
9/10/24

1

Bookkeeping

• HW1 due 9/16 at 11:59 PM
• Writing (please read the integrity page statement on GenAI use carefully)
• Problem sets
• Programming

• Today:
• Last of uninformed search

• Uniform-Cost, Iterative Deepening, Bidirectional
• Informed search, heuristics

• Soon: Constraint satisfaction

1

Uninformed Search: Uniform-Cost (UCS)
• Enqueue nodes by path cost:

• Let g(n) = cost of path from start node to current node n
• Sort nodes by increasing value of g
• Identical to breadth-first search if all operators have equal cost

• “Dijkstra’s Algorithm” in algorithms literature

• “Branch and Bound Algorithm” in operations research literature

• Complete (*)

• Optimal/Admissible (*)
• Admissibility depends on the goal test being applied when a node is removed from

the nodes list, not when its parent node is expanded and the node is first generated

• Exponential time and space complexity, O(bd)

2

2

9/10/24

2

Example: Path Costs

3

3

UCS Implementation

• For each frontier node, save the total cost of the path from the initial
state to that node

• Expand the frontier node with the lowest path cost

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general

4

9/10/24

3

Uniform-cost Search Example

www.youtube.com/watch?v=XyoucHYKYSE

5

Depth-First Iterative Deepening (DFID)

1. DFS to depth 0 (i.e., treat start node
as having no successors)

2. Iff no solution, do DFS to depth 1

• Complete

• Optimal/Admissible if all operators have the same cost
• Otherwise, not optimal, but guarantees finding solution of shortest length

• Time complexity is a little worse than BFS or DFS

• Nodes near the top of the tree are generated multiple times
• Because most nodes are near the bottom of a tree, worst case time complexity is still

exponential, O(bd)

8

until solution found do:
DFS with depth cutoff c;
c = c+1

8

9/10/24

4

Iterative deepening search (c=1)

Nodes visited: 3

9

Iterative deepening search (c=2)

Nodes visited: 3+4 = 7

10

9/10/24

5

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

11

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

Next: 3+4+8+16 = 31

Next: 3+4+8+16+32 = 63

Next: 3+4+8+16+32+64 = 127

The point: because cost is
exponential, you’re not really

redoing that much work!

12

9/10/24

6

Depth-First Iterative Deepening
• If branching factor is b and solution is at depth d, then nodes at depth d

are generated once, nodes at depth d-1 are generated twice, etc.
• Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd).
• If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than exist at

depth d (in the worst case).

• Linear space complexity, O(bd), like DFS

• Has advantage of both BFS (completeness) and DFS (limited space, finds
longer paths more quickly)

• Generally preferred for large state spaces where solution depth is
unknown

13

13

Example for Illustrating Search Strategies

14

S

CBA

D GE

3 1 8

15 20 5
3

7

14

9/10/24

7

Depth-First Search
Expanded node Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }
G18 { B1 C8 }

Solution path found is S à A à G, cost 18
Number of nodes expanded (including goal node) = 5

15

S

CBA

D GE

3 1 8

15 20 5
3 7

15

Breadth-First Search
Expanded node Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { B1 C8 D6 E10 G18 }
B1 { C8 D6 E10 G18 G21 }
C8 { D6 E10 G18 G21 G13 }
D6 { E10 G18 G21 G13 }
E10 { G18 G21 G13 }
G18 { G21 G13 }

Solution path found is S à A à G , cost 18
Number of nodes expanded (including goal node) = 7

16

S

CBA

D GE

3 1 8

15 20 5
3 7

16

9/10/24

8

Uniform-Cost Search
Expanded node Nodes list

{ S0 }
S0 { B1 A3 C8 }
B1 { A3 C8 G21 }
A3 { D6 C8 E10 G18 G21 }
D6 { C8 E10 G18 G1 }
C8 { E10 G13 G18 G21 }
E10 { G13 G18 G21 }
G13 { G18 G21 }

Solution path found is S à C à G, cost 13
Number of nodes expanded (including goal node) = 7

17

S

CBA

D GE

3 1 8

15 20 5
3 7

17

How they Perform
• Depth-First Search:

• Expanded nodes: S A D E G
• Solution found: S A G (cost 18)

• Breadth-First Search:
• Expanded nodes: S A B C D E G
• Solution found: S A G (cost 18)

• Uniform-Cost Search:
• Expanded nodes: S A D B C E G
• Solution found: S C G (cost 13)
• This is the only uninformed search that worries about costs.

• Iterative-Deepening Search:
• nodes expanded: S S A B C S A D E G
• Solution found: S A G (cost 18)

S

CBA

D GE

3 1 8

15 20 5
3 7

18

9/10/24

9

Comparing Search Strategies

19

19

Blind Search (Redux)

• Last time:
• Search spaces
• Problem states
• Goal-based agents
• Breadth-first
• Depth-first
• Uniform-cost
• Iterative deepening

20

• From the book:
• Bidirectional
• Holy Grail Search

20

9/10/24

10

Comparing Search Strategies

• b is branching factor, d is depth of the shallowest solution, m is the
maximum depth of the search tree, l is the depth limit

21

Given unit
arc costs

21

Avoiding Repeated States

• Ways to reduce size of state space (with increasing computational costs)

• In increasing order of effectiveness and cost:
• Do not return to the state you just came from.
• Do not create paths with cycles in them.
• Do not generate any state that was ever created before.

• Effect depends on frequency of loops in state space.
• Worst case, storing as many nodes as exhaustive search!

22

9/10/24

11

State Space àAn Exponentially Growing Search Space

23

Bi-directional Search

• Alternate searching from
• start state à goal
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are unique start and
goal states

• Requires ability to generate “predecessor” states

• Can (sometimes) find a solution fast

What’s a real world problem
where you can generate

predecessors?

What’s a problem where you
cannot?

24

9/10/24

12

Holy Grail Search
Expanded node Nodes list

{ S0 }

S0 {C8 A3 B1 }

C8 { G13 A3 B1 }

G13 { A3 B1 }

Solution path found is S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3

(minimum possible!)

S

CBA

D GE

3 1 8

15
20 5

3
7

25

Holy Grail Search

• Why not go straight to the solution, without any wasted detours off to
the side?

• If we knew where the solution was we wouldn’t be searching!

If only we knew where we were headed…

26

9/10/24

13

“Satisficing”

• Wikipedia: “Satisficing is … searching until
an acceptability threshold is met”

• Contrast with optimality
• Satisficable problems do not get more benefit from finding an optimal solution

• Ex: You have an A in the class. Studying for 8 hours will get you a 98 on
the final. Studying for 16 hours will get you a 100 on the final. What to
do?

• A combination of satisfy and suffice

• Introduced by Herbert A. Simon in 1956

Another piece of
problem

definition

27

Informed Search (Ch. 3.5-3.7)
“An informed search strategy—one that uses problem

specific knowledge… can find solutions more efficiently then
an uninformed strategy.” – R&N pg. 92

Based Some material adapted from slides by Dr.
Matuszek @ Villanova University, which are based

on Hwee Tou Ng at Berkeley, which are based on
Russell at Berkeley. Some diagrams based on AIMA.

28

9/10/24

14

Overview of Informed Search

• Heuristic search

• Heuristic functions

• Admissibility

• Best-first search
• Greedy search, beam search, A*
• Examples

• Memory-conserving
variations of A*

29

“An informed search
strategy—one that uses
problem specific
knowledge… can find
solutions more efficiently
then an uninformed
strategy.”

– R&N pg. 92

Questions?

29

The Core Idea

• How can we make search smarter?
• Use problem-specific knowledge

beyond the definition of the problem
• Specifically, incorporate

knowledge of how good a
non-goal state is

• Informed or Best-First Search
• Node selected for expansion is based on an evaluation function f(n)

• I.e., expand the node that appears to be the best bet
• Node with lowest evaluation is selected for expansion

• Uses a priority queue

Slide from Dr. Rebecca Hutchinson @ Oregon State
Image: medium.com/blockchain-gaming/fog-of-war-7dba2b7faa72

30

9/10/24

15

Definition: Heuristic

• Free On-line Dictionary of Computing*: A rule of thumb, simplification,
or educated guess

• WordNet (r) 1.6*: Commonsense rule (or set of rules) intended to
increase the probability of solving some problem

• Reduces, limits, or guides search in particular domains

• Does not guarantee feasible solutions; often with no theoretical
guarantee
• Playing chess: try to take the opponent’s queen
• Getting someplace: head in that compass direction when possible

31

*Heavily edited for clarity

31

Heuristic Search

• Uninformed search is generic
• Node selection depends only on shape of tree and node expansion strategy

• Domain knowledge* à better decisions (sometimes)
• Knowledge about the specific problem
• Often calculated based on state

32

* Domain knowledge is a general term in AI. A domain is a specific
problem space, which you may or may not know something
about. Examples: game playing; chess; medicine; perfumery; …

32

9/10/24

16

Is It A Heuristic?

• A heuristic function is:
• An estimate of how close we are to a goal

• We don’t assume perfect knowledge
• That would be holy grail search

• So, the estimate can be wrong
• Based on domain-specific information
• Computable from the current state description
• A function over nodes that returns a value

• Node = particular problem state

33

Goal

Start

This way seems
pretty good

33

Heuristic Search

• Romania: Aradà Bucharest (for example)

34

next time maybe a

quick DFS version

of the problem

34

9/10/24

17

Breadth-First Search

• Romania: Aradà Bucharest (for example)

35

next time maybe a

quick DFS version

of the problem

35

Depth-First Search

• Romania: Aradà Bucharest (for example)

36

next time maybe a

quick DFS version

of the problem

36

9/10/24

18

Heuristic Search

• Romania:
• Eyeballing it à certain cities first
• They “look closer” to where we are going

• Can domain
knowledge be
captured in a
heuristic?

37

37

G

Heuristics Examples

• 8-puzzle:
• # of tiles in wrong place

• 8-puzzle (better):
• Sum of distances from goal
• Captures distance and

number of nodes

• Romania:
• Straight-line distance from

current node to goal

• Captures “closer to Bucharest”

38

f() = ?

f() = ?

38

9/10/24

19

Heuristic Function

• All domain-specific knowledge is encoded in heuristic function h

• h is some estimate of how desirable a move is
• How “close” (we think, maybe) it gets us to our goal

• Usually:
• h(n) ≥ 0: for all nodes n
• h(n) = 0: n is a goal node
• h(n) = ∞: n is a dead end (no goal

can be reached from n)

39

Goal

This seems
like the goal is
about 2 away

39

Example Search Space Revisited

40

S

CBA

D GE

1 5 8

9 4 5
3

7

start state

goal state

arc cost
8

8 4 3

¥¥ 0

h value

40

9/10/24

20

Weak vs. Strong Methods

• Weak methods:
• Extremely general, not tailored to a specific situation

• Examples
• Subgoaling: split a large problem into several smaller ones that can be solved

one at a time.
• Space splitting: try to list possible solutions to a problem, then try to rule out

classes of these possibilities
• Means-ends analysis: consider current situation and goal, then look for ways to

shrink the differences between the two

• Called “weak” methods because they do not take advantage of more
powerful domain-specific heuristics

41

41

Domain Information

• Informed methods add domain-specific information!

• Goal: select the best path to continue searching
• Uninformed methods (BFS, DFS, UCS) push nodes onto the search list based only

on the order in which they are encountered and the cost of reaching them
• Informed methods try to explore the best (“most likely looking”) nodes first

• Define h(n) to estimate the “goodness” of node n
• h(n) = estimated cost (or distance) of minimal cost path from n to a goal state

42

42

9/10/24

21

Straight Lines to Bucharest (km)

43

R&N pg. 68, 93

hSLD(n)

43

Admissible Heuristics

• Admissible heuristics never overestimate cost
• They are optimistic – think goal is closer than it is

• h(n) ≤ h*(n)
• where h*(n) is true cost to reach goal from n

• hSLD(Lugoj) = 244
• Can there be a shorter path?

44

Goal

This seems
great!

44

9/10/24

22

Admissibility

• Admissibility is a property of heuristics
• They are optimistic – think goal is closer than it is
• (Or, exactly right)

• Is “∀n, h(n)=1 kilometer” admissible?

• Admissible heuristics can be pretty bad!

• Using admissible heuristics guarantees that the first solution found will
be optimal, for some algorithms (A*).

45

45

Best-First Search
• A generic way of referring to informed methods

• Use an evaluation function f(n) over nodes
• Gives an estimate of “desirability”
• f(n) incorporates

domain-specific
information

• Different f(n) à
Different searches

• f(n) can incorporate
knowledge from h(n)

• So let’s estimate f(n) for
these nodes…

46

1
2

3

10

46

9/10/24

23

Best-First Search (more)

• Order nodes on the list by increasing value of f(n)

• Expand most desirable unexpanded node
• Implementation:
• Order nodes in frontier in decreasing order of desirability

• Special cases:
• Greedy best-first search
• A* search

47

47

Greedy Best-First Search

• Idea: always choose “closest node” to goal
• Most likely to lead to a solution quickly

• So, evaluate nodes based only on
heuristic function
• f(n) = h(n)

• Sort nodes by increasing
values of f

• Select node believed to be closest to a
goal node (hence “greedy”)
• That is, select node with smallest f value

48

a

hbh=2 h=4

gh=0

dh=1

eh=1

ch=1 i

j

h=1

h=0FIX DOUBLE g

48

9/10/24

24

Greedy Best-First Search

• Optimal?
• Why not?

• Example:
• Greedy search will find:

aàbàcàdàeàg ; cost = 5
• Optimal solution:

aàhàiàj ; cost = 3

• Not complete (why?)

49

a

hbh=2 h=4

gh=0

dh=1

eh=1

ch=1 i

j

h=1

h=0

49

Straight Lines to Bucharest (km)

50

R&N pg. 68, 93

hSLD(n)

50

9/10/24

25

Greedy Best-First Search: Ex. 1

S

G

224

242

What can
we say
about the
search
space?

51

Greedy Best-First Search: Ex. 2

52

hSLD(n)

52

9/10/24

26

Greedy Best-First Search: Ex. 2

53

53

Greedy Best-First Search: Ex. 2

54

54

9/10/24

27

Greedy Best-First Search: Ex. 2

55

55

Beam Search

• Use an evaluation function f(n) = h(n), but the maximum size of the
nodes list is k, a fixed constant

• Only keeps k best nodes as candidates for expansion, and throws the
rest away—can never explore those nodes

• More space-efficient than greedy search, but may throw away a node
that is on a solution path

• Not complete

• Not admissible

56

56

9/10/24

28

A* Search

• Idea: Evaluate nodes by combining g(n), the cost of reaching a node,
with h(n), the cost of getting from the node to the goal.
• A* because h(n) ≤ h*(n)

• Evaluation function: f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path

through n to goal

66

S

C

G

8

5

3

0

cost
h

0

13

8

g

66

Quick Terminology Reminders

• What is f(n)?
• An evaluation function that gives…
• A cost estimate of...
• The distance from n to G

• What is h(n)?
• A heuristic function that…
• Encodes domain knowledge about...
• The search space

• What is h*(n)?
• A heuristic function that

gives the…
• True cost to reach goal

from n
• Why don’t we just use that?

• What is g(n)?
• The path cost of getting

from S to n
• describes the “already

spent” costs of the current
search

67

9/10/24

29

Algorithm A*

• Use evaluation function f(n) = g(n) + h(n)

• g(n) = minimal-cost path from S to state n
• That is, the cost of getting to the node so far

• Ranks nodes on frontier by estimated cost
of solution
• From start node, through given node, to goal

• Not complete if h(n) can = ∞

68

S

BA

D
G

1 5 8

3

1

5

C

1

9

4

5 89

g(D)=4
h(D)=9

C is chosen
next to expand

68

A* Search

• Avoid expanding paths that are already expensive
• Combines costs-so-far with expected-costs

• Is complete iff
• Branching factor is finite
• Every operator has a fixed positive cost

• Is admissible iff
• h(n) is admissible

69

S

C

G

8

5

3

0

cost
h

0

9

8

g

69

9/10/24

30

A* Example 1

70

70

A* Example 1

71

71

9/10/24

31

A* Example 1

72

72

A* Example 1

73

73

9/10/24

32

A* Example 1

74

74

A* Example 1

75

75

9/10/24

33

Algorithm A*

• Algorithm A with constraint that h(n) ≤ h*(n)
• h*(n) = true cost of the minimal cost path from n to a goal.

• Therefore, h(n) is an underestimate of the distance to the goal

• h() is admissible when h(n) ≤ h*(n)
• Guarantees optimality

• A* is complete whenever the branching factor is finite, and every
operator has a fixed positive cost

• A* is admissible

76

76

Example Search Space Revisited

77

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

85

g value

77

9/10/24

34

Example
n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 ∞ ∞ ∞
E 8 ∞ ∞ ∞
G 9 0 9 0

• h*(n) is the (hypothetical) perfect heuristic.

• Since h(n) ≤ h*(n) for all n, h is admissible

• Optimal path = S B G with cost 9.

78

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost
h

0

1

4 8 9

85

g

78

Greedy Search

f(n) = h(n)

Node exp. node list

{ S(8) }

S { C(3) B(4) A(8) }

C { G(0) B(4) A(8) }

G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.

• Fast!! But NOT optimal.

79

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost
h

0

1

4 8 9

85

g

79

9/10/24

35

A* Search
f(n) = g(n) + h(n)

node exp. nodes list
{ S(8) }

S { A(9) B(9) C(11) }

A { B(9) G(10) C(11) D(∞) E(∞) }

B { G(9) G(10) C(11) D(∞) E(∞) }

G { C(11) D(∞) E(∞) }

• Solution path found is S B G, 4 nodes expanded..

• Still pretty fast, and optimal

80

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost
h

0

1

4 8 9

85

g

80

Admissibility and Optimality

• Intuitively:
• When A* finds a path of length k, it has already tried every other path which

can have length ≤ k
• Because all frontier nodes have been sorted in ascending order of

f(n)=g(n)+h(n)

• Does an admissible heuristic guarantee optimality for greedy search?
• Reminder: f(n) = h(n), always choose node “nearest” goal
• No sorting beyond that

81

A* IS NOT admissible
an admissible algorithm

81

9/10/24

36

Admissible heuristics

• E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., # of squares each tile is from
desired location)

• h1(S) = ?

• h2(S) = ?

83

Start

Goal

83

Admissible heuristics

• E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., # of squares each tile is from
desired location)

• h1(S) = 8

• h2(S) = 3+1+2+2+2+3+3+2 = 18

84

Start

Goal

84

9/10/24

37

Dealing with Hard Problems

• For large problems, A* often requires too much space.

• Two variations conserve memory: IDA* and SMA*

• IDA* – iterative deepening A*
• uses successive iteration with growing limits on f. For example,

• A* but don’t consider any node n where f(n) > 10
• A* but don’t consider any node n where f(n) > 20
• A* but don’t consider any node n where f(n) > 30, ...

• SMA* – Simplified Memory-Bounded A*
• Uses a queue of restricted size to limit memory use
• Throws away the “oldest” worst solution

85

85

What’s a Good Heuristic?
• If h1(n) < h2(n) ≤ h*(n) for all n, then:

• Both are admissible
• h2 is strictly better than (“dominates”) h1

• So… how do we find one?

1. Relaxing the problem:
• Remove constraints to create a (much) easier problem
• Use the solution cost for this problem as the heuristic function

2. Combining heuristics:
• Take the max of several admissible heuristics
• Still have an admissible heuristic, and it’s better!

86

86

9/10/24

38

Finding a Good Heuristic (2)

3. Use statistical estimates to compute h
• May lose admissibility

4. Identify good features, then use a learning algorithm to find a
heuristic function
• Also may lose admissibility

• Why are these a good idea, then?
• Machine learning can give you answers you don’t “think of”
• Can be applied to new puzzles without human intervention
• Often works

87

87

Some Examples of Heuristics?

• 8-puzzle?
• Manhattan distance

• Driving directions?
• Straight line distance

• Crossword puzzle?

• Making a medical diagnosis?

88

88

9/10/24

39

Summary: Informed Search

• Best-first search: general search where the minimum-cost nodes
(according to some measure) are expanded first.

• Greedy search: uses minimal estimated cost h(n) to the goal state as
measure. Reduces search time, but is neither complete nor optimal.

• A* search: combines UCS and greedy search
• f(n) = g(n) + h(n)
• A* is complete and optimal, but space complexity is high.
• Time complexity depends on the quality of the heuristic function.

• IDA* and SMA* reduce the memory requirements of A*.

89

89

Class Exercise: Creating Heuristics

90

8-Puzzle

N-Queens

Boat Problems
Remove 5

Sticks

Water Jug Problem

5 2

Route Planning

cabbage

wolf

sheep

90

9/10/24

40

Class Exercise S

CBA

D GE

3 1 8

15 20 5
3

7

8

8 4 3

¥¥ 0
h value

arc
cost

Apply the following to search this space. At each search step, show:
the current node being expanded; g(n) (path cost so far); h(n) (heuristic

estimate); f(n) (evaluation function); and h*(n) (true goal distance).

Depth-first search Breadth-first search A* search
Uniform-cost search Greedy search

91

