is added. 

• At this point we are left with just two factors, 
f1(EndOfCiv) and f6(EndOfCiv). Note that f1 corresponds 
to the prior for that variable.

• We then just need to multiply those final factors f1 and 
f6 to get f7 and normalize to get f8. 

www.cs.ubc.ca/~mack/CS322/exercises/11_ex-varelim-sol.pdf

Printer 
Malfunction

End of 
Civilization

Paper 
Printed

Paper 
Delivered
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Exercise: Variable Elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
studied, given that they 
pass the exam?
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Exercise: Variable Elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
is smart, given that they 
pass the exam?
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