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Probabilistic Reasoning

Some material also adapted from www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt; 
Weng-Keen Wong, Oregon State University; 

A B
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Today’s Class

• Probability theory

• Probability notation

• Bayesian inference
• From the joint distribution
• Using independence / factoring
• From sources of evidence
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Probabilistic 
inference: finding 
posterior probability
for a proposition, 
given observed 
evidence.

– R&N 490

Fast
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à

Probabilistic Reasoning

• So far, mostly, we’ve done deterministic problems.

• This is a stepping stone to stochastic problem-solving.

• We’ll use many of the same techniques and core ideas!
• Like minimax à expectiminimax

Images: www.instructables.com/id/How-to-Win-a-Chess-Game-in-2-Moves/
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Probabilistic Reasoning

• We don’t (can’t!) know everything about most problems.

• Most problems are not:
• Deterministic
• Fully observable

• Or, we can’t calculate everything.
• Continuous problem spaces

• Probability lets us understand, 
quantify, and work with this uncertainty.

imagine.art
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Probability
• World: The complete set of possible states

• Random variables: Problem aspects that take a value
• “The number of blue squares we have pulled,” B
• “The combined value of two dice we rolled,” C

• Event: Something that happens

• Sample Space: All the things (outcomes) that could happen in some set of 
circumstances
• Pull 2 squares from envelope A: what is the sample space?
• How about envelope B?

• World, redux: A complete assignment of values to variables

A B

6

Random Variables

• A random variable is the basic element of probability 

• Refers to an event and there is some degree of uncertainty as to the 
outcome of the event

• For example, the random variable A could be the event of getting a head 
on a coin flip, getting a 2 on a die roll, or drawing a blue chip from an 
envelope

Weng-Keen Wong, Oregon State University ©2005
7
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Boolean Random Variables

• We will start with the simplest type of random variables: Booleans

• Take the values true or false

• Think of the event as occurring or not occurring

• Examples (Let A be a Boolean random variable):
• A = Getting a head on a coin flip 

• A = It will rain today

Weng-Keen Wong, Oregon State University ©2005
8

8

CSC 4510.9010 Spring 2015. Paula Matuszek

Basic Probability

• Each P is a non-negative value in [0,1]
• P({1,1}) = 1/36

• Total probability of the sample space is 1
• P({1,1}) + P({1,2}) + P({1,3}) + … + P({6,6}) = 1

• For mutually exclusive events, the probability for at least one of them is 
the sum of their individual probabilities
• P(sunny) ∨ P(cloudy) = P(sunny) + P(cloudy)

• Where do these numbers come from?
• Experimental probability: Based on frequency of past events
• Subjective probability: Based on expert assessment

commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
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The Joint Probability Distribution

• Joint probabilities can be between 
any number of variables
• E.g. P(A = true, B = true, C = true)

• For each combination of variables, 
we need to say how probable that 
combination is

• The probabilities of these 
combinations need to sum to 1

Weng-Keen Wong, Oregon State University ©2005
10

A B C P(A,B,C)
false false false 0.1
false false true 0.2
false true false 0.05
false true true 0.05
true false false 0.3
true false true 0.1
true true false 0.05
true true true 0.15

Sums to 1

10

The Joint Probability Distribution

• Once you have the joint probability 
distribution, you can calculate any 
probability involving A, B, and C 

• Note: May need to use marginalization
and Bayes rule

• Examples:

• P(A=true) = 
sum of P(A,B,C) in rows with A=true

• P(A=true, B = true | C=true) = 
P(A = true, B = true, C = true) / P(C = true)

Weng-Keen Wong, Oregon State University ©2005
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A B C P(A,B,C)
false false false 0.1
false false true 0.2
false true false 0.05
false true true 0.05
true false false 0.3
true false true 0.1
true true false 0.05
true true true 0.15

11
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Why Probabilities Anyway?

3 simple axioms à all rules of probability theory*

1. All probabilities are between 0 and 1.
• 0 ≤ P(a) ≤ 1

2. Valid propositions (tautologies) have probability 1, and unsatisfiable 
propositions have probability 0.

• P(true) = 1
• P(false) = 0

3. The probability of a disjunction is:
• P(a Ú b) = P(a) + P(b) – P(a Ù b)

aÙba b

*Kolmogorov – en.wikipedia.org/wiki/Andrey_Kolmogorov
De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms

12

CSC 4510.9010 Spring 2015. Paula Matuszek

Compound Probabilities

• Describe independent events
• “Independent”: Do not affect each other in any way
• Rolling two dice: die 1 value doesn’t affect die 2 value

• Joint probability of two independent events A and B
P(A ∧ B) = P(A) * P(B)

• Union probability of two independent events A and B
P(A ∨ B) = P(A) + P(B) - P(A ∧ B)

= P(A) + P(B) - (P(A) * P(B))

aÙba b

13
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Probability Theory

• Random variables: 
• Domain: possible values

• Atomic event:
• Complete specification of a 

state

• Prior probability:
• Degree of belief without any 

new evidence

• Joint probability:
• Matrix of combined 

probabilities of a set of 
variables, P(A,B)

You have a home alarm 
system; sometimes there 
are earthquakes; sometimes 
someone tries to burgle 
your home.

How do we represent this?

14

Probability Theory

• Random variables: 
• Domain: possible values

• Atomic event:
• Complete specification of a 

state

• Prior probability:
• Degree of belief without any 

new evidence

• Joint probability:
• Matrix of combined 

probabilities of a set of 
variables, P(A,B)

• Alarm (A), Burglary (B), Earthquake (E)
• D = {true, false}

• A=true Ù B=true Ù E=false:
• alarm Ù burglary Ù ¬earthquake

• P(B) = 0.1

• P(A, B) = 
alarm ¬ alarm

burglary 0.09 0.01
¬ burglary 0.1 0.8

15
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Probability Distributions

• A distribution is the probabilities of all possible values of a random 
variable

• Ex: weather can be sunny, rainy, cloudy, or snowy
• P(Weather = sun) = 0.6
• P(Weather = rain) = 0.1
• P(Weather = cloud) = 0.29
• P(Weather = snow) = 0.01
• P(Weather) = <0.6, 0.1, 0.29, 0.01>   ß shortcut

• P(Weather): probability distribution on Weather

16

Probability Theory: Definitions
• Conditional distribution gives the probabilities of a variable, dependent on the 

values of the other variables
• P(X|Y) = “Probability of X happening, given that Y happens (or didn’t happen)”

• Probability of some effect, given that we know cause(s)
• (Technically, we only know b is correlated, not causal)
• Example: P(alarm | burglary) = “Probability of alarm, given burglary”

• Computing it:

• P(a | b) = 

• P(b): normalizing constant (later we’ll call this alpha α or rho ϱ)

P(a Ù b)
P(b)

17
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Probability Theory: Definitions

• Product rule:
• P(a Ù b) = P(a | b) P(b)

• Marginalizing (summing out):
• Finding distribution over one or a subset of variables

• Marginal probability of B summed over all alarm states:
• P(B) = ΣaP(B, a)

• P(B) = sum of P(B, a) for all possible values of A

• Conditioning over a subset of variables:
• P(B) = ΣaP(B | a) P(a)

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

18

• P (A | B) = 0.9

• P (B | A) = 0.47
• P (B | A) = P (B Ù A) / P (A) =

0.09 / 0.19 = 0.47

• P (B Ù A) = 0.09
• P (B | A) P (A) = 

0.47 × 0.19 = 0.09

• P (A) = 0.19
• P (A Ù B) + P (A Ù ¬B) =

0.09 + 0.1 =  0.19

Let’s Try It

• Cond’l probability
• P(effect, cause[s])
• P(a | b) = P(a Ù b) / P(b)

• P(b): normalizing constant (1/α)

• Product rule:
• P(a Ù b) = P(a | b) P(b)

• Marginalizing:
• P(B) = ΣaP(B, a)
• P(B) = ΣaP(B | a) P(a) (conditioning)

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

?

?

?

?

19
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Marginalizing

• Marginalization: how to safely ignore variables.

• Two-variable example (A and B).

• If we know 𝑃(𝐴=𝑎,𝐵=𝑏) for all values of 𝑎 and 𝑏:

• 𝑃(𝐵=𝑏)=∑𝑎𝑃(𝐴=𝑎,𝐵=𝑏). 

• Here we “marginalized out” the variable 𝐴.

• Takes variable(s) in a out of consideration

20

20

Marginalizing

• Marginal probability: the probability of an event occurring, regardless of
other events (unlike conditional probability)
• To get there we have to marginalize

• Marginalizing (summing out):
• Finding distribution over one or a subset of variables
• Marginal probability of B summed over all alarm states:

• P(B) = ΣaP(B, a)

• Takes variable(s) in a out of consideration

21
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Marginalizing Example
• You are a video games company, and you want to know the probability of a 

user winning, P(W). 1000 people already played. Your game has only two 
characters to choose. 

• You know:
• People who chose 

A: P(A) = 600/1000
• People who chose 

B: P(B) = 400/1000
• People who chose A 

and won, P(W | A): 75/100
• People who chose B 

and won, P(W | B): 69/100

• What is P(W)?

Example: www.quora.com/What-is-marginalization-in-probability

P(W)
P(W | A)P(𝐴) + P(W | 𝐵) P(𝐵)
75/100 × 600/1000 + 69/100 × 400/1000
0.75 × 0.6 + 0.69 × 0.4
0.726

22

Exercise: Inference from the Joint

• Queries:
• What is the prior probability (knowing nothing else) of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Where do 
these come 

from?

23
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Exercise: Inference from the joint

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(smart) = .432 + .16 + .048 + .16  = 0.8

24

Exercise: Inference from the joint

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(study) = .432 + .048 + .084 + .036 = 0.6

25
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Exercise: Inference from the joint

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(prep|smart,study) = P(prep, smart, study)/P(smart, study)
= .432 / (.432 + .048) 

= 0.9

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

26

The Problem with the Joint Distribution

• Lots of entries in the table!

• For k Boolean random 
variables, you need a table 
of size 2k

• How do we use fewer 
numbers?

• Need independence

Weng-Keen Wong, Oregon State University ©2005
28

A B C P(A,B,C)
false false false 0.1
false false true 0.2
false true false 0.05
false true true 0.05
true false false 0.3
true false true 0.1
true true false 0.05
true true true 0.15

28
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Independence

Variables A and B are independent if any of the following hold:

• P(A,B) = P(A) P(B)

• P(A | B) = P(A)

• P(B | A) = P(B)

Weng-Keen Wong, Oregon State University ©2005
29

This says that knowing the outcome 
of A does not tell me anything new 

about the outcome of B.

29

Independence

How is independence useful?

• Suppose you have n coin flips and you want to calculate the joint 
distribution P(C1, …, Cn)

• If the coin flips are not independent, you need 2n values in the table

• If the coin flips are independent, then

Weng-Keen Wong, Oregon State University ©2005
30

Õ
=

=
n

i
in CPCCP

1
1 )(),...,(

Each P(Ci) table has 2 
entries and there are 
n of them for a total 
of 2n values

30
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Independence: ⫫
• Informally, independent means two sets of propositions do 

not affect each others’ probabilities

• Examples: 
• A = alarm M = moon phase
• B = burglary L = light level
• E = earthquake

• Variables A and B are conditionally independent given C if any of the 
following hold:
• P(A, B | C) = P(A | C) P(B | C)
• P(A | B, C) = P(A | C)
• P(B | A, C) = P(B | C)

A ⫫ B ⫫ E = f
M ⫫ L = f
A ⫫M = t

A ⫫ B ⫫ E = ?
M ⫫ L = ?
A ⫫M = ?

31

Independence Example

• {moon-phase, light-level} ⫫ {burglary, alarm, earthquake}
• Unless maybe burglaries increase in low light?

• {light-level} ⫫ {burglary}
• But, if we know the light level, moon-phase ⫫ burglary
• Once we’re burglarized, light level doesn’t affect whether the alarm 

goes off; {light-level} ⫫ {alarm}

• We need:
1. A more complex notion of independence

2. Methods for reasoning about these kinds of (common) relationships

32
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Exercise: Independence

• Is smart independent of study?
• Is P(smart | study) = P(smart) ?

• Is prepared independent of study?
• Is P(prep | study) = P(prep) ?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

33

Exercise: Independence

• Is smart independent of study?
• P(smart | study) = P(smart)

• Is prepared independent of study?
• P(prep | study) = P(prep)

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Smart Study
t t 0.432 + 0.48 0.480
t f 0.16 + 0.16 0.32
f t 0.084 + 0.008 0.092
f f 0.036 + 0.72 0.756

34
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Exercise: Independence

• Is P(smart | study) = P(smart) ?

• Is P(smart | study) = P(smart, study) / P(study) ?

• 0.8 = (.432 + .048) / .6

• 0.8 = 0.8

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Smart Study
t t 0.432 + 0.48 0.480
t f 0.16 + 0.16 0.32
f t 0.084 + 0.008 0.092
f f 0.036 + 0.72 0.756

35
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Conditional Probabilities

• Describes dependent events
• Affect each other in some way

• Typical in the real world

• If we know some event has occurred, what does that tell us about 
the likelihood of another event?

36
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Conditional Independence

• moon-phase and burglary are conditionally independent given 
light-level
• That is, M ⫫ B if we already know L

• Conditional independence is:
• Weaker than absolute independence
• Useful in decomposing full joint probability distributions

37

Conditional Independence

• Absolute independence: A ⫫ B, if:
• P(A Ù B) = P(A) P(B)
• Equivalently, P(A) = P(A | B) and P(B) = P(B | A)

• A and B are conditionally independent given C if:
• P(A Ù B | C) = P(A | C) P(B | C)

• This lets us decompose the joint distribution:
• P(A Ù B Ù C) = P(A | C) P(B | C) P(C)

• What does this mean?

38
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Exercise: Conditional Independence

• Queries: 
• Is smart conditionally independent of prepared, given study?

• Is study conditionally independent of prepared, given smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

39

Probability

• Worlds, random variables, events, sample space

• Joint probabilities of multiple connected variables

• Conditional probabilities of a variable, given another variable(s)

• Marginalizing out unwanted variables

• Inference from the joint probability 

The big idea: figuring out the probability of variable(s) taking certain 
value(s)

40
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Bayes’ Rule

• Derive the probability of some event, given another event
• Assumption of attribute independence

(AKA the Naïve assumption)
• Naïve Bayes assumes that all attributes are independent. 

• Also the basis of modern machine learning

• Bayes’ rule is derived from the product rule

R&N 495

P(X | Y) P(Y)
P(X)

P(Y | X) =

41

Bayes’ Rule

• P(Y | X) = P(X | Y) P(Y) / P(X)

• Often useful for diagnosis. 

• If we have:
• X = (observable) effects, e.g., symptoms

• Y = (hidden) causes, e.g., illnesses
• A model for how causes lead to effects: P(X | Y)
• Prior beliefs about frequency of occurrence of effects: P(Y)

• We can reason from effects to causes: P(Y | X)

42
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CSC 4510.9010 Spring 2015. Paula Matuszek

Naïve Bayes Algorithm

• Estimate the probability of each class:
• Compute the posterior probability (Bayes rule)

• Choose the class with the highest probability

• Assumption of attribute independency (Naïve assumption): Naïve Bayes 
assumes that all of the attributes are independent.  

43

Bayesian Inference

• In the setting of diagnostic/evidential reasoning

• Know: prior probability of hypothesis
conditional probability 

• Want to compute the posterior probability

• Bayes’ theorem:

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )P(Ej |Hi ) / P(Ej )

)( iHP
)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP

44
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Simple Bayesian Diagnostic Reasoning

• We know:
• Evidence / manifestations:  E1, … Em

• Hypotheses / disorders:       H1, … Hn

• Ej and Hi are binary; hypotheses are mutually exclusive (non-overlapping) 
and exhaustive (cover all possible cases)

• Conditional probabilities:  P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, Em

• Goal: Find the hypothesis Hi with the highest posterior
• Maxi P(Hi | E1, …, Em)

45

CSC 4510.9010 Spring 2015. Paula Matuszek

Priors

• Four values total here:
• P(H | E) = (P(E | H) * P(H)) / P(E)

• P(H | E)  — what we want to compute

• Three we already know, called the priors
• P(E | H)
• P(H)
• P(E) (In ML later, we will use 

the training set to 
estimate the priors)

46
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Bayesian Diagnostic Reasoning II

• Bayes’ rule says that
• P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em)

• Assume each piece of evidence Ei is conditionally independent of the 
others, given a hypothesis Hi, then:
• P(E1, …, Em | Hi) = Õl

j=1 P(Ej | Hi)

• If we only care about relative probabilities for the Hi, then we have:
• P(Hi | E1, …, Em) = α P(Hi) Õl

j=1 P(Ej | Hi)

47
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Bayes Exercise: Diagnosing Meningitis

• Your patient comes in with a stiff neck. 

• Is it meningitis?

• Suppose we know that
• Stiff neck is a symptom in 50% of meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff neck (s) occurs in 1/20 patients

• So probably not. But specifically?

)(/)|()()|( jijiji EPHEPHPEHP =

48
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Bayes Exercise: Diagnosing Meningitis
• Stiff neck is a symptom in 50% of 

meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff neck (s) occurs in 1/20 patients

• Then: 
• P(s | m) = 0.5, P(m) = 1/50000, P(s) = 1/20
• P(m | s) = (P(s | m) P(m))/P(s)

= (0.5 x 1/50000) / 1/20  = .0002

• So we expect that one in 5000 patients 
with a stiff neck to have meningitis.

)(/)|()()|( jijiji EPHEPHPEHP =

49

Bayes’ Nets: Big Picture

• Bayes’ nets: a technique for describing complex joint distributions 
(models) using simple, local distributions (conditional probabilities)
• A type of graphical models

• We describe how variables interact locally 
• Local interactions chain together to give global, indirect interactions

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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A Bayesian Network

A Bayesian network is made up of:

A P(A)
false 0.6

true 0.4

A

B

C D

A B P(B|A)
false false 0.01

false true 0.99

true false 0.7
true true 0.3

B C P(C|B)
false false 0.4

false true 0.6

true false 0.9
true true 0.1

B D P(D|B)
false false 0.02

false true 0.98

true false 0.05
true true 0.95

1. A Directed Acyclic Graph

2. A set of tables for each node in the graph

51

A Directed Acyclic Graph

A

B

C D

Each node in the graph is a 
random variable

A node X is a parent of 
another node Y if there is an 
arrow from node X to node Y
eg. A is a parent of B

Informally, an arrow from 
node X to node Y means X
has a direct influence on Y

52



9/24/24

26

A Bayesian Network

A Bayesian network is made up of:

A P(A)
false 0.6

true 0.4

A

B

C D

A B P(B|A)
false false 0.01

false true 0.99

true false 0.7
true true 0.3

B C P(C|B)
false false 0.4

false true 0.6

true false 0.9
true true 0.1

B D P(D|B)
false false 0.02

false true 0.98

true false 0.05
true true 0.95

1. A Directed Acyclic Graph

2. A set of tables for each node in the graph

53

A Set of Tables for Each Node
Each node Xi has a conditional 
probability distribution 
P(Xi | Parents(Xi)) that quantifies 
the effect of the parents on the 
node

The parameters are the 
probabilities in these conditional 
probability tables (CPTs)

A P(A)

false 0.6
true 0.4

A B P(B|A)

false false 0.01
false true 0.99

true false 0.7

true true 0.3

B C P(C|B)
false false 0.4

false true 0.6
true false 0.9

true true 0.1

B D P(D|B)

false false 0.02
false true 0.98

true false 0.05
true true 0.95

A

B

C D

54
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A Set of Tables for Each Node

55

Conditional Probability 
Distribution for C given B

If you have a Boolean variable with k Boolean parents, this table 
has 2k+1 probabilities (but only 2k need to be stored)

B C P(C|B)
false false 0.4

false true 0.6
true false 0.9

true true 0.1

For a given combination of values of the parents 
(B in this example), the entries for P(C=true | B) 
and P(C=false | B) must add up to 1

eg. P(C=true | B=false) + P(C=false |B=false )=1

55

Example: Car Won’t Start

56

Slides derived from Matt E. Taylor, U Alberta
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Example: Insurance

57

Slides derived from Matt E. Taylor, U Alberta

57

Example: Toothache

• Random variables:
• How’s the weather?
• Do you have a toothache?

• Does the dentist’s probe catch when she pokes your tooth?
• Do you have a cavity?

58

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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Graphical Model Notation 

• Nodes: variables (with domains) 

• Can be assigned (observed) or unassigned (hidden) 

• Arcs: interactions 
• Indicate “direct influence” between variables
• Formally: encode conditional independence

• Toothache and Catch are conditionally independent, given Cavity

• For now: imagine that 
arrows mean causation
• (in general, they don’t!) 

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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Bayesian Belief Networks (BNs)

• Let’s formalize the semantics of a BN 
• A set of nodes, one per variable X

• A directed arc between each co-influential node
• X àY means X has an influence on Y

• A directed, acyclic graph 

π1 πn

π1 … πn

Slides derived from Matt E. Taylor, U Alberta
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Bayesian Belief Networks (BNs)

• Each node X has a conditional probability distribution:

• A collection of distributions over X
• One for each combination of parents’ values

• Quantifies the effects of the parents on a node

• CPT: conditional probability table
• Description of a noisy “causal” process

P(Xi | Parents(Xi))

Slides derived from Matt E. Taylor, U Alberta

π1 πn

π1 … πn
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Conditional Probability Tables

• For Xi, CPD P(Xi | Parents(Xi)) quantifies effect of parents on Xi

• Parameters are probabilities in conditional probability tables (CPTs):

A P(A)

false 0.6

true 0.4

A B P(B|A)
false false 0.01

false true 0.99

true false 0.7
true true 0.3

B C P(C|B)

false false 0.4
false true 0.6

true false 0.9

true true 0.1

B D P(D|B)

false false 0.02

false true 0.98
true false 0.05

true true 0.95

A

B

C D

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt
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For a given combination of 
values of the parents (B in 
this example), the entries for 
P(C=true | B) and 
P(C=false | B) must sum to 1

Example:
P(C=true | B=false) + 
P(C=false |B=false ) = 1

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt

CPTs cont’d

• Conditional Probability Distribution for C given B

• If you have a Boolean variable with k Boolean parents, this table has 
2k+1 probabilities

B C P(C|B)

false false 0.4
false true 0.6

true false 0.9

true true 0.1

A

B

C D
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Bayesian Belief Networks (BNs)
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Example BN

• We only specify P(A) etc., not P(¬A), since they have to sum to 
one

P(C|A) = 0.2    
P(C|¬A) = 0.005

P(B|A) = 0.3     
P(B|¬A) = 0.001
P(¬B|A) = 0.7  
P(¬B|¬A) = 0.999

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4  
P(E|¬C) = 0.002

A

B C

D E
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Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

• DAG: directed acyclic graph (BN’s structure)
• Nodes: random variables 

• Typically binary or discrete

• Methods exist for continuous variables
• Arcs: indicate probabilistic dependencies between nodes

• Lack of link signifies conditional independence

• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table (conditional 

probability table, or CPT)
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Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

• DAG: directed acyclic graph (BN’s structure)

• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table (conditional 

probability table, or CPT)

• Root nodes are a special case
• No parents, so use priors in CPD:

P(xi |π i )  where π i  is the set of all parent nodes of xi

π i =∅,  so P(xi |π i ) = P(xi )

67

Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions as a product of local 
conditional distributions. 

• To see probability of a full assignment, multiply all the relevant 
conditionals together: 

• Example: P(+cavity, +catch, ¬toothache) = ?

• This lets us reconstruct any entry of the full joint 

P(x1, x2,...xn ) = P(xi | parents(Xi )
i=1
∏ )

n

Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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P(a, m, i, e, s) = P(a | m) * P(m | i, e) * P(i) * P(e) * P(s | i)

P(¬a, ¬m, i, ¬e, s) =  P(¬a | ¬m) * P(¬m | i, ¬e) * P(i) * P(¬e) * P(s | i) = 0.6 * 0.5 * 0.2 * 0.7 * 0.6 = 0252

P(a, m, ¬i, e, ¬s) = P(a | m) * P(m | ¬i, e) * P(¬i) * P(e) * P(¬s | ¬i) = 0.1 * 0.1 * 0.8 * 0.3 * 0.75 = 0.0018

www.upgrad.com/blog/bayesian-network-example/
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www.upgrad.com/blog/bayesian-network-example/
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Summary

• Probability review
• Distributions, conditional probability, marginalizing
• Independence
• Bayes’ rule

• Bayes’ nets (Bayesian Belief Networks)
• Graphical notation
• Conditional probability tables
• Probability distributions

• Next time
• Inference using Bayes’ nets
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