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Game Playing
(aka Adversarial Search)

Ch. 5.1-5.3, 5.4.1, 5.5

Based on slides by Marie desJardin, Francisco Iacobelli, Dieter Fox
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Bookkeeping

• HW 2 out; please look it over (shorter than HW1)

• We won’t do further CSPs in class but make sure to do the reading

• Today: Game playing/search in multi-player games
• Framework
• Minimax
• Alpha-beta pruning

• Expectiminimax (games with chance elements)
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Why Study Games?

• Clear criteria for success

• Offer an opportunity to study problems involving {hostile / 
adversarial / competing} agents.

• Interesting, hard problems which require minimal setup

• Often define very large search spaces
• Chess has 35100 nodes in search tree, 1040 legal states

• Many problems can be formalized as games

3
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State-of-the-art

• Checkers: “Chinook”, an AI program with a very large endgame 
database, is world champion and can provably never be beaten. 
Retired 1995.

• Chess: 
• Deep Blue beat Gary Kasparov in 1997
• Garry Kasparav vs. Deep Junior (Feb 2003): tie!  

• Kasparov vs. X3D Fritz (November 2003): tie! 
• Deep Fritz beat world champion Vladimir Kramnik (2006)
• Now computers play computers

4
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Chinook

• World Man-Machine Checkers Champion, developed by 
researchers at the University of Alberta.

• Earned this title by competing in human tournaments, 
winning the right to play for the world championship, 
eventually defeating the best players in the world. 

• Play it! http://www.cs.ualberta.ca/~chinook

• Developers have fully analyzed the game of checkers, 
and can provably never be beaten 
• http://www.sciencemag.org/cgi/content/abstract/1144079v1

5
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State-of-the-art: Go

• Computers finally got there: AlphaGo!
• Made by Google DeepMind in London

• 2015: Beat a professional Go player without handicaps

• 2016: Beat a 9-dan professional without handicaps

• 2017: Beat Ke Jie, #1 human player

• 2017: DeepMind published AlphaGo Zero
• No human games data
• Learns from playing itself
• Better than AlphaGo in 3 days of playing

8

8



9/19/24

5

www.wired.com/2017/05/googles-alphago-levels-board-games-power-grids

AlphaGo Master defeated Ke Jie by three to zero during its 60 straight wins in the 
online games at the end of 2016 and beginning of 2017. 
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State-of-the-art: Bridge

• Bridge: “Expert-level” AI, but no world 
champions… exactly
• Bridge is stochastic: the computer has imperfect 

information.
• 2006: “computer bridge world champion Jack 

played seven top Dutch pairs … and two reigning 
European champions. A total of 196 boards were 
played. … Overall, the program lost by a small 
margin (359 versus 385).” 

• 2022: NukkAI’s bridge-playing computer NooK
defeats eight world bridge champions in Paris 
(playing, but not bidding)
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pxhere.com/en/photo/815217
wikipedia: Computer_bridge
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Game Playing

• Many different kinds of games! 

• Choices:
• Deterministic or stochastic?
• One, two, or more players?

• Perfect information (can you see the state)? 

• We want algorithms for calculating a 
strategy (policy) that recommends a 
move in each state 
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Game Playing State-of-the-Art 
!  Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used an endgame database defining perfect play 
for all positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved! 

!  Chess: Deep Blue defeated human world champion Gary Kasparov in a 
six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current programs are even 
better, if less historic. 

! Othello: Human champions refuse to compete against computers, which 
are too good. 

! Go: Human champions are beginning to be challenged by machines, 
though the best humans still beat the best machines. In go, b > 300, so 
most programs use pattern knowledge bases to suggest plausible moves, 
along with aggressive pruning. 

!  Pacman: unknown 

Adversarial Search Game Playing 

!  Many different kinds of games! 

!  Choices: 
!  Deterministic or stochastic? 
!  One, two, or more players? 
!  Perfect information (can you see the state)? 

!  Want algorithms for calculating a strategy (policy) 
which recommends a move in each state 

Deterministic Games 

!  Many possible formalizations, one is: 
! States: S (start at s0) 
! Players: P={1...N} (usually take turns) 
! Actions: A (may depend on player / state) 
! Transition Function: S x A → S 
!  Terminal Test: S → {t,f} 
!  Terminal Utilities: S x P → R 

!  Solution for a player is a policy: S → A 

Zero-Sum Games 

!  Zero-Sum Games 
!  Agents have opposite utilities 

(values on outcomes) 
!  Lets us think of a single value 

that one maximizes and the 
other minimizes 

!  Adversarial, pure competition 

!  General Games 
!  Agents have independent utilities 

(values on outcomes) 
!  Cooperation, indifference, 

competition, & more are possible 

12

Typical Games

• 2-person game

• Players alternate moves 

• Easiest games are:
• Zero-sum: one player’s loss is the other’s gain
• Fully observable: both players have access to complete information about the 

state of the game.  
• Deterministic: No chance (e.g., dice) involved 

• Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello

• Not: Bridge, Solitaire, Backgammon, ...

13
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Zero-Sum Games 

!  Zero-Sum Games 
!  Agents have opposite utilities 

(values on outcomes) 
!  Lets us think of a single value 

that one maximizes and the 
other minimizes 

!  Adversarial, pure competition 

!  General Games 
!  Agents have independent utilities 

(values on outcomes) 
!  Cooperation, indifference, 

competition, & more are possible 
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The Core Idea 

…

• Searching for moves to make 

• Interleaved with changes to the 
world state (from opponents’ move)

• I make this move:

• Then, one of the following happens

• We don’t control which, so we need 
to consider those possibilities when 
figuring out the next move after that

15
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The Core Idea 

• We we need to consider forward-
looking possibilities when planning 
the next move
• If I make this move, they might move 

here, here, or here; then I could …

• Or do we?
• We can’t hold the entire search space 

in memory

• So what to do?

…

…

16

How to Play (How to Search)

• Naïve approach:
• From current game state:
1. Consider all the legal moves you can make

2. Compute new position resulting from each move
3. Evaluate each resulting position 

4. Decide which is best
5. Make that move

6. Wait for your opponent to move 
7. Repeat

• Evaluating states rather than looking ahead

17

x1 x2 x3 x4
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How to Play (How to Search)

• Key problems:
• Representing the “board” (game state)

• We’ve seen that there are different ways to make these choices

• Generating all legal next boards
• That can get ugly

• Evaluating a position

18

x1 x2 x3 x4

<

18

Evaluation Function

• Evaluation function or static evaluator is used to evaluate the 
“goodness” of a game position (state)

• Zero-sum assumption allows one evaluation function to describe 
goodness of a board for both players
• One player’s gain of n means the other loses n
• How?

19

Photograph: Thanakorn Suppamethasawat/EyeEm/Getty Images
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Evaluation Function: The Idea

• I am always trying to reach the highest value

• You are always trying to reach the lowest value

• Captures everyone’s goal in a single function

• Sample evaluation function:
• f(n) > 0: position n good for me and bad for you

• f(n) < 0: position n bad for me and good for you
• f(n) = 0±ε : position n is a neutral position

• f(n) = +∞: win for me
• f(n) = -∞: win for you

<
X wants high values (max)
O wants low values (min)

“I” = player 1, aka Max
“you” = player 2, aka Min

20

Evaluation Function Examples

• Example of an evaluation function for Tic-Tac-Toe:
• f(n) = [#3-lengths open for ×] - [#3-lengths open for O] 

• A 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
• f(n) = w(n)/b(n)

• w(n) = sum of the point value of white’s pieces 
• b(n) = sum of black’s

• Core idea: one player is trying to maximize and opponent is trying to 
minimize some evaluation function

21
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One- vs. Two-Player Games

4/15/15%
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Single-Agent Trees 
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Adversarial Game Trees 

.20% .8% .18% .5% .10% +4%…% …% .20% +8%

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Minimax Values 

+8%.10%.5%.8%

States%Under%Agent’s%Control:%

Terminal%States:%

States%Under%Opponent’s%Control:%

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu 

Tic-tac-toe Game Tree Adversarial Search (Minimax) 
!  Deterministic, zero-sum games: 

!  Tic-tac-toe, chess, checkers 
!  One player maximizes result 
!  The other minimizes result 

!  Minimax search: 
!  A state-space search tree 
!  Players alternate turns 
!  Compute each node’s minimax 

value: the best achievable 
utility against a rational 
(optimal) adversary 
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max$
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computed$recursively$
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Example Game Search Space
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Evaluation function examples

• Most evaluation functions are specified as a weighted sum of 
position features:
• f (n) = w1 * feat1(n) + w2 * feat2(n) + ... + wn * featk(n) 

• Example features for chess: piece count, piece placement, 
squares controlled, …

• Deep Blue had over 8000 features in its nonlinear evaluation 
function!

24

square control, rook-in-file, x-rays, king safety, pawn 
structure, passed pawns, ray control, outposts, 
pawn majority, rook on the 7th blockade, restraint, 
trapped pieces, color complex, ...

24

Game trees

• Problem spaces for 
typical games are 
represented as trees

• Player must decide best 
single move to  make 
next

• Root node = current 
board configuration

• Arcs = possible legal 
moves for a player

25

I am maximizing f(n) on my turn

Opponent is
minimizing f(n) 
on their turn

DUP SLIDE - REMOVE

25
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Game trees

• Static evaluator function
• Rates a board position
• f (board) = R, with f >0 for 

me, f <0 for you

• If it is my turn to move:
• Root is labeled “MAX” node

• Otherwise it is a “MIN” node
(opponent’s turn)

• Each level’s nodes are all MAX or all MIN

• Nodes at level i are opposite those at level i +1 

26

DUP SLIDE - REMOVE

26

Minimax: The Intuition

• But do we have to consider any move an opponent might make?

• Consider the best move to make, based on what your opponent will 
actually do if you make that move
• First apply a max function, then a min function, then a max function…

• “Look ahead”: consider the resulting board state after you make your 
move, and after the opponent makes their next sensible move

• Can consider arbitrarily far forward

27
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Minimax Procedure

• Create start node: MAX node, current board state

• Expand nodes down to a depth of lookahead

• Apply evaluation function at each leaf node 

• “Back up” values for each non-leaf node until a value is computed for 
the root node
• MIN: backed-up value is lowest of children’s values 
• MAX: backed-up value is highest of children’s values 

• Pick operator associated with the child node whose backed-up value set 
the value at the root

28

28

Minimax Algorithm

2 7 1 8

MAX

MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

Static evaluator 
value

2 7 1 8

2 1

2

Can only choose 
“best” move up to 
lookahead

29
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Example Minimax Tree
MAX node

MIN node

f values

values computed 
by minimax

philippmuens.com/minimax-and-mcts

30

https://www.youtube.com/watch?v=6ELUvkSkCts

lookahead = 3
max
min

31
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Partial Game Tree for Tic-Tac-Toe

• f (n) = +1 if position 
is a win for X.

• f (n) = -1 if position 
is a win for O.

• f (n) = 0 if position 
is a draw.

32

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks, etc.) on the 
table – we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects

• Whoever picks up the last object loses

34
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Nim Game Tree

• In-class exercise: 

• Draw minimax search tree for 4-coin Nim

• Things to consider:
• What’s your start state?
• What’s the maximum depth of the tree? Minimum?

• Pick up either one or two objects

• Whoever picks up the last object loses

35

35

Nim Game Tree

37

2

Player 1 wins: +1
Player 2 wins: -1

4

3

2 1 1 0

0

01 0 0

37
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Nim Game Tree

38

2

Player 1 wins: +1
Player 2 wins: -1

4

3

2 1 1 0

0

01 0 0

1

1

-1-1 -1

38

Nim Game Tree

39

2

Player 1 wins: +1
Player 2 wins: -1

4

3

2 1 1 0

0

01 0 0

1

1

-1-1 -11

1 -1 -1

-1 -1

-1

39
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Improving Minimax

• Basic problem: must examine a number of states that is 
exponential in d!

• Solution: judicious pruning
of the search tree

• “Cut off” whole sections that 
can’t be part of the best solution
• Or, sometimes, probably won’t
• Can be a completeness vs. efficiency tradeoff,

esp. in stochastic problem spaces

40

Alpha-Beta Pruning

• We can improve on the performance of the minimax algorithm through 
alpha-beta pruning
• Basic idea: “If you have an idea that is surely bad, don't take the time to see how 

truly awful it is.” – Pat Winston 

41

2 7 1

= 2

≤ 2 

≤ 1

?

• We don’t need to compute 
the value at this node.

• No matter what it is, it can’t 
affect the value of the root 
node.

• Because the MAX player
will choose this value.

MAX

MAX

MIN

41
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Alpha-Beta Pruning
• Traverse search tree in depth-first order 

• At each MAX node n, α(n) =  maximum value found so far

• At each MIN node n, β(n) =  minimum value found so far
• α starts at -∞ and increases, β starts at +∞ and decreases

• β-cutoff: Given a MAX node n,
• Cut off search below n (i.e., don’t look at any more of n’s children) if:
• α(n) ≥ β(i) for some MIN node ancestor i of n

• α-cutoff: 
• Stop searching below MIN node n if:
• β(n) ≤ α(i) for some MAX node ancestor i of n

42

42

Alpha-Beta Example (b=3)

43

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14 1 - prune

43
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Alpha-Beta Pruning: Exercise

44

MAX

MIN

MAX

4 6 2 6 3 9 5 2 7 3 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1

44

Alpha-beta pruning

MAX

MIN

MAX

4 6 2 6 3 9 5 2 7 3 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1

45
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Alpha-beta pruning

MAX

MIN

MAX

4 6 2 6 3 9 5 2 7 3 1 7 2 4 6 3

4

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning

MAX

MIN

MAX

4 6 2 6 3 9 5 2 7 3 1 7 2 4 6 3

4

4 6 9 5 7 1 7 6

4 5 1

47



9/19/24

23

Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 3 1 7 2 4 6 3

4

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 3 1 7 2 4 6 3

3

4 6 3 5 7 1 7 6

3 5 1

49
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 3 1 7 2 4 6 3

4

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 3 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning
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MAX

4 6 3 9 5 2 7 3 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 1 7 2 4 6 3

5

4 6 9 5 7 1 7 6

4 5 1

55



9/19/24

27

Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 1

5

4 6 9 5 7 1

4 5 1
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Alpha-beta pruning

MAX

MIN

MAX

4 6 3 9 5 2 7 1

5

4 6 9 5 7 1

4 5 1
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Effectiveness of Alpha-Beta
• Alpha-beta is guaranteed to:

• Compute the same value for the root node as minimax
• With ≤ computation

• Worst case: nothing pruned
• Examine bd leaf nodes
• Each node has b children and a d-ply search is performed 

• Best case: examine only (2b)d/2 leaf nodes.
• So you can search twice as deep as minimax! 
• When each player’s best move is the first alternative generated  

• In Deep Blue, empirically, alpha-beta pruning took average branching factor 
from ~35 to ~6

59
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Games of Chance
• Backgammon: 2-player with 

uncertainty

• Players roll dice to determine 
what moves to make

• White has just rolled 5 and 6 
and has four legal moves:
• 5-10, 5-11
• 5-11, 19-24
• 5-10, 10-16
• 5-11, 11-16

• Good for decision making in adversarial problems with skill and luck

60

In backgammon, the dice roll determines 
the possible moves you can make
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Game Trees with Chance

• Chance nodes (circles) represent random events

• For a random event with N outcomes:
• Chance node has N distinct children
• Each has a probability

• These represent the possible states
the game may be in based on the
outcome of the random event

• Example: 
• Rolling 2 dice à 21 distinct outcomes
• Not all equally likely!

61

Max
Rolls

Min
Rolls

61

Game Trees with Chance

• For chance nodes we compute the expected value – the sum of the 
value over all possible outcomes, weighted by the likelihood of that 
outcome

• Use minimax to compute values for MAX and MIN nodes

• Use expected values for chance nodes

• Expectiminimax(s) =
• maxa Expectiminimax(Result(s,a)) if player(s)=max
• mina Expectiminimax(Result(s,a)) if player(s)=min
• ∑r P(r) Expectiminimax(Result(s,r)) if player = chance 

62
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Expectiminimax Example
• RANDOM: Flip a coin. 

• MAX: Max either stops, or continues.
• Stop on heads: game ends, Max wins 

(value = $2).
• Stop on tails: game ends, Max loses 

(value = -$2).

• RANDOM: Flip a coin. 
• HH = Min gets $2.
• TT = Min gets -$2.
• HT or TH = Min gets $0.

• MIN: Min decides whether to keep the 
outcome (value as above), or pay a 
penalty of -$1. Game ends.

from Lana Lazebnik
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Game Trees with Chance
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Meaning of the Evaluation Function

A1 = best 
move

Unfair coin: 
2 outcomes, 
P= {.9, .1}

.9 * 2 + .1 * 3 = 2.1

.9 * 1 + .1 * 4 = 1.3
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Meaning of the Evaluation Function

• Dealing with probabilities and expected values means being careful with 
“meaning” of values returned by the static evaluator

• “Relative-order preserving” (as here) change won’t change minimax, but 
could change the decision with chance nodes

A1 = best 
move

A2 = best 
move

Unfair coin: 
2 outcomes, 
P= {.9, .1}

different end values, 
different outcomes

.9 * 2 + .1 * 3 = 2.1

.9 * 1 + .1 * 4 = 1.3
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Exercise: Oopsy-Nim

• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (probability = 0.25), when you try to pick up two objects, you drop 

them both

• Picking up a single object always works

• Question: Why can’t we draw the entire game tree?

• Exercise:  Draw the 4-ply game tree (2 moves per player)
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Exercise: Oopsy-Nim

4

3 2 4

P=1 P=.75 P=.25

P=1 P=.75 P=.25

2 1 3
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