
9/13/24

1

Constraint Satisfaction
Ch. 6.1–6.4 (skip 6.3.3))

Based in part on slides by: Marie desJardin, Paula Matuszek, Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell, Andrew Moore

1

Bookkeeping

• HW2 out tonight

• Last time: local search, intro to constraint satisfaction problems

• Today: CSPs!

2

9/13/24

2

From Last Time…

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs) are special subset of search
problems

• General Idea
• View a problem as a set of variables
• To which we have to assign values
• That satisfy a number of (problem-specific) constraints

3

Today’s Class

• What’s a Constraint Satisfaction Problem (CSP)?
• A.K.A., Constraint Processing / CSP paradigm

• How do we solve
them?
• Algorithms for CSPs

• Search Terminology

4

Constraint (n): A relation …
between the values of one or
more mathematical variables
(e.g., x>3 is a constraint on x).

Constraint satisfaction assigns
values to variables so that all
constraints are true.

– http://foldoc.org/constraint

4

9/13/24

3

Real-World Problems

• Scheduling

• Temporal reasoning

• Building design

• Planning

• Optimization/satisfaction

• Vision

5

• Graph layout

• Network management

• Natural language processing

• Molecular biology /
genomics

• VLSI design

Assignment problems
Timetabling problems
Hardware configuration
Gate assignment in airports
Space Shuttle Repair
Transportation scheduling
Factory scheduling
…

5

Where we are so far
• Standard search problems:

• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs): A special subset of search problems
• State is defined by variables
• With values from a domain D
• Goal test is a set of constraints specifying allowable combinations of values for

subsets of variables

• CSPs formulation allows for special optimized algorithms

• A good example of trading generality for utility (in this case, speed)

6

9/13/24

4

Constraint Satisfaction

• Con•straint /kənˈstrānt/, (noun):
• Something that limits or restricts someone or something.1

• A relation … between the values of one or more mathematical variables (e.g.,
x>3 is a constraint on x), that assigns values to variables so that all constraints
are true.2

• In search, constraints exist on?

• General Idea
• View a problem as a set of variables
• To which we have to assign values

• That satisfy a number of (problem-specific) constraints

7

[1] Merriam-Webster online.
[2] The Free Online Computing Dictionary.

7

Overview

• Constraint satisfaction: a problem-solving paradigm

• Constraint programming, constraint satisfaction problems (CSPs),
constraint logic programming…

• Algorithms for CSPs
• Backtracking (systematic search)
• Constraint propagation (k-consistency)
• Variable and value ordering heuristics
• Backjumping and dependency-directed backtracking

8

8

9/13/24

5

Search Vocabulary

• We’ve talked about caring about goals (end states) vs. paths

• These correspond to…
• Planning: finding sequences of actions

• Paths have various costs, depths
• Heuristics to guide, frontier to keep backup possibilities
• Examples: chess moves; 8-puzzle; homework 2

• Identification: assignments to variables representing unknowns
• The goal itself is important, not the path
• Examples: Sudoku; map coloring; N queens; scheduling; planning

• CSPs are specialized for identification problems

9

9

Slightly Less Informal Definition of CSP

• CSP = Constraint Satisfaction Problem

• Given:
• A finite set of variables
• Each with a domain of possible values they can

take (often finite)
• A set of constraints that limit the values the

variables can take on

• Solution: an assignment of values to
variables that satisfies all constraints.

10

10

9/13/24

6

CSP Applications

• Decide if a solution exists

• Find some solution

• Find all solutions

• Find the “best solution”
• According to some metric (objective function)
• Does that mean “optimal”?

11

11

Informal Example: Map Coloring

• Given a 2D map, it is always possible to color it using three colors

• Such that:
• No two adjacent regions are the

same color
• Start thinking: What are the

values, variables, constraints?

12

E

D A

C
B

12

9/13/24

7

Slightly Less Informal
• Constraint satisfaction problems (CSPs): a special subset of search

problems where…

• State is defined by variables Xi with values
from a domain D
• D may be finite
• Sometimes D depends on i

• Goal test is a set of constraints specifying
allowable combinations of values for variables

13

Example: N-Queens (1)

• Formulation 1:
• Variables:
• Domains:
• Constraints:

14

9/13/24

8

Example: N-Queens (2)

• Formulation 2:
• Variables:
• Domains:

• Actually, tuples of {(1–N, 1–N)}
• Constraints:

Implicit:

Explicit:
-or-

15

Example: Sudoku

• Variables:
• Each (open) square

• Domains:
• {1,2,...,9}

• Constraints:
• 9-way alldiff for each column
• 9-way alldiff for each row
• 9-way alldiff for each region
• (or can have a bunch of pairwise

inequality constraints)

CSP	Example:	Sudoku

§ Variables:
§ Each	(open)	square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way	alldiff for	each	row
9-way	alldiff for	each	column

9-way	alldiff	for	each	region
(or	can	have	a	bunch	
of	pairwise	inequality	
constraints)

16

9/13/24

9

Special case!

Example: SATisfiability

• Given a set of propositions containing variables, find an
assignment of the variables to {false, true} that satisfies them.

• For example, the clauses:
• (A Ú B Ú ¬C) Ù (¬A Ú D)
• (equivalent to (C ® A) Ú (B Ù D ® A))

• are satisfied by
• A = false
• B = true
• C = false
• D = false

17

Propositional	Logic

§ Variables:
§ Domains:
§ Constraints:

propositional	variables
{T,	F}
logical	formula

17

Exercise: Map Coloring II

• Variables: A, B, C, D, E

• Domains: D = {red, green, blue}

• Constraints: A¹B, A¹C, A ¹ E, A ¹ D, B ¹ C, C ¹ D, D ¹ E

• One solution: A=red, B=green, C=blue, D=green, E=blue

18

E
D A
C

B

E
D A
C

B

18

9/13/24

10

Constraint Graph (Network)

• Binary CSP: each constraint
relates (at most) two variables

• Binary constraint graph: nodes
are variables, arcs show
constraints

19

Formal Definition: Constraint Network (CN)

A constraint network (CN) consists of

• A set of variables X = {x1, x2, … xn}

• Each with an associated domain of values {d1, d2, … dn}.
• The domains are typically finite

• A set of constraints {c1, c2 … cm} where
• Each constraint defines a predicate, which is a relation over some subset of X.
• E.g., ci involves variables {Xi1, Xi2, … Xik} and defines the relation

Ri Í Di1× Di2× … Dik

20

20

9/13/24

11

Constraint Restrictions

• Unary constraint: only involves one variable
• e.g.: C can’t be green.

• Binary constraint: only involves two variables
• e.g.: E ≠ A

E

D A

C

B

E

A D

CB

≠

“C ≠green”

21

Formal Definition of a CN (cont.)

• An instantiation is an assignment of a value dx ∈ D to some
subset of variables S.
• Any assignment of values to variables
• Ex: Q2 = {2,3} Ù Q3 = {1,1} instantiates Q2 and Q3

• An instantiation is legal iff it does not violate any constraints

• A solution is an instantiation of all variables
• A correct solution is a legal instantiation of all variables

22

22

9/13/24

12

Variations: Variables

• Discrete Variables
• Finite domains

• Size d means O(dn) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

• Infinite domains (integers, strings, etc.)
• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by linear programming

23

Variations: Constraints

• Unary constraints involve a single variable (equivalent to reducing
domains)

• Binary constraints involve pairs of variables

• Higher-order constraints involve 3 or more variables: e.g.,
cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)

24

9/13/24

13

Typical Tasks for CSP

• Solutions:
• Does a solution exist?
• Find one solution
• Find all solutions

• Transform the CN into an equivalent CN
that is easier to solve

• Given a partial instantiation, can we do these?

25

E

A D

CB

25

Binary CSP

• Binary CSP: all constraints are binary or unary

• Can convert a non-binary CSP à binary CSP by:
• Introducing additional variables
• One variable per constraint
• One binary constraint for each pair of original constraints that share variables

• “Dual graph construction”

26

26

9/13/24

14

Binary CSPs: Why?

• Can always represent a binary CSP as a constraint graph with:
• A node for each variable
• An arc between two nodes iff there is a constraint on the two variables
• Unary constraint appears as a self-referential arc

27

C “C can’t be green”

27

Exercise: Sudoku

• Variables
• vi,j is the value in the

j th cell of the i th row

• Domains
• Di,j = D = {1, 2, 3, 4}

• Blocks
• B1 = {11, 12, 21, 22}, …, B4 = {33, 34, 43, 44}

28

3 1

1 4

3 4 1 2

4

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

28

9/13/24

15

Running Example: Sudoku

• Constraints (implicit or intensional)
• CR : "i, Èj vij = D

(every value appears
in every row)

• CC : "j, Èi vij = D
(every value appears in every column)

• CB : "k, È (vij | ij ÎBk) = D
(every value appears in every block)

29

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

29

Running Example: Sudoku

• Possible representation:
pairwise inequality
• IR : "i, j≠j’ : vij ≠ vij’

(no value appears twice in any row)
• IC : "j, i≠i’ : vij ≠ vi’j

(no value appears twice in any column)
• IB : "k, ij Î Bk, i’j’ Î Bk, ij ≠ i’j’ :vij ≠ vi’j ’

(no value appears twice in any block)

30

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

All binary
constraints!

30

9/13/24

16

Exercise: Draw the Sudoku CN

1. IR : "i, j≠j’ : vij ≠ vij’ (no value appears twice in any row)

2. IC : "j, i≠i’ : vij ≠ vi’j (no value appears twice in any column)

3. IB : "k, ij Î Bk, i’j’ Î Bk, ij ≠ i’j’ :vij ≠ vi’j’ (no value appears twice in a
block)

31

v11

v44v42v41

v23v21

v133 1

1 4

3 4 1 2

4

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

31

Solving Constraint Problems

• Systematic search
• Generate and test
• Backtracking

• Constraint propagation (consistency)

• Variable ordering heuristics

• Value ordering heuristics

• Variable elimination

• Backjumping and dependency-directed backtracking

32

32

9/13/24

17

CSPs as Search

States?

Operators?

Initial State?

Goal Test?

We already
know how to
deal with
searching
graphs!

33

Standard Search Formulation

• Standard search formulation of CSPs (incremental)

• Let’s start with a straightforward, dumb approach, then fix it

• States are defined by the values assigned so far
(ex: WA=red, T=red is a state)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an unassigned variable
• Goal test: the current assignment is complete and satisfies all constraints

34

9/13/24

18

Super Naïve: Generate and Test

• Try every possible assignment of domain elements to variables until you
find one that works:

• Doesn’t check constraints until all variables have been instantiated

• Very inefficient way to explore the space of possibilities (47 for this
trivial Sudoku puzzle, mostly illegal)

35

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 1

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 2

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 3 …

35

Marginally Better: DFS

36

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

2 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

3 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

…

1 3 v13 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
3 1 v23 4
3 4 1 2
v41 v42 4 v44

…

1 3 1 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 2 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 3 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

v11 v21 v13

36

9/13/24

19

Search: DFS

E
D A
C

B

E
D A
C

B

E
D A
C

B

E
D A
C

B

E
D A
C

B

E
D A
C

B

E
D A
C

B

…
37

Sidenote: Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

38

E

A D

CB

38

9/13/24

20

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

39

E=red

A D

CB

39

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

40

E=red

A=blue D

CB

40

9/13/24

21

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

41

E=red

A=blue D=blue

CB

✗

41

Consistency

• Once the whole graph is consistent, we have a solution (a legal
instantiation of values to all variables)

• There are multiple kinds of consistency

• Different kinds give us different guarantees for performance and
correctness

42

42

9/13/24

22

Node Consistency

• Node consistency: every value in node X’s domain (every value we
think it might take) is consistent with X’s unary constraints
• A graph is node-consistent if all nodes are node-consistent
• Let’s say C can’t be green
• C = {red, green, blue}

43

C “C can’t be green”

C = {r, b}

this domain of C makes
this node-consistent

43

Arc Consistency

• Arc consistency: A variable in a CSP is arc-consistent if every value in
its domain satisfies the variable’s binary constraints

• For every value x of X in Arc(X,Y):
• ∃y for Y
• That satisfies the constraint

represented by the arc

• A graph is arc-consistent if all
arcs are arc-consistent

44

E=red

A=? D=?

A = {g, b} D = {g, b}

44

9/13/24

23

Arc Consistency: Example
• For every value x of X in Arc(X,Y):∃y for Y that satisfies the constraint

represented by the arc

• Is this instantiation arc-consistent?

• So far, yes!

45

A = {g} D = {g}

E=blue

A=… D=...

C=blueB=red E=red

45

Arc Consistency: Example
• For every value x of X in Arc(X,Y):∃y for Y that satisfies the constraint

represented by the arc

• Is this instantiation arc-consistent?

• Not any more!

46

D = {}

E=blue

A=green D=...

C=blueB=red E=red

46

9/13/24

24

Next Up: Constraint Propagation

• To create arc consistency, we perform constraint propagation: that is,
we repeatedly reduce the domain of each variable to be consistent with
its arcs

• How do we find a set of consistent assignments?

• Constraints reduce # of legal values for a variable
• Which may then reduce legal values of another variable

• Key idea: local consistency
• Enforce nearby constraints

• Propagate

47

47

Constraint Propagation: Sudoku

48

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

4

321

32

2

Node co
nsis

tency

…and we didn’t even need to search!

48

9/13/24

25

WA

NT

SA

Q

NSW

V

T

Example: Map Coloring

• Variables:
• WA, NT, Q, SA, NSW, V, T

• Domain:
• D = {red, green, blue}

• Constraints: adjacent regions
must have different colors
• Implicit: WA ≠ NT
• Explicit: (WA, NT) ∈ {(red, green), (red, blue), (green, blue),

(green, red), (blue, red)}

• Solutions are assignments satisfying all constraints, e.g.:
• {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green }

49

Constraint Graphs

• Binary CSP: each constraint relates (at most) two variables

• Binary constraint graph: nodes are variables, arcs show constraints

• General-purpose CSP algorithms use the graph structure to speed up search. E.g.,
Tasmania is an independent subproblem!

50

9/13/24

26

Search Methods

• Map Coloring

• How does DFS do?

• How does BFS do?

51

DFS: not good!

52

9/13/24

27

Backtracking Search

• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: Only consider a single variable at each point
• Variable assignments are commutative, so fix the ordering

• [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Only allow fully legal assignments at each point
• Consider only values which do not conflict with existing assignments
• Might have to do some computation to figure out whether a value is ok
• “Incremental goal test”

• Depth-first search with these two improvements is called backtracking search
• We backtrack when there’s no legal assignment for the next variable

53

Systematic Search: Backtracking (a.k.a. DFS)

• Consider the variables in some order
• Pick an unassigned variable
• Give it a provisional value
• That is consistent with all of the constraints (ß this is new!)

• If no such assignment can be made, we’ve reached a dead end and
need to backtrack to the previous variable

• Continue this process until:
• A solution is found, or
• We backtrack to the initial variable and have exhausted all possible values

54

54

9/13/24

28

Backtracking: Sudoku

55

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

2 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

4 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

4 3 v13 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

v11 v21 v13

4 3 2 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

…

55

Backtracking Example

56

9/13/24

29

Backtracking Example

57

Backtracking Example

58

9/13/24

30

Backtracking Example

59

Backtracking Search

• What are the choice points?

again or
be ready

Backtracking	Search

§ What	are	the	choice	points?

[Demo:	coloring	-- backtracking]
60

9/13/24

31

Backtracking

61

Good Enough?

62

9/13/24

32

Problems with Backtracking

• Thrashing: keep repeating same
failed variable assignments
• Consistency checking can help
• Intelligent backtracking schemes can also help

• Inefficiency: can spend time exploring areas
of search space that aren’t likely to succeed
• Variable ordering can help
• IF there’s a meaningful way to order them

63

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

63

Improving Backtracking

General-purpose ideas give huge gains in speed!

• Ordering: (queueing function ++)
• Which variable should be assigned next?
• In what order should its values be tried?

• Filtering: Can we detect inevitable failure early?

• Structure: Can we exploit the problem structure?

64

9/13/24

33

Filtering: Forward Checking
• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the
existing assignment

65

Forward Checking

• Propagates information from assigned to adjacent unassigned variables

• Doesn’t detect more distant failures

• NT and SA cannot both be blue! Why didn’t we detect this?
• It doesn't catch when two unassigned variables have no consistent assignment

• Constraint propagation enforces constraints locally
• This is a local maximum!

66

9/13/24

34

Are We
Done?

67

Consistency of a Single Arc

• Simplest form of propagation makes each arc consistent
• An arc X à Y is consistent iff for every x in the tail there is some y in the head

which could be assigned without violating a constraint

• Forward checking is enforcing consistency of arcs pointing to each new
assignment

Consistency	of	a	Single	Arc
§ An	arc	X	® Y	is	consistent iff for	every	x	in	the	tail	there	is	some	y	in	the	head	which	

could	be	assigned	without	violating	a	constraint

§ Forward	checking:	Enforcing	consistency	of	arcs	pointing	to	each	new	assignment

Delete	from	the	tail!

WA SA

NT Q

NSW

V

68

9/13/24

35

Better: Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

69

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left

(and not know it)

• Even with Arc Consistency you still
need backtracking search!
• Could run at every step of that search
• Usually better to run it once, before

search

70

9/13/24

36

Approaches so far

• Generate-and-test

• DFS

• Backtracking

• Forward checking

• Arc consistency

• What else could we try?

71

K-consistency

• K-consistency generalizes the notion of arc consistency to sets of more
than two variables
• Node Consistency (1-Consistency): Each single variable’s domain has a value

which meets that variables unary constraints
• Arc Consistency (2-Consistency): For each pair of variables, any consistent

assignment to one can be extended to the other
• Path Consistency (3-Consistency): For every set of 3 vars, any consistent

assignment to 2 of the variables can be extended to the third var

• K-Consistency: For each k nodes, any consistent assignment to k-1 can be
extended to the kth node

• Higher k more expensive to compute!

72

72

9/13/24

37

Why Do We Care?
• Strong k-consistency: also k-1, k-2, ... 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• ...

• A strongly N-consistent CSP with N variables can be solved without
backtracking
• If we find an appropriate variable ordering!

73

Which
leads us to
ordering

73

Ordered Constraint Graphs

• Select a variable ordering, V1, …, Vn

• Width of a node in this OCG is the number of arcs leading to earlier
variables:
• width(Vi) = count ((Vi, Vk) | k < i)

• Width of the OCG is the maximum width of any node:
• width(OCG) = max (width (Vi)), 1 ≤ i ≤ N

• Width of an unordered CG is the minimum width of all orderings of that
graph (best you can do)

74

74

9/13/24

38

Backtracking Search Backtracking	Search

75

Possible Variable Orderings

• Intuition: choose variables that are highly constrained early in the
search process; leave easy ones for later.

• How?
• Minimum width ordering (MWO):

identify OCG with minimum width
• Maximum cardinality ordering:

approximation of MWO that’s cheaper to
compute: order variables by decreasing
cardinality (a.k.a. degree heuristic)

E

A D

CB

76

9/13/24

39

Ordering: Minimum Remaining Values

• Fail first principle (FFP): choose variable with fewest remaining values

• Implementation: minimum remaining values (MRV))
• Static FFP: use domain size of variables

• Dynamic FFP (search
rearrangement method):
At each choice, select the
variable with the fewest
remaining values

E=red

A=… D=...

C=redB=blue

A = {g} D = {g,b}

77

Ordering: Minimum Width

• Minimum remaining values (MRV):
• Choose the variable with the fewest remaining legal values

• Why min rather than max?

• Also called “most constrained variable”
• “Fail-fast” ordering

78

9/13/24

40

Ordering: Maximum Degree

• Tie-breaker among MRV variables
• What is the very first state to color? (All have 3 values remaining.)

• Maximum degree heuristic
• Choose the variable participating in the most constraints on remaining variables

• Why most rather than fewest constraints?

79

Variable Orderings II

• Maximal stable set: find largest set of variables with no constraints
between them, save these for last

• Cycle-cutset tree creation: Find a set of variables that, once
instantiated, leave a tree of uninstantiated variables; solve these, then
solve the tree without backtracking

• Tree decomposition: Construct a tree-structured set of connected
subproblems

80

9/13/24

41

ValueOrdering

• Intuition: Choose values that are the least constrained early on,
leaving the most legal values available for later variables

• Maximal options method (a.k.a. least-constraining-value heuristic): Choose
the value that leaves the most legal values for not-yet-instantiated variables

• Min-conflicts: For iterative repair search (Coming up)
• Symmetry: Introduce symmetry-breaking constraints to constrain search

space to ‘useful’ solutions (don’t examine more than one
symmetric/isomorphic solution)

81

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the

least constraining value
• I.e., the one that rules out the fewest

values in the remaining variables
• Note that it may take some computation

to determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes 1000 queens feasible

82

9/13/24

42

Min-Conflicts Heuristic

• Iterative repair method
1. Find some “reasonably good” initial solution

– E.g., in N-queens problem, use greedy search through rows, putting each queen
where it conflicts with the smallest number of previously placed queens,
breaking ties randomly

2. Pick a variable in conflict (randomly)
3. Select a new value that minimizes the number of constraint violations

– O(N) time and space
4. Repeat steps 2 and 3 until done Performance depends on

quality and informativeness of
initial assignment; inversely
related to distance to solution

83

The Intuition for MRV, MD, LCV

• We want to enter the most promising branch, but we also want to
detect failure quickly

• Minimum Remaining Values + Maximum Degree
• Choose the variable that is most likely to cause failure
• It must be assigned at some point, so if it is doomed to fail, better to find out

soon

• Least Constraining Value
• We hope our early value choices do not doom us to failure
• Choose the value that is most likely to succeed

84

9/13/24

43

Iterative Repair

• Start with an initial complete (but probably invalid) assignment

• Repair locally

• Min-conflicts: Select new values that minimally conflict with the other
variables
• Use in conjunction with hill climbing or simulated annealing or…

• Local maxima strategies
• Random restart
• Random walk

85

Intelligent Backtracking

• Backjumping: if Vj fails, jump back to the variable Vi with greatest i such
that the constraint (Vi, Vj) fails (i.e., most recently instantiated variable
in conflict with Vj)

• Backchecking: keep track of incompatible value assignments computed
during backjumping

• Backmarking: keep track of which variables led to the incompatible
variable assignments for improved backchecking

86

9/13/24

44

Challenges

• What if not all constraints can be satisfied?
• Hard vs. soft constraints
• Degree of constraint satisfaction
• Cost of violating constraints

• What if constraints are of different forms?
• Symbolic constraints
• Numerical constraints [constraint solving]
• Temporal constraints
• Mixed constraints

87

87

More Challenges

• What if constraints are represented intensionally?
• Cost of evaluating constraints (time, memory, resources)

• What if constraints/variables/values change over time?
• Dynamic constraint networks
• Temporal constraint networks
• Constraint repair

• What if you have multiple agents or systems involved?
• Distributed CSPs
• Localization techniques

88

9/13/24

45

Trapped!

• Pacman is trapped! He is surrounded by
mysterious corridors, each of which leads to
either a pit (P), a ghost(G), or an exit (E). In
order to escape, he needs to figure out which
corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

• While the total number of exits might be zero,
one, or more, Pacman knows that two
neighboring squares will not both be exits.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?

89

Trapped!
• The one sign of what lies behind the corridors is the

wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Unfortunately, Pacman cannot measure the strength
of the breeze at a specific corridor. Instead, he can
stand between two adjacent corridors and feel the
max of the two breezes.

• For example, if he stands between a pit and an exit
he will sense a strong (S) breeze, while if he stands
between an exit and a ghost, he will sense a weak
(W) breeze.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?

90

9/13/24

46

Trapped!
• The one sign of what lies behind the corridors is the

wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Unfortunately, Pacman cannot measure the strength
of the breeze at a specific corridor. Instead, he can
stand between two adjacent corridors and feel the
max of the two breezes.

• For example, if he stands between a pit and an exit
he will sense a strong (S) breeze, while if he stands
between an exit and a ghost, he will sense a weak
(W) breeze.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?Variables?

91

Trapped!
• The one sign of what lies behind the corridors is the

wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Unfortunately, Pacman cannot measure the strength
of the breeze at a specific corridor. Instead, he can
stand between two adjacent corridors and feel the
max of the two breezes.

• For example, if he stands between a pit and an exit
he will sense a strong (S) breeze, while if he stands
between an exit and a ghost, he will sense a weak
(W) breeze.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?Variables: X1.. X6
Domains?

92

9/13/24

47

Trapped!
• The one sign of what lies behind the corridors is the

wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Unfortunately, Pacman cannot measure the strength
of the breeze at a specific corridor. Instead, he can
stand between two adjacent corridors and feel the
max of the two breezes.

• For example, if he stands between a pit and an exit
he will sense a strong (S) breeze, while if he stands
between an exit and a ghost, he will sense a weak
(W) breeze.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?Variables: X1.. X6
Domains: {P, G, E}

93

Trapped!
• A pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Pacman feels the max of the two breezes.
• The total number of exits might be 0–6.
• Two neighboring squares will not both be exits.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?Variables: X1.. X6
Domains: {P, G, E}
Constraints?

94

9/13/24

48

Trapped!
• A pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t
produce a breeze.

• Pacman feels the max of the two breezes.
• The total number of exits might be 0–6.
• Two neighboring squares will not both be exits.

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?Variables: X1.. X6
Domains: {P, G, E}
Constraints?

Trapped

§ A	pit	produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	
breeze	(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.

§ Pacman feels	the	max	of	the	two	breezes.	
§ the	total	number	of	exits	might	be	zero,	one,	or	more,	
§ two	neighboring	squares	will	not	both	be	exits.

79

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Arc consistent?

Constraints?

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost

(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,

rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit

produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot

measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors

and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong

(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements

for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares

will not both be exits.

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

X1 = P or X2= P

Xi = E nand Xi+1|7 = E

X3 = E or X4= E
X5 = P or X6= PX2 = E or X3= E
X4 = P or X5= P

X6 = P or X1= P

Also! X2 =/= P
X3 =/= P
X4 =/= P

95

Tree-Structured CSPs

• If the constraint graph has no loops, CSP can be solved in O(n*d2) time
• In general CSPs, worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example
of the relation between syntactic restrictions and the complexity of
reasoning

96

9/13/24

49

Tree-Structured CSPs

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children
• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(nd2)

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

§ Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children

§ Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
§ Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

§ Runtime:	O(n	d2)		(why?)
97

Tree-Structured CSPs

• Claim 1: After backward pass, all root-to-leaf arcs are consistent
• Proof: Each XàY was made consistent at one point and Y’s domain could not

have been reduced thereafter (because Y’s children were processed before Y)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not
backtrack
• Proof: Induction on position
• Why doesn’t this algorithm work with cycles in the constraint graph?
• Note: we’ll see this basic idea again with Bayes’ nets

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

§ Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children

§ Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
§ Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

§ Runtime:	O(n	d2)		(why?)

98

9/13/24

50

Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

• Cutset size c gives runtime O((dc) (n-c) d2)
• Very fast for small c

Nearly	Tree-Structured	CSPs

§ Conditioning:	instantiate	a	variable,	prune	its	neighbors'	domains

§ Cutset conditioning:	instantiate	(in	all	ways)	a	set	of	variables	such	that	
the	remaining	constraint	graph	is	a	tree

§ Cutset size	c	gives	runtime	O((dc)	(n-c)	d2),	very	fast	for	small	c

99

Cutset ConditioningCutset Conditioning

SA

SA SA SA

Instantiate	the	cutset
(all	possible	ways)

Compute	residual	CSP	
for	each	assignment

Solve	the	residual	CSPs	
(tree	structured)

Choose	a	cutset

100

9/13/24

51

CSPs: Summary (1)

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints
• Don’t care about path to solution

• Many problems can be represented as CSPs:
assign variables some value from a domain, then
represent constraints among them

• Basic solution: backtracking search

• Speed-ups:
• Ordering, filtering, structure (cutset conditioning)

Images: docs.ocean.dwavesys.com/en/latest/examples/map_kerberos.html, sudoku-puzzles.net/butterfly-sudoku-easy,
medium.com/@co.2020.satenpe/cryptarithmetic-puzzles-are-a-captivating-fusion-of-mathematics-logic-and-wordplay-that-79e3eb619832

101

CSPs: Summary (2)

• CSPs can be represented as
constraint networks that allow
for constraint propagation, tree
structuring

• Perform constraint propagation to solve simple problems, or…
• …search through possible assignments of values to variables
• …considering most constrained variables first
• …considering the least constrained values first

• Worst-case is NP-complete, but in practice we can solve quite hard
problems!

102

