9/19/24

Game Playing

(aka Adversarial Search)

Ch.5.1-5.3, 5.4.1, 5.5

Bookkeeping

« HW 2 out; please look it over (shorter than HW1)
* We won’t do further CSPs in class but make sure to do the reading

« Today: Game playing/search in multi-player games
* Framework
* Minimax
* Alpha-beta pruning

Expectiminimax (games with chance elements)

9/19/24

Why Study Games?

e Clear criteria for success

« Offer an opportunity to study problems involving {hostile /
adversarial / competing} agents.

* Interesting, hard problems which require minimal setup

* Often define very large search spaces

» Chess has 359 nodes in search tree, 10%° legal states

* Many problems can be formalized as games

State-of-the-art

* Checkers: “Chinook”, an Al program with a very large endgame

database, is world champion and can provably never be beaten.

Retired 1995.

* Chess:
* Deep Blue beat Gary Kasparov in 1997
* Garry Kasparav vs. Deep Junior (Feb 2003): tie!
e Kasparov vs. X3D Fritz (November 2003): tie!
* Deep Fritz beat world champion Vladimir Kramnik (2006)

* Now computers play computers

9/19/24

C h i n OO k The board set for play
-] = o

* World Man-Machine Checkers Champion, developed by
researchers at the University of Alberta.

* Earned this title by competing in human tournaments,
winning the right to play for the world championship,
eventually defeating the best players in the world.

* Play it! http://www.cs.ualberta.ca/~chinook

* Developers have fully analyzed the game of checkers,
and can provably never be beaten
* http://www.sciencemag.org/cgi/content/abstract/1144079v1

game6: may 11 @ 3:00pm EDT | 19:00 GMT
|~ Home » The technology

the rematch:

Deep Blue Wird &5

i B Y) ? W (T~ overvew
\
With'a'dramatic victory in Game 6, ® \%)
Deep Blue won its six-game rematch = SSIEIETES
with Champion Garry Kasparov © b maIN sTORIES)

Commentary ,} Commentary
George Pl o chess, Kasparow, and the & P ggng Vishwanathan Anand on the legacy of
Limitations of computers = % W Kuspurow s, Deep Bhue
¥ Read the atticle 5 et ¥ Read the article
Guest essays

Thoughts on chess, computers, and what it all
means
P Read the essays...

Club Kasparov
Visit the virsl home of the world's gredtest
chuess player.

\

- Community Clips from the rematch
During the remstch, more thin 20,000 people N Video faotage from the gomes
froam 120 countries joined the commnmity to ¥ Highlights from the gunes
talk shout the match. -

F ¥ Press room ﬂ ¥ Chess reference ﬂ ¥ Feedback ﬂ ¥ site guide |

E| |Document: Done

9/19/24

State-of-the-art: Go

* Computers finally got there: AlphaGo!
* Made by Google DeepMind in London

» 2015: Beat a professional Go player without handicaps
* 2016: Beat a 9-dan professional without handicaps
» 2017: Beat Ke Jie, #1 human player

 2017: DeepMind published AlphaGo Zero
No human games data
Learns from playing itself
* Better than AlphaGo in 3 days of playing

9/19/24

AlphaGo Master defeated Ke Jie by three to zero during its 60 straight wins in the
online games at the end of 2016

IR

. HE KE JIE
('00:50:24
‘ ALPHAGO

®02:11:49

/

State-of-the-art: Bridge

* Bridge: “Expert-level” Al, but no world
champions... exactly

* Bridge is stochastic: the computer has imperfect
information.

e 2006: “computer bridge world champion Jack
played seven top Dutch pairs ... and two reigning
European champions. A total of 196 boards were
played. ... Overall, the program lost by a small
margin (359 versus 385).”

* 2022: NukkAl’s bridge-playing computer NooK
defeats eight world bridge champions in Paris
(playing, but not bidding)

pxhere.com/en/photo/ 815217
wikipedia: Computer_bridge

10

9/19/24

Game Playing

* Many different kinds of games!

e Choices:
e Deterministic or stochastic?
* One, two, or more players?

» Perfect information (can you see the state)?

» We want algorithms for calculating a
strategy (policy) that recommends a
move in each state

SCORE: 0

12
Typical Games
* 2-person game
* Players alternate moves
* Easiest games are:
e Zero-sum: one player’s loss is the other’s gain
* Fully observable: both players have access to complete information about the
state of the game.
¢ Deterministic: No chance (e.g., dice) involved
* Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
* Not: Bridge, Solitaire, Backgammon, ...
13

9/19/24

Adversarial Search

14
The Core Idea
» Searching for moves to make
* Interleaved with changes to the
world state (from opponents’ move)
* | make this move:
* Then, one of the following happens
* We don’t control which, so we need \
to consider those possibilities when
figuring out the next move after that
15

9/19/24

The Core ldea

* We we need to consider forward- X
looking possibilities when planning

the next move N

* If I make this move, they might move a
here, here, or here; then | could ...

e Ordowe? xlolx| [xlo X

O

* We can’t hold the entire search space

in memory \

e Sowhattodo?

oxo|l—:

b 1O ¢
oo —:
O [bx

xlolx xlolx
0[x
0 xlolo
16
How to Play (How to Search)
* Naive approach:
* From current game state:
= 1. Consider all the legal moves you can make
2. Compute new position resulting from each move
3. Evaluate each resulting position
4. Decide which is best
5. Make that move
6. Wait for your opponent to move
— 7. Repeat
* Evaluating states rather than looking ahead
X1 Xy X3 X4
17

9/19/24

How to Play (How to Search)

* Key problems:
* Representing the “board” (game state)
* We've seen that there are different ways to make these choices
* Generating all legal next boards

* That can get ugly

* Evaluating a position

X0 X X0
b.4

<

X1 Xy X3 X4

18

Evaluation Function

« Evaluation function or static evaluator is used to evaluate the
“goodness” of a game position (state)

» Zero-sum assumption allows one evaluation function to describe
goodness of a board for both players
* One player’s gain of n means the other loses n

e How?

19

9/19/24

Evaluation Function: The Idea

* lam always trying to reach the highest value “I" = player |, aka Max

« You are always trying to reach the lowest value you” = player 2, aka Min

* Captures everyone’s goal in a single function

« Sample evaluation function:

« f(n) > 0: position n good for me and bad for you

« f(n) < 0: position n bad for me and good for you X0 X < X ?{

« f(n) = 0te : position n is a neutral position

* f(n) = +eo: win for me X wants high values (max)
« f(n) = -eo: win for you O wants low values (min)

20

Evaluation Function Examples

* Example of an evaluation function for Tic-Tac-Toe:
« f(n) = [#3-lengths open for X] - [#3-lengths open for O]

e A 3-length is a complete row, column, or diagonal

* Alan Turing’s function for chess
* f(n) =w(n)/b(n)
* w(n) =sum of the point value of white’s pieces

* b(n) = sum of black’s

» Coreidea: one player is trying to maximize and opponent is trying to
minimize some evaluation function

21

10

9/19/24

One- vs. Two-Player Games

s’ €successors(s)

e (e -
/\ /\

s€successors(s’)

m-! --
T~

ALA KA A

States Under Agent’s Control: States Under Opponent’s Control:
Vis)= max V(5) V()= min

V(s)

22
Example Game Search Space
MAX (X)
X X X
MIN (O) X X X
X X X
we'll ~—
X|0 X o X
come MAX® 0
back
to this 0 o8 22 XS
O‘ X| [X C‘) X| |[X C‘) X ’
TERMINAL O[X| [0]|0]X X
o X|X[O0| [X|O|O
Utility -1 0 +1
23

11

9/19/24

Evaluation function examples

* Most evaluation functions are specified as a weighted sum of
position features:

* f(n)=w;* feat;(n) + w, * feat,(n) + ... + w, * feat,(n)

« Example features for chess: piece count, piece placement,
squares controlled, ...

* Deep Blue had over 8000 features in its nonlinear evaluation
function!

square control, rook-in-file, x-rays, king safety, pawn
structure, passed pawns, ray control, outposts,
pawn majority, rook on the 7t" blockade, restraint,
trapped pieces, color complex, ...

24
Game trees
- Problem spaces for | am maximizing f(n) on my turn
typical games are <__/
represented as trees MAXE9
. P_Iayer must decide best iy X X [. _
single move to make X X
neXt X|0 X X .
MG . Opponent is
* Root node = current - minimizing f(n)
X[O|X X0 X0 H
board configuration MIN(O) X X == on their turn
* Arcs = possible legal
moves for a player c|)x Xlx Xlx .|..
TERMINAL O|X 00X X
o] X1 X0 X[0l0
Wility 1 0 +1
25

12

9/19/24

Game trees

» Static evaluator function ax 09
* Rates a board position
« f(board) =R, with >0 for e

me, /<0 for you

e Ifitis my turn to move:
 Root is labeled “mAX” node

MIN(O)

« Otherwise itis a “MIN” node - L L1
(opponent’s turn) Haf

Wkility 1 0 +1

 Each level’s nodes are all MAX or all MIN

* Nodes at level i are opposite those at level j +1

26
Minimax: The Intuition
* But do we have to consider any move an opponent might make?
* Consider the best move to make, based on what your opponent will
actually do if you make that move
* First apply a max function, then a min function, then a max function...
* “Look ahead”: consider the resulting board state after you make your
move, and after the opponent makes their next sensible move
* Can consider arbitrarily far forward
27

13

9/19/24

Minimax Procedure

e Create start node: MAX node, current board state
* Expand nodes down to a depth of lookahead
* Apply evaluation function at each leaf node

* “Back up” values for each non-leaf node until a value is computed for
the root node
* MIN: backed-up value is lowest of children’s values

* MAX: backed-up value is highest of children’s values

* Pick operator associated with the child node whose backed-up value set
the value at the root

28
Minimax Algorithm
2
f2% 07 18 2 71 8 2 71 8
Static evaluator
value
Can only choose @ Max
“best” move up to ‘
lookahead MIN
29

14

9/19/24

Example Minimax Tree

SLLIN MAX node

<
Iy \J
] a
* g
/ e \
< ‘...0‘
values computed = MIN node
o . . -
/ 7 by minimax .

\ / g

e YN Y U)
90000000

30
Animatic the Mi Igoritl lookahead = 3
31

15

9/19/24

Partial Game Tree for Tic-Tac-Toe
MAX (9
T
MIN(O) . . X X X X
X X X
’-\
X|O X o] X
MAXe ° * f(n)=+1if position
\ is a win for X.
X|0X X0 X0
e * - « f(n) = -1 if position
\ is a win for O.
| | | | * f(n) =0 if position
TERMINAL 8 >)§ c))(g § X 2 3 iS a draw.
Q X X0 X100
Ukility 1 0 +1

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks, etc.) on the
table — we’ll play 7-coin Nim

* Each player in turn has to pick up either one or two objects

* Whoever picks up the last object loses

16

9/19/24

Nim Game Tree

* In-class exercise:
 Draw minimax search tree for 4-coin Nim

* Things to consider:

What's your start state?

What’s the maximum depth of the tree? Minimum?
* Pick up either one or two objects

* Whoever picks up the last object loses

35
Nim Game Tree
Player 1 wins: +1 PN
Player 2 wins: -1 &‘:/ @
37

17

9/19/24

Nim Game Tree

Player 1 wins: +1
Player 2 wins: -1

38

Nim Game Tree

Player 1 wins: +1
Player 2 wins: -1

39

18

9/19/24

Improving Minimax

* Basic problem: must examine a number of states that is
exponential in d!

» Solution: judicious pruning
of the search tree

e “Cut off” whole sections that
can’t be part of the best solution
* Or, sometimes, probably won’t

* Can be a completeness vs. efficiency tradeoff,
esp. in stochastic problem spaces

40
Alpha-Beta Pruning
We can improve on the performance of the minimax algorithm through
alpha-beta pruning
* Basicidea: “If you have an idea that is surely bad, don't take the time to see how
truly awful it is.” — Pat Winston
e We don’t need to compute
MAX the value at this node.
e No matter what itis, it can’t
MIN affect the value of the root
node.
MAX * Because the MAX player
will choose this value.
41

19

9/19/24

Alpha-Beta Pruning

Traverse search tree in depth-first order
At each MAX node n, a(n) = maximum value found so far

At each MIN node n, B(n) = minimum value found so far
e astarts at -eo and increases, B starts at +oo and decreases

B-cutoff: Given a MAX node n,

* Cut off search below n (i.e., don’t look at any more of n’s children) if:
« a(n) 2 B(i) for some MIN node ancestor i of n

a-cutoff:

» Stop searching below MIN node n if:
* B(n) £ af(i) for some MAX node ancestor i of n

Alpha-Beta Example (b=3)
MA
/{/ 2 - prune \k - prune
/\ /\ /\
2 14 1

20

9/19/24

Alpha-Beta Pruning: Exercise

44

Alpha-beta pruning

MAX

MIN

/\ MAX

45

21

9/19/24

Alpha-beta pruning

Alpha-beta pruning

22

9/19/24

Alpha-beta pruning

48

Alpha-beta pruning

49

23

9/19/24

Alpha-beta pruning

50

Alpha-beta pruning

51

24

9/19/24

Alpha-beta pruning

52

Alpha-beta pruning

53

25

9/19/24

Alpha-beta pruning

54

Alpha-beta pruning

55

26

9/19/24

Alpha-beta pruning

MAX

56

Alpha-beta pruning

MAX

57

27

9/19/24

Effectiveness of Alpha-Beta

* Alpha-beta is guaranteed to:
* Compute the same value for the root node as minimax
* With £ computation

* Worst case: nothing pruned
+ Examine b? leaf nodes
* Each node has b children and a d-ply search is performed

+ Best case: examine only (2b)92 |eaf nodes.
* So you can search twice as deep as minimax!
* When each player’s best move is the first alternative generated

* In Deep Blue, empirically, alpha-beta pruning took average branching factor
from ~35 to ~6

59
Games of Chance
« Backgammon: 2-player with NoNe e oo Nk
uncertainty z‘ !..! ! '_:_l!!'l
- - (RTRTATR
* Players roll dice to determine
what moves to make
* White has just rolled 5 and 6
and has four legal moves:
« 5-10,5-11
In backgammon, the dice roll determines
© 5-11,19-24 the possible moves you can make
« 5-10, 10-16
« 5-11,11-16
* Good for decision making in adversarial problems with skill and luck
60

28

9/19/24

Game Trees with Chance

» Chance nodes (circles) represent random events

e For arandom event with N outcomes:
* Chance node has N distinct children MAX

* Each has a probability

DICE
* These represent the possible states

the game may be in based on the MIN
outcome of the random event
DICE

* Example:

* Rolling 2 dice = 21 distinct outcomes M*

* Not all equally likely!

TERMINAL 21 1 1 1

61
Game Trees with Chance
* For chance nodes we compute the expected value — the sum of the
value over all possible outcomes, weighted by the likelihood of that
outcome
* Use minimax to compute values for MAX and MIN nodes
* Use expected values for chance nodes
* Expectiminimax(s) =
* max, Expectiminimax(Result(s,a)) if player(s)=max
* min, Expectiminimax(Result(s,a)) if player(s)=min
« Y, P(r) Expectiminimax(Result(s,r)) if player = chance
62

29

Expectiminimax Example

* RANDOM: Flip a coin.

» MAX: Max either stops, or continues.

Stop on heads: game ends, Max wins
(value = 82).

Stop on tails: game ends, Max loses
(value = -S2).

« RANDOM: Flip a coin.
¢ HH = Min gets S2.
TT = Min gets -S2.
¢ HTor TH = Min gets S0.

* MIN: Min decides whether to keep the

outcome (value as above), or pay a
penalty of -S1. Game ends.

64
Game Trees with Chance
B 0
DICE O O Q- 0O O
1!135 1?18 65 6,6
MIN v
DICE © () ()
1!36 1118 65 66
MAX A 2\
TERMINAL 2 1 1 1
65

9/19/24

30

9/19/24

Meaning of the Evaluation Function

MAZ Al = best Unfair coin:

move g, 2 outcomes,
P=1{.9 .1}

9*2+1*%3=21
9*1+.1*%4=13

DICE

MIN

66

Meaning of the Evaluation Function

different end values,
different outcomes

Unfair coin:

MAX Al = best A2 = best

e
move A: move

2 outcomes, A,
P=1{9 .1}

9*2+1*%3=21
9*1+.1*%4=13

DICE

|2 2 3 3 1 1 4 4| IZD 20 30 30 1 1400 4EIJI

¢ Dealing with probabilities and expected values means being careful with
“meaning” of values returned by the static evaluator

e “Relative-order preserving” (as here) change won’t change minimax, but
could change the decision with chance nodes

67

31

9/19/24

Exercise: Oopsy-Nim

» Starts out like Nim
* Each player in turn has to pick up either one or two objects

* Sometimes (probability = 0.25), when you try to pick up two objects, you drop
them both

* Picking up a single object always works

* Question: Why can’t we draw the entire game tree?

* Exercise: Draw the 4-ply game tree (2 moves per player)

68

Exercise: Oopsy-Nim

69

32

