9/10/24

Bookkeeping

« HW1 due 9/16 at 11:59 PM
« Writing (please read the integrity page statement on GenAl use carefully)
* Problem sets

* Programming

* Today:
» Last of uninformed search
* Uniform-Cost, Iterative Deepening, Bidirectional

¢ Informed search, heuristics

« Soon: Constraint satisfaction

Uninformed Search: Uniform-Cost (UCS)

* Enqueue nodes by path cost:
* Let g(n) = cost of path from start node to current node n
* Sort nodes by increasing value of g
* |dentical to breadth-first search if all operators have equal cost

» “Dijkstra’s Algorithm” in algorithms literature
* “Branch and Bound Algorithm” in operations research literature
* Complete (*)

* Optimal/Admissible (*)

« Admissibility depends on the goal test being applied when a node is removed from
the nodes list, not when its parent node is expanded and the node is first generated

+ Exponential time and space complexity, O(bq)

9/10/24

Example: Path Costs

|| Romania with step costs in km

Sibiu g9 Fagaras
u

Dobreta []

P Eforie
[] Giurgiu

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Tasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

UCS Implementation

* For each frontier node, save the total cost of the path from the initial

state to that node

* Expand the frontier node with the lowest path cost

* Equivalent to breadth-first if step costs all equal

» Equivalent to Dijkstra’s algorithm in general

9/10/24

. Animation of
U n I the Uniform-

Algorithm

Cost search ' ——

Depth-First Iterative Deepening (DFID)

1. DFStodepth O (i.e., treat start node until solution found do:
as having no successors) P CDF:C":‘]"‘ Lyl GiEhy G
2. Iff no solution, do DFS to depth 1

* Complete

¢ Optimal/Admissible if all operators have the same cost
» Otherwise, not optimal, but guarantees finding solution of shortest length

* Time complexity is a little worse than BFS or DFS

* Nodes near the top of the tree are generated multiple times

* Because most nodes are near the bottom of a tree, worst case time complexity is still
exponential, O(bd)

9/10/24

lterative deepening search (c=1)

Limit = 1 >@ @
26, © p

Nodes visited: 3

9
lterative deepening search (c=2)
Nodes visited: 3+4 = 7
10

9/10/24

lterative deepening search (c=3)

Limit=3 @

ﬁ\
o

*@ ©
@ @
) © ©) ©
@ ® 2C)
(D
@
» Q
, »®
®

Nodes visited: 3+4+8 = |5

11
lterative deepening search (c=3)
Next: 3+4+8+16 = 31
) Next: 3+4+8+16+32 = 63
imit = @
Next: 3+4+8+16+32+64 = 127 |© N
— The point: because cost is 20
exponential, you're not really | o N 5
4 redoing that much work! o
° e — X 8¢
@ @ @ @
»© C] Q (Q
ﬂ\ ® © 0] © ® ©
[BeXe) X D
Nodes visited: 3+4+8 = |5
12

9/10/24

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes at depth d
are generated once, nodes at depth d-1 are generated twice, etc.

Hence b + 2b@D 4+ . +db<b?/ (1 - 1/b)> = O(b?).
If b=4, then worst case is 1.78 * 49, i.e., 78% more nodes searched than exist at
depth d (in the worst case).

* Linear space complexity, O(bd), like DFS

* Has advantage of both BFS (completeness) and DFS (limited space, finds
longer paths more quickly)

* Generally preferred for large state spaces where solution depth is
unknown

Example for lllustrating Search Strategies
/ NS
® ©
ol

9/10/24

Depth-First Search

Expanded node

Nodes list @>\K
{s°} 13/
{A3B1C8} }/ \

{ D6 ElO GlS Bl C8 é é
{E°GI8 Bl C8)

{ GlS Bl CS }

{B'C?}

Solution path foundisS > A 2 G, cost 18

Number of nodes expanded (including goal node) =

15

Breadth-First Search

Expanded node

SO
A3
Bl
C8
D6
ElO
G18
Solution path found

Nodes list
{s°} 1”/@1\{‘

{A3BIC®}

{ D6 ElO GlS GZl Gl3 }

{ ElO GlS GZl Gl3 }

{ GlS GZl Gl3 }

{ GZl Gl3 }
isS—=>A > G, cost 18

Number of nodes expanded (including goal node) =

{ Bl C8 D6 ElO GlS } y@7 5 0 @
{ C8 D6 E10 G18 G21) @ é\éﬁ

16

9/10/24

Uniform-Cost Search

Expanded node

SO
Bl
A3
D6
C8
ElO

Gl3

Nodes list

{s°} ’3/%
{B1A3C8}

{ A3 C8 GZl } @ 5 @ @
{ D6 C8 E10 G18 G21) @}/%\é%

{ C8 ElO GlS Gl }

{ E10 G13 g18 21 }
{ G13 gld g2 }

{ Gl g2t }

Solution path found is S =2 C =2 G, cost 13
Number of nodes expanded (including goal node) =7

17

How they Perform

* Depth-First Search:

Expanded nodes: SADEG

Solution found: S A G (cost 18) ;/@N

* Breadth-First Search:

A..® ©

5
Expanded nodes:SABCDEG }/ 7\ 20 5
Solution found: S A G (cost 18) @

* Uniform-Cost Search:

Expanded nodes:SADBCEG
Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

* lterative-Deepening Search:
nodes expanded: SSABCSADEG
Solution found: S A G (cost 18)

18

9/10/24

Comparing Search Strategies

Complete Optimal Time complexity Space complexity
Breadth first search: yes yes O(bd) O(bd)
Depth first search no no O(bm) O(bm)
Depth limitedsearch ifl==d no O(bl) O(b])
depth first iterative yes yes O(bd) O(bd)
deepening search
bi-directional search yes yes O(bdz) O(bdz)

b is branching factor, d is depth of the shallowest solution,
m is the maximum depth of the search tree, 1 is the depth limit

19
Blind Search (Redux)
« Last time: * From the book:
» Search spaces » Bidirectional
* Problem states * Holy Grail Search
* Goal-based agents
* Breadth-first
* Depth-first
* Uniform-cost
» Iterative deepening
20

9/10/24

Comparing Search Strategies

* bis branching factor, d is depth of the shallowest solution, m is the
maximum depth of the search tree, 1 is the depth limit

Complete Optimal Time complexity Space complexity
Breadth first search: yes @ O bd O bd
’ .\() Given unit L)
arc costs
Depth first search no no O(bm) O(bm)
Depth limitedsearch ~ ifl==d no O(bl) O(b])
depth first iterative yes yes O(bd) O(bd)
deepening search
bi-directional search yes yes O(bdz) O(bdz)
21
Avoiding Repeated States
* Ways to reduce size of state space (with increasing computational costs)
* Inincreasing order of effectiveness and cost:
* Do not return to the state you just came from.
* Do not create paths with cycles in them.
* Do not generate any state that was ever created before.
» Effect depends on frequency of loops in state space.
* Worst case, storing as many nodes as exhaustive search!
22

10

9/10/24

State Space = An Exponentially Growing Search Space

23
Bi-directional Search
* Alternate searching from
start state = goal Q‘ #
« goal state > start !%i
* Stop when the fr What’s a real world problem
* Works well only where you can generate nd
goal states predecessors!?
« Requires ability t What'’s a problem’where you | & !9
cannot!? @
« Can (sometimes) find a solution fast & %
24

11

9/10/24

Holy Grail Search

Expanded node

SO
C8
G13

Nodes list

o 25

(C8 A3BI1)

A ® O
S 4

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3

(minimum possible!)

25
Holy Grail Search
* Why not go straight to the solution, without any wasted detours off to
the side?
* If we knew where the solution was we wouldn’t be searching!
If only we knew where we were headed...
26

12

9/10/24

"“Satisficing”

* Wikipedia: “Satisficing is ... searching until

an acceptability threshold is met” Another piece of
problem

» Contrast with optimality definition

Satisficable problems do not get more benefit from finding an optimal solution

* Ex: You have an A in the class. Studying for 8 hours will get you a 98 on
the final. Studying for 16 hours will get you a 100 on the final. What to
do?

« A combination of satisfy and suffice

* Introduced by Herbert A. Simon in 1956

27

Informed Search (Ch. 3.5-3.7)

“An informed search strategy—one that uses problem

specific knowledge... can find solutions more efficiently then
an uninformed strategy.” — R&N pg. 92

28

13

9/10/24

Overview of Informed Search

e Heuristic search

Questions?

e Heuristic functions

“An informed search
strategy—one that uses
 Best-first search problem specific
knowledge... can find
solutions more efficiently
* Examples then an uninformed
strategy.”

* Admissibility

* Greedy search, beam search, A*

« Memory-conserving

variations of A* - R&N pg. 92

29
The Core Idea v
* How can we make search smarter?
* Use problem-specific knowledge
beyond the definition of the problem B
» Specifically, incorporate
knowledge of how good a
non-goal state is
* Informed or Best-First Search
* Node selected for expansion is based on an evaluation function f(n)
* l.e., expand the node that appears to be the best bet
* Node with lowest evaluation is selected for expansion
* Uses a priority queue
30

14

9/10/24

Definition: Heuristic

* Free On-line Dictionary of Computing™: A rule of thumb, simplification,
or educated guess

 WordNet (r) 1.6*: Commonsense rule (or set of rules) intended to
increase the probability of solving some problem

* Reduces, limits, or guides search in particular domains

* Does not guarantee feasible solutions; often with no theoretical
guarantee

» Playing chess: try to take the opponent’s queen

* Getting someplace: head in that compass direction when possible

31
Heuristic Search
* Uninformed search is generic
* Node selection depends only on shape of tree and node expansion strategy
« Domain knowledge* - better decisions (sometimes)
* Knowledge about the specific problem
» Often calculated based on state
* Domain knowledge is a general term in Al. A domain is a specific
problem space, which you may or may not know something
about. Examples: game playing; chess; medicine; perfumery; ...
32

15

9/10/24

Is It A Heuristic?

* A heuristic function is:
* An estimate of how close we are to a goal
* We don’t assume perfect knowledge
* That would be holy grail search
* So, the estimate can be wrong
* Based on domain-specific information

e Computable from the current state description

A function over nodes that returns a value

This way seems
pretty good

- >
* Node = particular problem state
\\
\
33
Heuristic Search
« Romania: Arad—> Bucharest (for example)
[] Oradea
Neamt
bd Vaslui
d Hirsova
Drobeta [.
Craiova Jﬁiurgiu Eforie
34

16

9/10/24

Breadth-First Search

« Romania: Arad—> Bucharest (for example)

Neamt

imisoara
142
Lugoj

d Hirsova

Mehadia Urziceni

75
Drobeta [

Craiova [Giurgiu Eforie

35
Depth-First Search
« Romania: Arad—> Bucharest (for example)
Neamt
Sibiu s Fagaras
" \‘ t\‘ L Vaslui
80
LT,m,wdm imnicu Vilcea
l ugoj 97 Pitesti
.\l(-hadna L Hirsova
7\
Drobet: 1
Craiova [Giurgiu Eforie
36

17

9/10/24

Heuristic Search

 Romania:
« Eyeballing it = certain cities first

+ They(look closer” Jo where we are going

 Can domain
knowledge be
capturedin a
heuristic?

37
Heuristics Examples
* 8-puzzle:
» # of tiles in wrong place
» 8-puzzle (better):
* Sum of distances from goal
» Captures distance and
number of nodes
 Romania:
» Straight-line distance from
current node to goal
» Captures “closer to Bucharest”
38

18

9/10/24

Heuristic Function

« All domain-specific knowledge is encoded in heuristic function h

 hissome estimate of how desirable a move is

How “close” (we think, maybe) it gets us to our goal This seems
like the goal is

* Usually: about 2 away

e h(n)=0: for all nodes n

e h(n)=0: nis a goal node

* h(n)=oe: nis a dead end (no goal ° -

can be reached from n) ﬂ/,’
————— Goal
N\
\
\
\
\
39
Example Search Space Revisited
start state
’ arc cost
. ® O
3 9 \h value
7 4 5
J O @
\ goal state
40

19

9/10/24

Weak vs. Strong Methods

* Weak methods:
* Extremely general, not tailored to a specific situation

* Examples

* Subgoaling: split a large problem into several smaller ones that can be solved
one at a time.

» Space splitting: try to list possible solutions to a problem, then try to rule out
classes of these possibilities

* Means-ends analysis: consider current situation and goal, then look for ways to
shrink the differences between the two

* Called “weak” methods because they do not take advantage of more
powerful domain-specific heuristics

41
Domain Information
* Informed methods add domain-specific information!
* Goal: select the best path to continue searching
* Uninformed methods (BFS, DFS, UCS) push nodes onto the search list based only
on the order in which they are encountered and the cost of reaching them
* Informed methods try to explore the best (“most likely looking”) nodes first
* Define h(n) to estimate the “goodness” of node n
* h(n) = estimated cost (or distance) of minimal cost path from n to a goal state
42

20

9/10/24

Straight Lines to Bucharest (km)
2] Oradea hSLD(n)
Neamt Arnd
166
Bocharewst 0
Crasova 160
Drobeta 242
Florie 161
Fagaras 176
Glurgiu 7
Ld Vaslui u“ wvs 12(1’
i Timisoara I\"*I ‘I :‘:
Neast 234
Oradea 80
Pltessi 100
L Hirsova Rimaice Vilces 193
[Mchadia Urziceni . ?ﬂ.‘*‘ %::
75 Urabcent 80
Drobeta [;:::: :'::
Craiova [] Giurgiu Eforie

43
Admissible Heuristics
* Admissible heuristics never overestimate cost
* They are optimistic — think goal is closer than it is
« h(n) < h*(n)
« where h’(n) is true cost to reach goal from n
’ hSLD(LugOJ) =244 This seems
e Canthere be a shorter path? great!
44

21

9/10/24

Admissibility

» Admissibility is a property of heuristics
« They are optimistic — think goal is closer than itis "]
* (Or, exactly right)

e Is“Vn, h(n)=1 kilometer” admissible?
* Admissible heuristics can be pretty bad!

* Using admissible heuristics guarantees that the first solution found will
be optimal, for some algorithms (A*).

45
Best-First Search
* A generic way of referring to informed methods
* Use an evaluation function f(n) over nodes
* Gives an estimate of “desirability”
* fi(n) incorporates
domain-specific
information
 Different fin) > .
Different searches -
* f(n) canincorporate
knowledge from h(n)
* So let’s estimate f(n) for
these nodes...
46

22

9/10/24

Best-First Search (more)

* Order nodes on the list by increasing value of f(n)

* Expand most desirable unexpanded node
Implementation:

Order nodes in frontier in decreasing order of desirability

» Special cases:
* Greedy best-first search

e A*search

47
Greedy Best-First Search
» Idea: always choose “closest node” to goal
Most likely to lead to a solution quickly e
« So, evaluate nodes based only on h=2 ‘D Q h=4
heuristic function
fitn) = h(n) S MONOLE
* Sort nodes by increasing
h=1 {_(h=0
values of f 0 @
« Select node believed to be closest to a n-1(8)
oal node (hence “greedy”
g de greedy”) w0 (D)
* That s, select node with smallest f value
48

23

9/10/24

Greedy Best-First Search

* Optimal?
* Why not?

* Example:
* Greedy search will find:
a2>b>c>d2>e>g; cost=5
* Optimal solution:
a>h—2>i2j; cost=3

* Not complete (why?)

49
Straight Lines to Bucharest (km)
] Oradea hSLD(n)
Neamt Arnd
166
Bocharest 0
Cradova 160
Drobeta 242
Florie 161
Fagaras 176
Glurgiu ”
Ld Vaslui l-“'h wve 12:’
() Timisoara l\-'.l) . gi:
Neast 234
Oradea 80
Pitessi 100
L Hirsova Rimaice Vilces 193
L] Mchadia Urziceni ?“"I 3;:
75 = B &6 Urzhcent 80
Drobeta [J e)::t?‘ 1'7’:
Craiova [Giurgiu Eforie
50

24

9/10/24

Greedy Best-First Search: Ex. 1

[] Oradea

Neamt

Arad LJ

118

1) imisoara

Bucharest

Craiova [Giurgiu Eforie

What can
we say
about the
search
space?

51
Greedy Best-First Search: Ex. 2
52

25

9/10/24

Greedy Best-First Search: Ex. 2

S |
53
Greedy Best-First Search: Ex. 2
== = 00
54

26

9/10/24

Greedy Best-First Search: Ex. 2

e T *’

—~ 329 374

56 380 193

.?

55
Beam Search
* Use an evaluation function f(n) = h(n), but the maximum size of the
nodes list is k, a fixed constant
* Only keeps k best nodes as candidates for expansion, and throws the
rest away—can never explore those nodes
* More space-efficient than greedy search, but may throw away a node
that is on a solution path
* Not complete
* Not admissible
56

27

9/10/24

A* Search

* ldea: Evaluate nodes by combining g(n), the cost of reaching a node,
with h(n), the cost of getting from the node to the goal.

« A* because h(n) < h*(n)

« Evaluation function: f(n) = g(n) + h(n) 0
cost
e g(n)=costso far to reach n 8/ i
* h(n) = estimated cost from n to goal l
* f(n) = estimated total cost of path 8@ 3

through n to goal /\

66
Quick Terminology Reminders
 Whatis f(n)? * Whatis h*(n)?
* An evaluation function that gives... * A heuristic function that
* A cost estimate of... gives the...
* The distance fromnto G * True cost to reach goal
fromn
« Whatis h(n)? * Why don’t we just use that?
e A heuristic function that... - Whatis g(n)?
* Encodes domain knowledge about... - The path cost of getting
+ The search space fromSton
* describes the “already
spent” costs of the current
search
67

28

9/10/24

Algorithm A*

« Use evaluation function f(n) = g(n) + h(n)

* g(n)=minimal-cost path from S to state n /

* Thatis, the cost of getting to the node so far

* Ranks nodes on frontier by estimated cost e

of solution 3
* From start node, through given node, to goal 4 Q
* Not complete if h(n) can = oo é)\f
9
8 (D)=4 C is chosen
h (D)=9 next to expand
68
*
A* Search
* Avoid expanding paths that are already expensive
* Combines costs-so-far with expected-costs
* Is complete iff
* Branching factor is finite 0
cost
» Every operator has a fixed positive cost 8/ h
* Is admissible iff 8@)1
e h(n)is admissible
SN,
Q"
69

29

9/10/24

A" Example 1

[{Oradea

Neamt
!

366=0+366
70
*
A" Example 1
393=140+4253 447=118+329 449=754374
71

30

9/10/24

A" Example 1

iu >

Neamt
!

Fagaras

Urziceni

Drobeta

Craiova d Giurgin Eforic

7 447=118+329 449=754374
646=280+366 415=239+176 671=2914380 413=220+193
72
* .
A" Example 1
Urziceni R s
.
—— Drobeta
< Aad ot o i Eforie
4 .‘.irﬁisoala VV .ﬂ - E.
— N 447=118+329 449=75+374

646=280+366 415=239+176 6/1 2914380

———

526=366+160 417=317+100 553=300+253

73

31

9/10/24

A" Example 1

< Sbiv

.m’ ..Fagal;s ..dadsa ..mnm“eu

671=291+380 S

646=280+366

591=338+253 450=450+0

imisoara

447=118+329

» . —_

526=366+160 417=317+100 553=300+253

Neamt
!

“raiova - Eforic

74

A* Example 1

646=280+366

591=338+4253 450=450+0

671=291+380

< Amd >

——___

447=118+329

T~

PMI TT—

526:366—!»1607{_,‘ =7 T 553=300+253

418=418+0 615=455+160 607=414+193

75

32

9/10/24

Algorithm A*

Algorithm A with constraint that h(n) < h*(n)

h*(n) = true cost of the minimal cost path from n to a goal.

» Therefore, h(n) is an underestimate of the distance to the goal

* h() is admissible when h(n) £ h*(n)

Guarantees optimality

* A*is complete whenever the branching factor is finite, and every
operator has a fixed positive cost

« A¥*is admissible

76
Example Search Space Revisited
: start state
parent pointer
arc cost
\h value
\ goal state
77

33

9/10/24

Example

n gn) h(n) f(n) h*(n)

S 0 8 8

A 1 8 9

B 5 4 9 1
C 8 3 1

D 4 o0 0

E 8 o © @

G 9 0 9 ”

h*(n) is the (hypothetical) perfect heuristic.
Since h(n) < h*(n) for all n, h is admissible

Optimal path =S B G with cost 9.

9
9
4

1 5
© /7\4%
o0 . o g
0 ‘ 0

78
Greedy Search
f(n) = h(n) ’ 8/ cost
Node exp. node list / S jl
{s(8)) @ ® «O
S { C(3) B(4) A(8) }]7%\ 4% o
C { G(0) B(4) A(8) } ‘@’ “ 0
G { B(4) A(8) }
* Solution path found is S C G, 3 nodes expanded.
* Fast!! But NOT optimal.
79

34

9/10/24

A* Search / N
fin) =g(n) + h(n) 1(a): «(B) g@f

node exp. nodes list f7 \% 4/
{5(8) } é S Ny
A(9) B(9) C(11) } L@]

B(9) G(10) C(11l) D(x) E(%) }
G(9) G(10) C(11) D(») E(%) }

Q W P wn
e T e]

{ C(11) D(™) E(x) }
* Solution path found is S B G, 4 nodes expanded..
» Still pretty fast, and optimal

80

Admissibility and Optimality

* Intuitively:
When A* finds a path of length k, it has already tried every other path which
can have length < k
Because all frontier nodes have been sorted in ascending order of
fln)=g(n)+h(n)
* Does an admissible heuristic guarantee optimality for greedy search?
« Reminder: f(n) = h(n), always choose node “nearest” goal
* No sorting beyond that

81

35

9/10/24

Admissible heuristics

* E.g., for the 8-puzzle:

* hy(n) = number of misplaced tiles > | 4
* hy(n) = total Manhattan distance
* (i.e., # of squares each tile is from ®
desired location) 3 | 1
 hy(S)=7 Start
* hy(S)=7? 1l 2
4|l 5
7\l 8
Goal
83
Admissible heuristics
* E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles > [4
h,(n) = total Manhattan distance
(i.e., # of squares each tile is from 6
desired location) 3 || 1
* hy(S)=8 Start
© hy(S) = 3+1+2+2+2+3+3+2 =18 1| 2
4|l 5
7|l 8
Goal
84

36

9/10/24

Dealing with Hard Problems

For large problems, A* often requires too much space.
Two variations conserve memory: IDA* and SMA*

IDA* — iterative deepening A*

* uses successive iteration with growing limits on f. For example,
* A* but don’t consider any node n where f(n) > 10
* A* but don’t consider any node n where f(n) > 20
* A* but don’t consider any node n where f(n) > 30, ...

SMA* — Simplified Memory-Bounded A*
» Uses a queue of restricted size to limit memory use
* Throws away the “oldest” worst solution

85

What's a Good Heuristic?

If hy(n) < hy(n) < h*(n) for all n, then:
* Both are admissible
* h,is strictly better than (“dominates”) h;

So... how do we find one?

Relaxing the problem:
* Remove constraints to create a (much) easier problem
» Use the solution cost for this problem as the heuristic function

Combining heuristics:

e Take the max of several admissible heuristics
e Still have an admissible heuristic, and it’s better!

86

37

9/10/24

Finding a Good Heuristic (2)

3. Use statistical estimates to compute h
* May lose admissibility

4. ldentify good features, then use a learning algorithm to find a
heuristic function

* Also may lose admissibility

* Why are these a good idea, then?

* Machine learning can give you answers you don’t “think of”
e Can be applied to new puzzles without human intervention
+ Often works

87
Some Examples of Heuristics?
* 8-puzzle?
* Manhattan distance
* Driving directions?
» Straight line distance
* Crossword puzzle?
* Making a medical diagnosis?
88

38

9/10/24

Summary: Informed Search

» Best-first search: general search where the minimum-cost nodes
(according to some measure) are expanded first.

* Greedy search: uses minimal estimated cost h(n) to the goal state as
measure. Reduces search time, but is neither complete nor optimal.

* A* search: combines UCS and greedy search
* f(n) =g(n) + h(n)
* A*is complete and optimal, but space complexity is high.

* Time complexity depends on the quality of the heuristic function.

* |IDA* and SMA* reduce the memory requirements of A*.

89
Class Exercise: Creating Heuristics
Remove 5
8-Puzzle Boat Problems Sticks
ook oo ofieg i
E E cabbage ; sheep I I I
noojooop™ m’ i
N-Queens Water Jug Problem Route Planning
90

39

9/10/24

Class Exercise

3 ©;
/é@ “/ bt

Apply the following to search this space. At each search step, show:
the current node being expanded; g(n) (path cost so far); h(n) (heuristic
estimate); f(n) (evaluation function); and h*(n) (true goal distance).

Depth-first search Breadth-first search ~ A* search
Uniform-cost search Greedy search

91

40

