

Probabilistic Reasoning So far, mostly, we've done deterministic problems. Image: www.instructables.com/id/How-to-Win-a-Chess-Game-in-2-Moved

Probabilistic Reasoning

- We don't (can't!) know everything about most problems.
- Most problems are not:
 - Deterministic
 - Fully observable
- Or, we can't calculate everything.
 - Continuous problem spaces
- Probability lets us understand, quantify, and work with this uncertainty.

Probability

- World: The complete set of possible states
- Random variables: Problem aspects that take a value
 - "The number of blue squares we have pulled," B
 - "The combined value of two dice we rolled," ${\cal C}$
- Event: Something that happens
- Sample Space: All the things (outcomes) that could happen in some set of circumstances
 - Pull 2 squares from envelope A: what is the sample space?
 - How about envelope B?
- World, redux: A complete assignment of values to variables

<section-header><section-header><section-header><list-item><list-item>

Boolean Random Variables

- We will start with the simplest type of random variables: Booleans
- Take the values true or false
- Think of the event as occurring or not occurring
- Examples (Let A be a Boolean random variable):
 - A = Getting a head on a coin flip
 - A = It will rain today

8

Basic Probability

- Each P is a non-negative value in [0,1]
 - $P(\{1,1\}) = 1/36$
- Total probability of the sample space is 1
 - $P(\{1,1\}) + P(\{1,2\}) + P(\{1,3\}) + \dots + P(\{6,6\}) = 1$
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
 - $P(sunny) \lor P(cloudy) = P(sunny) + P(cloudy)$
- Where do these numbers come from?
 - Experimental probability: Based on frequency of past events
 - Subjective probability: Based on expert assessment

The Joint Probability Distribution

- Joint probabilities can be between any number of variables
 - E.g. P(A = true, B = true, C = true)
- For each combination of variables, we need to say how probable that combination is
- The probabilities of these combinations need to sum to 1

Α	B	С	P(A,B,C)
false	false	false	0.1
false	false	true	0.2
false	true	false	0.05
false	true	true	0.05
true	false	false	0.3
true	false	true	0.1
true	true	false	0.05
true	true	true	0.15
			Sums to 1

10

The Joint Probability Distribution

- Once you have the joint probability distribution, you can calculate any probability involving A, B, and C
- Note: May need to use marginalization and Bayes rule
- Examples:
 - P(A=true) = sum of P(A,B,C) in rows with A=true
 - P(A=true, B = true | C=true) =
 P(A = true, B = true, C = true) / P(C = true)

Α	B	С	P(A,B,C)
false	false	false	0.1
false	false	true	0.2
false	true	false	0.05
false	true	true	0.05
true	false	false	0.3
true	false	true	0.1
true	true	false	0.05
true	true	true	0.15

Probability Distributions

- A distribution is the probabilities of **all possible values** of a random variable
- Ex: weather can be sunny, rainy, cloudy, or snowy
 - P(Weather = sun) = 0.6
 - P(Weather = rain) = 0.1
 - P(Weather = cloud) = 0.29
 - P(Weather = snow) = 0.01
 - $P(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$ \leftarrow shortcut
- P(Weather): probability distribution on Weather

Probability Theory: Definitions

- **Conditional distribution** gives the probabilities of a variable, dependent on the values of the other variables
 - P(XIY) = "Probability of X happening, given that Y happens (or didn't happen)"
- Probability of some effect, given that we know cause(s)
 - (Technically, we only know b is correlated, not causal)
 - Example: P(*alarm* | *burglary*) = "Probability of *alarm*, given *burglary*"
- Computing it:

•
$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

• P(b): **normalizing constant** (later we'll call this alpha α or rho ϱ)

Probability Theory: Definitions

• Product rule:

•

• $P(a \land b) = P(a \mid b) P(b)$

Marginalizing	(summing out):

- Finding distribution over one or a subset of variables
- Marginal probability of B summed over all alarm states:
- $P(B) = \Sigma_a P(B, a)$
 - P(B) = sum of P(B, a) for all possible values of A
- Conditioning over a subset of variables:
 - $P(B) = \Sigma_a P(B \mid a) P(a)$

l et's Try It		alarm	¬ alarm
	burgla	ry 0.09	0.01
Cond'l probability	¬ burgla	n ry 0.1	0.8
• Cond i probability			
 P(effect, cause[s]) 			
 P(a b) = P(a ∧ b) / P(b) 			
 P(b): normalizing constant (1/α) 			
Product rule:			
 P(a ∧ b) = P(a b) P(b) 			
Marginalizing:			
 P(B) = Σ_aP(B, a) 			
• $P(B) = \Sigma_a P(B \mid a) P(a)$ (conditioning)	• $P(A) =$?	

	alarm	¬ alarm
burglary	0.09	0.01
¬ burglary	0.1	0.8

Marginalizing

- Marginalization: how to safely ignore variables.
- Two-variable example (A and B).
- If we know P(A=a,B=b) for *all* values of *a* and *b*:
- $P(B=b)=\sum_{a}P(A=a,B=b).$
- Here we "marginalized out" the variable A.
- Takes variable(s) in a out of consideration

20

Marginalizing

- Marginal probability: the probability of an event occurring, regardless of other events (unlike conditional probability)
 - To get there we have to marginalize
- Marginalizing (summing out):
 - Finding distribution over one or a subset of variables
 - Marginal probability of B summed over all alarm states:
 - $P(B) = \Sigma_a P(B, a)$
- Takes variable(s) in *a* out of consideration

Exercise: Inference from the joint

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?

P(smart ∧	smart		-smart	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

P(*smart*) = .432 + .16 + .048 + .16 = **0.8**

24

Exercise: Inference from the joint

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?

P(smart ∧	SM	art	<i>¬smart</i>	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

E	Exercise: Inference from the joint							
	 Queries: What is the prior probability of <i>smart</i>? What is the prior probability of <i>study</i>? What is the conditional probability of <i>prepared</i>, given <i>study</i> and <i>smart</i>? 							
			P(smart A	sn	art	¬ <i>SN</i>	nart]
			study ∧ prep)	study	¬study	study	¬study	
			prepared	.432	.16	.084	.008	
			-prepared	.048	.16	.036	.072	
	P(prep smart,study) = P(prep, smart, study)/P(smart, study) = .432 / (.432 + .048) = 0.9							

The Problem with the Joint Distribution

- Lots of entries in the table!
- For k Boolean random variables, you need a table of size 2k
- How do we use fewer numbers?
- Need independence

Α	B	С	P(A,B,C)
false	false	false	0.1
false	false	true	0.2
false	true	false	0.05
false	true	true	0.05
true	false	false	0.3
true	false	true	0.1
true	true	false	0.05
true	true	true	0.15

Independence

Variables A and B are independent if any of the following hold:

- P(A,B) = P(A) P(B)
- P(A | B) = P(A)
- P(B | A) = P(B)

This says that knowing the outcome of A does not tell me anything new about the outcome of B.

29

Independence

How is independence useful?

- Suppose you have n coin flips and you want to calculate the joint distribution $P(C_1, ..., C_n)$
- If the coin flips are not independent, you need 2ⁿ values in the table
- If the coin flips are independent, then

$$P(C_1,...,C_n) = \prod_{i=1}^n P(C_i)$$

Each $P(C_i)$ table has 2 entries and there are *n* of them for a total of 2*n* values

Independence Example

- {moon-phase, light-level} II {burglary, alarm, earthquake}
 - Unless maybe burglaries increase in low light?
 - {*light-level*} # {*burglary*}
 - But, if we know the light level, *moon-phase* \bot *burglary*
 - Once we're burglarized, light level doesn't affect whether the alarm goes off; {light-level} 1 {alarm}

• We need:

- 1. A more complex notion of independence
- 2. Methods for reasoning about these kinds of (common) relationships

Exercise: Independence

- Is *smart* independent of *study*?
 - Is P(*smart* | *study*) = P(*smart*) ?

• Is *prepared* independent of *study*?

• Is $P(prep \mid study) = P(prep)$?

P(smart ∧	smart		<i>¬smart</i>	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

33

Exercise: Independence

- Is *smart* independent of *study*?
 - $P(smart \mid study) = P(smart)$
- Is *prepared* independent of *study*?
 - $P(prep \mid study) = P(prep)$

Smart	Study		
t	t	0.432 + 0.48	0.480
t	f	0.16 + 0.16	0.32
f	t	0.084 + 0.008	0.092
f	f	0.036 + 0.72	0.756

P(smart ∧	smart		<i>¬smart</i>	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

Exercise: Independence

- Is $P(smart \mid study) = P(smart)$?
- Is P(*smart* | *study*) = P(*smart*, *study*) / P(*study*) ?
- 0.8 = (.432 + .048) / .6
- 0.8 = 0.8

			Smart	Study				
P(smart∧ study∧prep)	smart		<i>¬smart</i>		5111a1 t	5tuuy +	0 422 ± 0 48	0.480
	study	¬study	study	¬study	t	f	0.432 + 0.48	0.480
prepared	.432	.16	.084	.008	f	t	0.084 + 0.008	0.092
-prepared	.048	.16	.036	.072	f	f	0.036 + 0.72	0.756
					•			

35

Conditional Probabilities

- Describes dependent events
 - Affect each other in some way
- Typical in the real world
- If we know some event has occurred, what does that tell us about the likelihood of another event?

Conditional Independence

- moon-phase and burglary are conditionally independent given light-level
 - That is, $M \perp B$ if we already know L
- Conditional independence is:
 - Weaker than absolute independence
 - Useful in decomposing full joint probability distributions

Conditional Independence

- Absolute independence: $A \perp B$, if:
 - $P(A \land B) = P(A) P(B)$
 - Equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are conditionally independent given C if:
 - $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$
- This lets us decompose the joint distribution:
 - $P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$
- What does this mean?

Exercise: Conditional Independence

- Queries:
 - Is *smart* conditionally independent of *prepared*, given *study*?
 - Is *study* conditionally independent of *prepared*, given *smart*?

P(smart ∧	SM	art	<i>¬smart</i>		
study ∧ prep)	study	¬study	study	¬study	
prepared	.432	.16	.084	.008	
¬prepared	.048	.16	.036	.072	

39

Probability

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- Conditional probabilities of a variable, given another variable(s)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain value(s)

Bayes' Rule

- Derive the probability of some event, given another event
 - Assumption of attribute independence (AKA the Naïve assumption)
 - Naïve Bayes assumes that all *attributes* are independent.
- Also the basis of modern machine learning
- Bayes' rule is derived from the product rule

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}$$

R&N 495

41

Bayes' Rule

- $P(Y \mid X) = P(X \mid Y) P(Y) / P(X)$
- Often useful for diagnosis.
- If we have:
 - X = (observable) effects, e.g., symptoms
 - *Y* = (hidden) causes, e.g., illnesses
 - A model for how causes lead to effects: P(X | Y)
 - Prior beliefs about frequency of occurrence of effects: P(Y)
- We can reason from effects to causes: P(Y | X)

Naïve Bayes Algorithm

- Estimate the probability of each class:
 - Compute the posterior probability (Bayes rule)

$$P(c_i \mid D) = \frac{P(c_i)P(D \mid c_i)}{P(D)}$$

- Choose the class with the highest probability
- Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.

Simple Bayesian Diagnostic Reasoning

- We know:
 - Evidence / manifestations: $E_1, \ldots \, E_m$
 - Hypotheses / disorders: $H_1, \ldots H_n$
 - $E_{j} \mbox{ and } H_{i} \mbox{ are binary; hypotheses are mutually exclusive (non-overlapping) and exhaustive (cover all possible cases)$
 - Conditional probabilities: $P(E_j \mid H_i), \, i=1, \, \ldots \, n; \, j=1, \, \ldots \, m$
- Cases (evidence for a particular instance): $E_1, ..., E_m$
- Goal: Find the hypothesis H_i with the highest posterior
 - $Max_i P(Hi | E_1, \dots, E_m)$

45

Priors

- Four values total here:
 - P(H | E) = (P(E | H) * P(H)) / P(E)
- P(H | E) what we want to compute
- Three we already know, called the priors
 - $P(E \mid H)$
 - P(H)
 - P(E)

(In ML later, we will use the training set to estimate the priors)

Bayesian Diagnostic Reasoning II

- Bayes' rule says that
 - $P(H_i | E_1, ..., E_m) = P(E_1, ..., E_m | H_i) P(H_i) / P(E_1, ..., E_m)$
- Assume each piece of evidence E_i is **conditionally independent** of the others, **given** a hypothesis H_i , then:
 - $P(E_1, ..., E_m | H_i) = \prod_{j=1}^{l} P(E_j | H_i)$
- If we only care about relative probabilities for the H_i , then we have:
 - $P(H_i | E_1, ..., E_m) = \alpha P(H_i) \prod_{j=1}^{l} P(E_j | H_i)$

A Bayesian Network

A Bayesian network is made up of:

I.A Directed Acyclic Graph

2.A set of tables for each node in the graph

А	P(A)	Α	В	P(B A)	В	D	P(D B)	В	С	P(C B)
false	0.6	false	false	0.01	false	false	0.02	false	false	0.4
true	0.4	false	true	0.99	false	true	0.98	false	true	0.6
_		true	false	0.7	true	false	0.05	true	false	0.9
		true	true	0.3	true	true	0.95	true	true	0.1

A Bayesian Network

A Bayesian network is made up of:

I.A Directed Acyclic Graph

2.A set of tables for each node in the graph

А	P(A)	Α	В	P(B A)	В	D	P(D B)	В	С	P(C B)
false	0.6	false	false	0.01	false	false	0.02	false	false	0.4
true	0.4	false	true	0.99	false	true	0.98	false	true	0.6
		true	false	0.7	true	false	0.05	true	false	0.9
		true	true	0.3	true	true	0.95	true	true	0.1

<section-header><list-item><list-item><list-item><list-item><list-item>Example: Toothache • Random variables: • How's the weather? • Do you have a toothache? • Does the dentist's probe catch when she pokes your tooth? • Do you have a cavity? Weather Cavity Toothache Cavity Stiles derived from Mart E. Taylor, U. Alberte

Example BN

 We only specify P(A) etc., not P(¬A), since they have to sum to one

65

Bayesian Belief Networks (BNs) Making a Bayesian Network BN: BN = (DAG, CPD) DAG: directed acyclic graph (BN's structure) Nodes: random variables Typically binary or discrete Methods exist for continuous variables Arcs: indicate probabilistic dependencies between nodes Lack of link signifies conditional independence CPD: conditional probability distribution (BN's parameters) Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions as a product of local conditional distributions.
- To see probability of a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

- Example: P(+cavity, +catch, ¬toothache) = ?
- This lets us reconstruct any entry of the full joint

Summary

- Probability review
 - Distributions, conditional probability, marginalizing
 - Independence
 - Bayes' rule
- Bayes' nets (Bayesian Belief Networks)
 - Graphical notation
 - Conditional probability tables
 - Probability distributions
- Next time
 - Inference using Bayes' nets