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Artificial Intelligence class 3: Search (Ch. 3.1–3.3)

Some material adopted from notes by Charles R. Dyer, University of  Wisconsin-Madison; Poole & McKay; 
P. Matuszek, Villanova; D. Matuszek, Penn; and Drs. Finin, desJardins, and Ferraro, UMBC
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Bookkeeping

• Final reminder: readings, HW, etc. are on the class schedule

tiny.cc/671-schedule
• HW1 is out, please verify that you can find it

• Involves writing a short essay, coding in Python, and problem solving

• Not super hard, but time consuming – please read it
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Bits From Last Time

• Sequential: Require memory of past 
actions to determine next best action
• Or: current action can influence all future 

actions

• Episodic: A series of one-shot actions
• Only the current percept(s) are relevant
• Sensing/acting in episode(t) is 

independent of episode(t-1)

• Single- vs. multi-agent: Is “your” agent 
the only one affecting the world?

en.wikibooks.org/wiki/Artificial_Intelligence/AI_Agents_and_their_Environments
jeffclune.com/courses/media/courses/2014-Fall-AI/lectures/L04-AI-2014.pdf 

Properties of 
the agent’s 
environment

(PEAS)
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Some Examples
Agent Type Performance 

Measure 
Environment Actuators Sensors 

Robot soccer 
player 

Winning game, 
goals 

for/against 
 

Field, ball, 
own team, 
other team, 
own body 

Devices (e.g., 
legs) for 

locomotion 
and kicking 

 

Camera, touch 
sensors, 

accelerometers, 
orientation 

sensors, 
wheel/joint 
encoders 

Internet 
book-shopping 

agent 
 

Obtain 
requested/ 
Interesting 

books, 
minimize 

expenditure 

Internet 
 

Follow link, 
enter/submit 
data in fields, 
display to user 

Web pages, 
user requests 

 

PEAS

Task 
Environment 

Observable? Deterministic? Episodic? Static? Discrete? Agents? 

Robot soccer Partially Stochastic Sequential Dynamic Continuous Multi 
Internet 
book-

shopping 

Partially Deterministic Sequential Static 
 

Discrete Single 
 

 

Environment

4
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Pre-Reading: Questions?

• Search (a.k.a. state-space search)

• Concepts:
• Initial state •  Transition model
• State space graph •  Step cost
• Goal test (cf. goal) •  Path cost
• Actions •  Solution / optimal solution  

• Open-loop/closed-loop systems

• Expanding vs. generating a state

• The frontier (a.k.a. open list)

5

5

What’s a “State”?

• The current value of everything in the agent’s “world”
• “State space”: all possible states

• Everything in the problem representation

• Values of all parameters at a particular point in time

• Examples:
• Chess board: An 8x8 grid with location of all pieces
• Tic-tac-toe: A 3x3 grid, with whether each is X, O, or open
• Robot soccer: Location of all players, location of ball, possibly last known 

trajectory of all players (if sequential)
• Travel: Cities, distances between cities, agent’s current city

6
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Today’s Class

• Representing states and operators

• Example problems

• Generic state-space search algorithms

• Everything in AI comes down to search.

• Goal: understand search, and understand why.

7

7

Why Search?

• Traditional (non-AI) problems are likely tractable.
• Either they can be solved by listing all possible states…

• Tic-tac-toe: 39 = 19,683 states (3 values for each cell, nine cells)*

• Small enough that a computer can explore all possible choices during play

• Or there’s a mechanical approach to finding a solution

Can’t memorize the space of answers, but you don’t need to

8

X

O

X
…

X

O O

X

X O O O

O O O

O O O

* Of course, there are fewer valid states

345,781,000  ✕ 234,567,431,000
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Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good 
solution is until we find it…

• Or, somehow, we have more
states than we can explore.

examples.gurobi.com/traveling-salesman-problem,  en.wikipedia.org/wiki/Free_Internet_Chess_Server,  www.smbc-comics.com/comic/recommendations

9

Why Search? (3)

• We can’t search intractable problems exhaustively, so we must consider 
them cleverly.

• Understanding the problem space is the first step.

needpix.com, machinelearnings.co/understanding-alphago-948607845bb1

10
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Big Idea

• Allen Newell and Herb Simon developed the
problem space principle as an AI approach in 
the late 60s/early 70s

• “The rational activity in which people engage 
to solve a problem can be described in terms
of (1) a set of states of knowledge, (2) operators 
for changing one state into another, (3) constraints on applying 
operators and (4) control knowledge for deciding which operator to 
apply next.”

Newell A & Simon H A. Human problem solving. Englewood Cliffs, NJ: Prentice-Hall. 1972. 

We’ll solve big AI problems by 
formulating them as an appropriate 

graph, then using graph search 
algorithms on it.

11

Informed vs. Uninformed Search

• Uninformed search: We don’t know much about the problem space, 
but we know what actions we can take and how they change the world
• Imagine you just learned chess, and all you know is the legal moves

• What can you do?
• Start figuring out what sequence of moves

leads to a world state you like!
• Imagine you just entered a completely new

building and you’re trying to find the bathroom
• What can you do?
• Decide to go left or right, and then see what decision is next!

• Informed search: when you know more about the world (next lecture)

Image: www.amazon.com/Magnetic-Folding-Handmade-Interior-Beginner/dp/B07V1DRLM8

12
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Search: The Core Idea

• For any problem:
• World is (always) in some state
• Agents take actions, which 

change the state

• We need a sequence of 
actions that gets the world 
into a particular goal state.

• To find it, we search the 
space of actions and states.

• Searching is not (always) the same as doing!

13

Some 
world 
state

State 
3

State 
4

State 
5

State 
6

some 
action

some other 
actionA1 A2A4

A3 A6 A7A5

State 
2

State 
3

State 
6
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Search: The Core Idea

• For any problem:
• World is (always) in some state
• Agents take actions, which 

change the state

• We need a sequence of 
actions that gets the world 
into a particular goal state.

• To find it, we search the 
space of actions and states.

• Searching is not (always) the same as doing!
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X O

X

O X O

X O

X
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X O

X
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X O X

O X O

X O O

X

O X O

X O

O X

O X O

X O

X O
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Building Goal-Based Agents

• To build a goal-based agent we need to decide:
• What is the goal to be achieved?
• What are the possible actions?

• What relevant information must be encoded…
• To describe the state of the world?

• To describe the available transitions?
• To solve the problem?

15

Initial
state

Goal
stateActions

15

What is the Goal?
• A situation we want to achieve

• A set of properties that we want to hold

• Must define a  “goal test” (a function over states)
• What does it mean to achieve it?
• Have we done so?

• Defining goals is a hard question that is rarely tackled in AI!
• Often, we assume the system designer or user will specify the goal 

• For people, we stress the importance of establishing clear goals as the 
first step towards solving a problem. 
• What are your goals?
• What problem(s) are you trying to solve?

16

16



9/9/24

9

What Are Actions?

• Primitive actions or events:
• Make changes in the world
• In order to achieve a (sub)goal

• Actions are also known as operators or moves

• Examples:

17

Low-level:
• Chess: “advance a pawn”
• Navigation: “take a step”
• Finance: “sell 10% of stock X”

High-level :
• Chess: “clear a path for a queen”
• Navigation: “go home”
• Finance: “sell best-return shares”

17

Actions and Determinism

• In a deterministic world there is no uncertainty in an action’s effects

• Current world state + chosen action fully specifies:

• Whether that action can be done in current world
• Is it applicable? (E.g.: Do I own any of stock X to sell?)
• Is it legal? (E.g.: Can’t just move a pawn sideways.)

• World state after action is performed

18

After last 
pt:
•No need 
for 
“history” 
information
•Everythin
g is 
encapsulat
ed by state

Wha?

18
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Representing Actions

• Actions here are:
• Discrete events
• That occur at an instant of time

• For example:
• State: “Mary is in class”
• Action “Go home”
• New state: “Mary is at home”

• There is no representation of a state where she is in between (i.e., in the 
state of “going home”).

19

Some 
world 
state

State 
3

A1 A2A4

State 
2

19

Sliding Tile Puzzles

• 15-puzzles, 8-puzzles

• How do we represent states?

• How do we represent actions?
• Tile-1 moves north
• Tile-1 moves west
• Tile-1 moves east
• Tile-1 moves south
• Tile-2 moves north
• Tile-2 moves west
• …

commons.wikimedia.org/wiki/File:15-puzzle-shuffled.svg,		commons.wikimedia.org/wiki/File:15-puzzle-loyd-bis2.svg

20



9/9/24

11

Representing Actions

• Number of actions / operators depends on representation used in 
describing a state

• 8-puzzle:
• Could specify 4 possible 

moves (actions) for each 
of the 8 tiles: 

4*8=32 operators.
• Or, could specify four moves for the “blank” square:

4 operators!

• Careful representation can simplify a problem!

21

…

21

Representing States

• What information about the world sufficiently describes all aspects 
relevant to solving the goal?
• For Tic-Tac-Toe?

• That is: what knowledge must be in a state 
description to adequately describe the current state of the world?

• The size of a problem is usually described in terms of the number of 
states that are possible
• Tic-Tac-Toe has about 39 states. 
• Checkers has about 1040 states. 
• Rubik’s Cube has about 1019 states. 
• Chess has about 10120 states in a typical game.

22

This	is	ten	
quintillion	
states.

Image: dsmit2.medium.com/tic-tac-toe-deep-learning-and-problem-representations-47e7f0bfebeb

22
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Some Example Problems

• Toy problems and micro-worlds
• 8-Puzzle
• Boat Problems

• Cryptarithmetic
• Remove 5 Sticks

• Water Jug Problem

24

https://xkcd.com/1134
24

8-Puzzle

• Given an initial configuration of 8 sliding numbered tiles on a 3 x 3 
board, move the tiles in such a way so as to produce a desired goal 
configuration of the tiles. 

25

25
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8-Puzzle

• State: 3 x 3 array describing where tiles are

• Operators: Move blank square Left, Right, 
Up or Down
• This is a more efficient encoding of the 

operators! 

• Initial State: Starting configuration of the 
board

• Goal: Some specific board configuration

26

S0 = [5 4 0 
6 1 8 
7 3 2]

Sg = [0 1 2
3 4 5 
6 7 8]

26

The 8-Queens Problem 

• Place eight (or N) queens on a chessboard such that no queen can reach 
any other

27

27
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Boat Problems

• 1 sheep, 1 wolf, 1 cabbage, 1 boat

• Goal: Move everything across the river. 

• Constraints:
• The boat can hold you plus one thing.
• Wolf can never be alone with sheep.
• Sheep can never be alone with cabbage.

• State: location of sheep, wolf, cabbage on shores and boat. 

• Operators: Move ferry containing some set of occupants across 
the river (in either direction) to the other side.

28

https://xkcd.com/1134
28

Remove 5 Sticks

• Given the following configuration of sticks, remove exactly 5 sticks in 
such a way that the remaining configuration forms exactly 3 squares. 

29

29
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Some Real-World Problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning

31

31

Knowledge Representation Issues

• What’s in a state?
• Is the color of the tiles relevant to solving an 8-puzzle?
• Is sunspot activity relevant to predicting the stock market? 

• What to represent is a very hard problem!
• Usually left to the system designer to specify. 

• What level of abstraction to describe the world?
• Too fine-grained and we “miss the forest for the trees”
• Too coarse-grained and we miss critical information

32
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Knowledge Representation Issues

• Number of states depends on:
• Representation choices
• Level of abstraction

• In the Remove-5-Sticks problem:
• If we represent individual sticks, then there are 17-choose-5 possible ways of 

removing 5 sticks (6188)
• If we represent the “squares” defined by 4 sticks, there are 6 squares initially 

and we must remove 3
• So, 6-choose-3 ways of removing 3 squares (20)
• But, we must do extra calculation on how to remove squares

33

33

Reminder: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

• G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter
• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦)

• (among other qualities)

34
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Formalizing Search in a State Space

• A state space is a graph (V, E):
• V is a set of nodes (states)
• E is a set of arcs (actions)

• Each arc is directed from a node 
to another node

• How does that work for 8-
puzzle?

35

35

Formalizing Search in a State Space

• V: A node is a data structure that contains:
• State description 
• Bookkeeping information: parent(s) of the node, name of operator that 

generated the node from that parent, etc.

• E: Each arc is an instance (single occurrence) of one operator. 
• When operator is applied to the arc’s source node (state), then
• Resulting state is associated with the arc’s destination node

36
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1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start
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(taking a certain 
action)
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Formalizing Search 

• Each arc has a fixed, positive cost 
• Corresponding to the cost of the operator
• What is “cost” of doing that action?

• Each node has a set of successor nodes
• Corresponding to all operators (actions) that can apply at source node’s state
• Expanding a node is generating successor nodes, and adding them (and 

associated arcs) to the state-space graph

• Important:
• We don’t know all states initially – we have to apply operators and calculate

the successor nodes

43

43

Formalizing Search II

• One or more nodes are designated as start nodes

• A goal test predicate is applied to a state to determine if its associated 
node is a goal node

44

44
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Water Jug Problem as Search

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. jug

Empty2 – (x,y)→(x,0) Empty 2-gal. jug

2to5 x ≤ 3
y = 2

(x,2)→(x+2,0) Pour 2-gal. into 5-
gal.

5to2 x ≥ 2
y = 0

(x,0)→(x-2,2) Pour 5-gal. into 2-
gal.

5to2part y < 2
x = 1

(1,y)→(0,y+1) Pour partial 5-gal. 
into 2-gal.

Given a full 5-gallon jug 
and an empty 2-gallon 
jug, the goal is to fill the 
2-gallon jug with exactly 
one gallon of water.

State = (x,y), where x is 
the number of gallons of 
water in the 5-gallon jug 
and y is # of gallons in 
the 2-gallon jug 

Initial State = (5,0) 

Goal State = (*,1)
(* means any amount)

45

Operator table

45

empty5 empty2 2to5 5to2 part5to2

empty5 empty2 2to5 5to2 part5to2

empty5 empty2 5to2 part5to22to5

46
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(5,0)
empty5 empty2 2to5 5to2 part5to2

(3,2)(5,0)(0,0)
empty5 empty2 2to5 5to2 part5to2

(0,2) (3,0)

(0,0) (3,0)
empty5 empty2 5to2 part5to22to5

(1,2)

47

Formalizing Search III

• A solution is a sequence of operators that is associated with a path in a 
state space from a start node to a goal node.
• 5to2, empty2, 5to2, empty2, 5to2part

• The cost of a solution is the sum of the arc costs on the solution path.
• If all arcs have the same (unit) cost, then the solution cost is just the length of 

the solution (number of steps / state transitions)

48
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Formalizing Search IV

• State-space search: searching through a state space for a solution by 
making explicit a sufficient portion of an implicit state-space graph to 
find a goal node 
• V is a set of vertices, E is a set of edges (actions)
• Initially V={S}, where S is the start node

• When S is expanded, its successors are generated; those nodes are added to V 
and the arcs are added to E

• This process continues until a goal node is found

• It isn’t usually practical to represent entire space

49

49

Formalizing Search V

• Each node implicitly or explicitly represents a partial solution path (and 
its cost) from start node to given node. 
• In general, from a node there are many possible paths (and therefore solutions) 

that have this partial path as a prefix

50

50
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Example: Robot Navigation as Search

www.researchgate.net/publication/2639623_Robot_Map_Building_by_Kohonen%27s_Self-Organizing_Neural_Networks

51

State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)

;; problem describes start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

52

S1

S3

S4 S5 S6

A1 A2

A3 A6 A7

S2
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Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every legal action to the 
current state
• Which generates a new set of nodes

53

R&N pg. 68, 80

53

Key Procedures

• EXPAND
• Generate all successor nodes of a given node

• “What nodes can I reach from here 
(by taking what actions)?”

• GOAL-TEST
• Test if state satisfies goal conditions

• QUEUEING-FUNCTION
• Used to maintain a ranked list of nodes that are candidates for expansion

• “What should I explore next?”

54
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Algorithm Bookkeeping

• Typical node data structure includes:
• State at this node
• Parent node

• Operator applied to get to this node
• Depth of this node 

• That is, number of operator applications since initial state
• Cost of the path

• Sum of each operator application so far

55

55

Some Issues

• Search process constructs a search tree, where:
• Root is the initial state and 
• Leaf nodes are nodes that are either:

• Not yet expanded (i.e., they are in the list “nodes”) or 
• Have no successors (i.e., they're “dead ends”, because no operators can be 

applied, but they are not goals)

• Search tree may be infinite
• Even for small search space

• How?

56
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Some Issues

• “Solution” returns either a path or a node, depending on problem
• In 8-queens, return a node
• In 8-puzzle, return a path

• What about Sheep & Wolves?

• Changing definition of Queueing-Function à different search strategies
• How do you choose what to expand next?

57

57

Evaluating Search Strategies
• Completeness:

• Guarantees finding a solution if one exists

• Time complexity:
• How long (worst or average case) does it take to find a solution?
• Usually measured in number of states visited/nodes expanded

• Space complexity:
• How much space is used by the algorithm?
• Usually measured in maximum size of the “nodes” list during search

• Optimality / Admissibility:
• If a solution is found, is it guaranteed to be optimal (the solution with minimum 

cost)?

58
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Summary

• Search is at the heart of AI.

• Formalizing states, actions, &c. makes them searchable.

59

59

Class Exercise

• Representing a Sudoku puzzle as a search space
• What are the states?
• What are the operators?

• What are the constraints 
(on operator application)?

• What is the description 
of the goal state?

• Let's try it!

60

3

1

3

2
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that? How many preconditions?

• Goal: all blocks are filled

61

3

1

3

2

1
3
3
4

x 4
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

62
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x 4
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells 

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±4), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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Artificial Intelligence
Uninformed Search (Ch. 3.4)

(and a little more formalization)

Some material adapted from slides by Gang Hua of Stevens Institute of Technology
Some material adapted from slides by Charles R. Dyer, University of Wisconsin-Madison

S

CBA

D GE

3 1 8

15
20 5

3
7

68



9/9/24

34

Questions?

• Bread-first, depth-first, uniform cost search

• Generation and expansion

• Goal tests

• Queueing function

• Complexity, completeness, and optimality

• Heuristic functions (for informed search)

• Admissibility

69
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Uninformed vs. Informed Search

• Uninformed (aka “blind”) search
• Use no information about the “direction” of the goal node(s) 

• No way tell know if we’re “doing well so far”

• Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative 
deepening, bidirectional

• Informed (aka “heuristic”) search (next class)
• Use domain information to (try to) (usually) head in the general direction of the 

goal node(s)
• Hill climbing, best-first, greedy search, beam search, A, A*
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Why Apply Goal Test Late?

• Why does it matter when the goal test is applied (expansion time vs. 
generation time)?

• Optimality and complexity of the algorithms are strongly affected!
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Breadth-First

• Enqueue nodes in FIFO (first-in, first-out) order

• Characteristics:
• Complete (meaning?)
• Optimal (i.e., admissible) if all operators have the same cost

• Otherwise, not optimal but finds solution with shortest path length
• Exponential time and space complexity, O(bd), where:

• d is the depth of the solution 

• b is the branching factor (average number of children) at each node

• Takes a long time to find long-path solutions
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BFS
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BFS
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BFS
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BFS
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BFS

D
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Breadth-First: Analysis

• Takes a long time to find long-path solutions
• Must look at all shorter length possibilities first 
• A complete search tree of depth d where each non-leaf node has b children:

• 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes 

• Checks a lot of short-path solutions quickly

79
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Breadth-First: O(Example)

• 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes 

• Tree where: d=12

• Every node at depths 0, ..., 11 has 10 children (b=10)

• Every node at depth 12 has 0 children

• 1 + 10 + 100 + 1000 + ... + 1012 = (1013-1)/9 = O(1012) nodes in the 
complete search tree

• If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage
• Will take 35 years to run in the worst case
• Will use 111 terabytes of memory

80
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Depth-First (DFS)

• Enqueue nodes in LIFO (last-in, first-out) order
• That is, nodes used as a stack data structure to order nodes 

• Characteristics:
• Might not terminate without a “depth bound”

• I.e., cutting off search below a fixed depth D ( “depth-limited search”)
• Not complete

• With or without cycle detection, and with or without a cutoff depth

• Exponential time, O(bd), but only linear space, O(bd)
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Loops?

Infinite search spaces?
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www.youtube.com/watch?v=3_NMDJkmvLo
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS

94

Depth-First (DFS): Analysis

• DFS:
• Can find long solutions quickly if lucky
• And short solutions slowly if unlucky

• When search hits a dead end
• Can only back up one level at a time
• Even if the “problem” occurs because of a bad operator choice near the 

top of the tree
• Hence, only does “chronological backtracking”
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BFS vs. DFS

Image: www.geeksforgeeks.org/difference-between-bfs-and-dfs
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Uniform-Cost (UCS)
• Enqueue nodes by path cost:

• Let g(n) = cost of path from start node to current node n
• Sort nodes by increasing value of g
• Identical to breadth-first search if all operators have equal cost

• “Dijkstra’s Algorithm” in algorithms literature 

• “Branch and Bound Algorithm” in operations research literature 

• Complete (*)

• Optimal/Admissible (*)
• Admissibility depends on the goal test being applied when a node is removed from 

the nodes list, not when its parent node is expanded and the node is first generated 

• Exponential time and space complexity, O(bd)
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Example: Path Costs

98

98

UCS Implementation

• For each frontier node, save the total cost of the path from the initial 
state to that node

• Expand the frontier node with the lowest path cost

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general
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Uniform-cost Search Example

www.youtube.com/watch?v=XyoucHYKYSE
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Depth-First Iterative Deepening (DFID)

1. DFS to depth 0 (i.e., treat start node 
as having no successors)

2. Iff no solution, do DFS to depth 1

• Complete 

• Optimal/Admissible if all operators have the same cost
• Otherwise, not optimal, but guarantees finding solution of shortest length

• Time complexity is a little worse than BFS or DFS 

• Nodes near the top of the tree are generated multiple times
• Because most nodes are near the bottom of a tree, worst case time complexity is still 

exponential, O(bd) 
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until solution found do:
DFS with depth cutoff c;
c = c+1
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Iterative deepening search (c=1)

Nodes visited: 3
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Iterative deepening search (c=2)

Nodes visited: 3+4 = 7
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Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

106

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

Next: 3+4+8+16 = 31

Next: 3+4+8+16+32 = 63

Next: 3+4+8+16+32+64 = 127

The point: because cost is 
exponential, you’re not really 

redoing that much work!
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Depth-First Iterative Deepening
• If branching factor is b and solution is at depth d, then nodes at depth d

are generated once, nodes at depth d-1 are generated twice, etc. 
• Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd). 
• If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than exist at 

depth d (in the worst case). 

• Linear space complexity, O(bd), like DFS

• Has advantage of both BFS (completeness) and DFS (limited space, finds 
longer paths more quickly) 

• Generally preferred for large state spaces where solution depth is 
unknown
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Example for Illustrating Search Strategies
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Depth-First Search 
Expanded node  Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }    
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }               
G18 { B1 C8 } 

Solution path found is S à A à G, cost 18

Number of nodes expanded (including goal node) = 5
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Breadth-First Search
Expanded node  Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { B1 C8 D6 E10 G18 }   
B1 { C8 D6 E10 G18 G21 }
C8 { D6 E10 G18 G21 G13 }         
D6 { E10 G18 G21 G13 }   
E10 { G18 G21 G13 }     
G18 { G21 G13 }

Solution path found is S à A à G , cost 18
Number of nodes expanded (including goal node) = 7
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Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }
S0 { B1 A3 C8 }
B1 { A3 C8 G21 }
A3 { D6 C8 E10 G18 G21 }
D6 { C8 E10 G18 G1 }
C8 { E10 G13 G18 G21 }       
E10 { G13 G18 G21 }
G13 { G18 G21 }                             

Solution path found is S à C à G, cost 13
Number of nodes expanded (including goal node) = 7
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How they Perform
• Depth-First Search: 

• Expanded nodes: S A D E G 
• Solution found: S A G (cost 18)

• Breadth-First Search: 
• Expanded nodes: S A B C D E G 
• Solution found: S A G (cost 18)

• Uniform-Cost Search: 
• Expanded nodes: S A D B C E G 
• Solution found: S C G (cost 13)
• This is the only uninformed search that worries about costs.

• Iterative-Deepening Search: 
• nodes expanded: S S A B C S A D E G 
• Solution found: S A G (cost 18)
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Comparing Search Strategies 
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