

Bookkeeping

- HW2 out tonight
- Last time: local search, intro to constraint satisfaction problems
- Today: CSPs!

From Last Time...

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs) are special subset of search problems
- General Idea
 - View a problem as a set of variables
 - To which we have to assign values
 - That satisfy a number of (problem-specific) constraints

Today's Class

- What's a Constraint Satisfaction Problem (CSP)?
 - A.K.A., Constraint Processing / CSP paradigm
- How do we solve them?
 - Algorithms for CSPs
- Search Terminology

Constraint (n): A relation ... between the values of one or more mathematical variables (e.g., x>3 is a constraint on x).

Constraint satisfaction assigns values to variables so that all constraints are true.

– http://foldoc.org/constraint

Real-World Problems • Graph layout Scheduling Assignment problems Temporal re Timetabling problems management Building des Hardware configuration inguage processing Gate assignment in airports Planning r biology / Space Shuttle Repair Transportation scheduling Optimizatio Factory scheduling gn Vision

5

Where we are so far

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs): A special subset of search problems
 - State is defined by variables
 - With values from a **domain** D
 - Goal test is a set of **constraints** specifying allowable combinations of values for subsets of variables
- CSPs formulation allows for special optimized algorithms
- A good example of trading generality for utility (in this case, speed)

Constraint Satisfaction

- Con•straint /kənˈstrānt/, (noun):
 - Something that limits or restricts someone or something.¹
 - A relation ... between the values of one or more mathematical variables (e.g., x>3 is a constraint on x), that assigns values to variables so that all constraints are true.²
- In search, constraints exist on?
- General Idea
 - View a problem as a set of variables
 - To which we have to assign values
 - That satisfy a number of (problem-specific) constraints

[1] Merriam-Webster online. [2] The Free Online Computing Dictionary.

7

Overview

- Constraint satisfaction: a problem-solving paradigm
- Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

Search Vocabulary

- We've talked about caring about goals (end states) vs. paths
- These correspond to...
 - Planning: finding sequences of actions
 - Paths have various costs, depths
 - Heuristics to guide, frontier to keep backup possibilities
 - Examples: chess moves; 8-puzzle; homework 2
 - Identification: assignments to variables representing unknowns
 - The goal itself is important, not the path
 - Examples: Sudoku; map coloring; N queens; scheduling; planning
- CSPs are specialized for identification problems

- CSP = Constraint Satisfaction Problem
- Given:
 - A finite set of variables
 - Each with a **domain** of possible values they can take (often finite)
 - A set of **constraints** that limit the values the variables can take on
- **Solution**: an assignment of values to variables that satisfies all constraints.

CSP Applications

- Decide if a solution exists
- Find some solution
- Find all solutions
- Find the "best solution"
 - According to some metric (objective function)
 - Does that mean "optimal"?

Informal Example: Map Coloring

- Given a 2D map, it is always possible to color it using three colors
- Such that:
 - No two adjacent regions are the same color
 - Start thinking: What are the values, variables, constraints?

Slightly Less Informal

- Constraint satisfaction problems (CSPs): a special subset of search problems where...
- **State** is defined by variables *X_i* with values from a domain *D*
 - *D* may be finite
 - Sometimes D depends on i
- Goal test is a set of constraints specifying allowable combinations of values for variables

19

Formal Definition: Constraint Network (CN)

A constraint network (CN) consists of

- A set of variables $X = \{x_1, x_2, \dots, x_n\}$
- Each with an associated domain of values { d_1 , d_2 , ... d_n }.
 - The domains are typically finite
- A set of constraints { c_1 , c_2 ... c_m } where
 - Each constraint defines a **predicate**, which is a **relation** over some subset of *X*.
 - E.g., c_i involves variables $\{X_{i1}, X_{i2}, \dots, X_{ik}\}$ and defines the relation $R_i \subseteq D_{i1} \times D_{i2} \times \dots D_{ik}$

Formal Definition of a CN (cont.)

- An instantiation is an assignment of a value d_x ∈ D to some subset of variables S.
 - Any assignment of values to variables
 - Ex: $Q_2 = \{2,3\} \land Q_3 = \{1,1\}$ instantiates Q_2 and Q_3
- An instantiation is legal iff it does not violate any constraints
- A solution is an instantiation of all variables
 - A correct solution is a legal instantiation of all variables

Variations: Variables

- Discrete Variables
 - Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by linear programming

Variations: Constraints

- Unary constraints involve a single variable (equivalent to reducing domains)
- Binary constraints involve pairs of variables
- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a **cost** for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

25

Binary CSP

- Binary CSP: all constraints are binary or unary
- Can convert a non-binary CSP \rightarrow binary CSP by:
 - Introducing additional variables
 - One variable per constraint
 - One binary constraint for each pair of original constraints that share variables
- "Dual graph construction"

Running Example: Sudoku

- Constraints (implicit or intensional)
 - C^{R} : $\forall i, \bigcup_{j} v_{ij} = D$ (every value appears in every row)
 - C^C: ∀j, ∪_i v_{ij} = D
 (every value appears in every column)
 - C^B : $\forall k, \cup (v_{ij} \mid ij \in B_k) = D$ (every value appears in every block)

<i>v</i> ₁₁	3	<i>v</i> ₁₃	1
<i>v</i> ₂₁	1	<i>v</i> ₂₃	4
3	4	1	2
<i>v</i> ₄₁	<i>v</i> ₄₂	4	<i>v</i> ₄₄

Running Example: Sudoku		All binary		
Possible representation:	constraints!			
pairwise inequality $R : \forall i : i : i : i : i : i : i : i : i :$	v ₁₁	3	<i>v</i> ₁₃	1
• $I^{n}: \forall l, J \neq j : v_{ij} \neq v_{ij}'$ (no value appears twice in any row)	<i>v</i> ₂₁	1	<i>v</i> ₂₃	4
• I^C : $\forall i, i \neq i' : v_{ii} \neq v_{i'i}$	3	4	1	2
(no value appears twice in any column)	<i>v</i> ₄₁	<i>v</i> ₄₂	4	V ₄₄
 I^B: ∀k, ij ∈ B_k, i'j' ∈ B_k, ij ≠ i'j' :v_{ij} ≠ v_{i'j} , (no value appears twice in any block) 				

Exercise: Draw the Sudoku CN

- 1. $I^R: \forall i, j \neq j': v_{ij} \neq v_{ij'}$ (no value appears twice in any row)
- 2. $I^C: \forall j, i \neq i': v_{ij} \neq v_{i'j}$ (no value appears twice in any column)
- 3. $I^B: \forall k, ij \in B_k, i'j' \in B_k, ij \neq i'j': v_{ij} \neq v_{i'j'}$ (no value appears twice in a block)

<i>v</i> ₁₁	3	<i>v</i> ₁₃	1
<i>v</i> ₂₁	1	<i>v</i> ₂₃	4
3	4	1	2
v ₄₁	<i>v</i> ₄₂	4	V ₄₄

31

Solving Constraint Problems

- Systematic search
 - Generate and test
 - Backtracking
- Constraint propagation (consistency)
- Variable ordering heuristics
- Value ordering heuristics
- Variable elimination
- Backjumping and dependency-directed backtracking

33

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with a straightforward, dumb approach, then fix it
- States are defined by the values assigned so far (ex: WA=red, T=red is a state)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Super Naïve: Generate and Test Try every possible assignment of domain elements to variables until you find one that works: . . . Doesn't check constraints until all variables have been instantiated Very inefficient way to explore the space of possibilities (4⁷ for this trivial Sudoku puzzle, mostly illegal)

Consistency

- The goal is to find a solution that is consistent with (doesn't violate) constraints
- An instantiation (assignment of values to variables) is said to be consistent if no constraints are violated

39

<text>

Consistency

- Once the whole graph is consistent, we have a solution (a legal instantiation of values to all variables)
- There are multiple kinds of consistency
- Different kinds give us different guarantees for performance and correctness

Next Up: Constraint Propagation

- To create arc consistency, we perform constraint propagation: that is, we repeatedly reduce the domain of each variable to be consistent with its arcs
- How do we find a set of consistent assignments?
- Constraints reduce # of legal values for a variable
 - Which may then reduce legal values of another variable
- Key idea: local consistency
 - Enforce nearby constraints
 - Propagate

Search Methods

- Map Coloring
- How does DFS do?
- How does BFS do?

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix the ordering
 - [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Only allow fully legal assignments at each point
 - Consider only values which do not conflict with existing assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"
- Depth-first search with these two improvements is called **backtracking search**
 - We backtrack when there's no legal assignment for the next variable

53

Systematic Search: Backtracking (a.k.a. DFS)

- Consider the variables in some order
 - Pick an unassigned variable
 - Give it a provisional value
 - That is consistent with all of the constraints (this is new!)
- If no such assignment can be made, we've reached a dead end and need to backtrack to the previous variable
- Continue this process until:
 - A solution is found, or
 - We backtrack to the initial variable and have exhausted all possible values

Backtracking Example

59

Backtracking Search

• What are the choice points?

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment

 $var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)$

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)

- if result \neq failure then return result
- remove $\{var = value\}$ from assignment

return failure

Problems with Backtracking

- Thrashing: keep repeating same failed variable assignments
 - Consistency checking can help
 - Intelligent backtracking schemes can also help
- Inefficiency: can spend time exploring areas of search space that aren't likely to succeed
 - Variable ordering can help
 - IF there's a meaningful way to order them

<i>v</i> ₁₁	3	<i>v</i> ₁₃	1
<i>v</i> ₂₁	1	<i>v</i> ₂₃	4
3	4	1	2
<i>v</i> ₄₁	<i>v</i> ₄₂	4	<i>v</i> ₄₄

63

Improving Backtracking

General-purpose ideas give huge gains in speed!

- Ordering: (queueing function ++)
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Forward Checking Propagates information from assigned to adjacent unassigned variables Doesn't detect more distant failures If detect more both be blue! Why didn't we detect this? It doesn't catch when *two unassigned variables* have no consistent assignment

- Constraint propagation enforces constraints locally
 - This is a local maximum!

Approaches so far

- Generate-and-test
- DFS
- Backtracking
- Forward checking
- Arc consistency
- What else could we try?

71

K-consistency

- K-consistency generalizes the notion of arc consistency to sets of more than two variables
 - Node Consistency (1-Consistency): Each single variable's domain has a value which meets that variables unary constraints
 - Arc Consistency (2-Consistency): For each pair of variables, any consistent assignment to one can be extended to the other
 - **Path Consistency** (3-Consistency): For every **set of 3** vars, any consistent assignment to 2 of the variables can be extended to the third var
 - **K-Consistency**: For each k nodes, any consistent assignment to k-1 can be extended to the kth node
- Higher k more expensive to compute!

Which

leads us to

ordering

Why Do We Care?

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- A strongly N-consistent CSP with N variables can be solved **without backtracking**
 - If we find an appropriate variable ordering!

Ordered Constraint Graphs

- Select a variable ordering, V₁, ..., V_n
- Width of a node in this OCG is the number of arcs leading to earlier variables:
 - width(V_i) = count ((V_i , V_k) | k < i)
- Width of the OCG is the maximum width of any node:
 - width(OCG) = max (width (V_i)), $1 \le i \le N$
- Width of an unordered CG is the minimum width of all orderings of that graph (best you can do)

75

Possible Variable Orderings

- Intuition: choose variables that are highly constrained early in the search process; leave easy ones for later.
- How?
 - **Minimum width ordering** (MWO): identify OCG with minimum width
 - Maximum cardinality ordering: approximation of MWO that's cheaper to compute: order variables by decreasing cardinality (a.k.a. degree heuristic)

Ordering: Maximum Degree

- Tie-breaker among MRV variables
 - What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic
 - Choose the variable participating in the most constraints on remaining variables

Why most rather than fewest constraints?

Variable Orderings II

- **Maximal stable set**: find largest set of variables with no constraints between them, save these for last
- **Cycle-cutset tree creation**: Find a set of variables that, once instantiated, leave a tree of uninstantiated variables; solve these, then solve the tree without backtracking
- Tree decomposition: Construct a tree-structured set of connected subproblems

Value Ordering

- Intuition: Choose values that are the least constrained early on, leaving the most legal values available for later variables
 - Maximal options method (a.k.a. least-constraining-value heuristic): Choose the value that leaves the most legal values for not-yet-instantiated variables
- Min-conflicts: For iterative repair search (Coming up)
- Symmetry: Introduce symmetry-breaking constraints to constrain search space to 'useful' solutions (don't examine more than one symmetric/isomorphic solution)

Min-Conflicts Heuristic Iterative repair method Find some "reasonably good" initial solution E.g., in N-queens problem, use greedy search through rows, putting each queen where it conflicts with the smallest number of previously placed queens, breaking ties *randomly*Pick a variable in conflict (randomly) Select a new value that *minimizes* the number of constraint violations O(N) time and space Repeat steps 2 and 3 until done Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution

83

The Intuition for MRV, MD, LCV

- We want to enter the most promising branch, but we also want to detect failure quickly
- Minimum Remaining Values + Maximum Degree
 - Choose the variable that is most likely to cause failure
 - It must be assigned at some point, so if it is doomed to fail, better to find out soon
- Least Constraining Value
 - We hope our early value choices do not doom us to failure
 - Choose the value that is most likely to succeed

Iterative Repair

- Start with an initial complete (but probably invalid) assignment
- Repair locally
- **Min-conflicts:** Select new values that minimally conflict with the other variables
 - Use in conjunction with hill climbing or simulated annealing or...
- Local maxima strategies
 - Random restart
 - Random walk

85

Intelligent Backtracking

- Backjumping: if V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)
- **Backchecking**: keep track of incompatible value assignments computed during backjumping
- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints

87

More Challenges

- What if constraints are represented intensionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints/variables/values change over time?
 - Dynamic constraint networks
 - Temporal constraint networks
 - Constraint repair
- What if you have multiple agents or systems involved?
 - Distributed CSPs
 - Localization techniques

- Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.
- While the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

89

Trapped!

- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce a breeze.
- Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes.
- For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze.

- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce a breeze.
- Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes.
- For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze.

91

Trapped!

- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce a breeze.
- Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes.
- For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze.

- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce a breeze.
- Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes.
- For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze.

93

Trapped! A pit produces a strong breeze (S) and an exit 1 produces a weak breeze (W), while a ghost doesn't 2 6 produce a breeze. Pacman feels the max of the two breezes. The total number of exits might be 0–6. 3 5 w Two neighboring squares will not both be exits. 4 Variables: $X_1 \dots X_6$ Domains: {P, G, E} **Constraints**?

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce a breeze.
- Pacman feels the max of the two breezes.
- The total number of exits might be 0–6.
- Two neighboring squares will not both be exits.

Tree-Structured CSPs
Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X → Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)
A + B + C + D + E + F
Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position
Why doesn't this algorithm work with cycles in the constraint graph?
Note: we'll see this basic idea again with Bayes' nets

CSPs: Summary (2)

 CSPs can be represented as constraint networks that allow for constraint propagation, tree structuring

- Perform constraint propagation to solve simple problems, or...
 - ...search through possible assignments of values to variables
 - ...considering most constrained variables first
 - ...considering the least constrained values first
- Worst-case is NP-complete, but in practice we can solve quite hard problems!