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Bookkeeping
• HW4 due 11/20

• Project phase II (code final) now due 12/7

• Final paper now due 12/15

• We will not use 12/17

• No office hours Thursday

• Last time
• “Probabilistic planning”—learning action policies
• Value iteration (lots); policy iteration (some)

• Today
• Reinforcement learning
• Project work

2



11/19/24

2

Review: What is ML?

• ML is a way to get a computer to do things without having to explicitly 
describe what steps to take.

• By giving it examples (training data) 

• Or by giving it feedback

• It can then look for patterns which explain or predict what happens.

• The learned system of beliefs is called a model.

3
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Review: Representation

• A learning system must have a representation or model of what is 
being learned.

• This is what changes based on experience.

• In a machine learning system this may be:
• A mathematical model or formula
• A set of rules

• A decision tree
• A policy
• Or some other form of information

6
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Review: Formalizing Agents

• Given:
• A state space S
• A set of actions a1, …, ak including their results

• Reward value at the end of each trial (series of action) (may be positive or 
negative)

• Output:
• A mapping from states to actions to take
• Which is a policy, π

7
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Learning Without a Model

• We saw how to learn a value function and/or a policy from a transition model

• What if we don’t have a transition model?

• Idea #1: Build one
• Explore the environment for a long time
• Record all transitions
• Learn the transition model
• Apply value iteration/policy iteration
• Slow, requires a lot of exploration, no intermediate learning

• Idea #2: Learn a value function (or policy) directly from interactions with the 
environment, while exploring

8
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Reinforcement Learning

• We often have an agent which has a task to perform
• It takes some actions in the world
• At some later point, gets feedback on how well it did 

• The agent performs the same task repeatedly

• This problem is called reinforcement learning: 
• The agent gets positive reinforcement for tasks done well
• And gets negative reinforcement for tasks done poorly

• Must somehow figure out which actions to take next time

9
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Characteristics of Reinforcement Learning

• What makes reinforcement learning different from other machine 
learning paradigms?
• There is no supervisor, only a reward signal

• Feedback is delayed, not instantaneous
• Time really matters (sequential, non i.i.d data)

• Agent’s actions affect the subsequent data it receives

10
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Reinforcement learning

• It is a family of problems
• Sequential decision making

Game 
playing

Self-
driving car

Conversational 
System

CS@UVA RL2022-Fall

Slide: Hongning Wang, CS@UVA
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Reinforcement learning

• A typical (narrow) view of the problem formulation

Image credit: Lil'Log

Slide: Hongning Wang, CS@UVA
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Reinforcement learning

• It is a family of solutions
• Taking a series of actions to maximum cumulative return 

CS@UVA RL2022-Fall

Planning Planning while learning
Image credit: David Silver, 
“Model-Free Prediction”

Reinforcem
ent

Slide: Hongning Wang, CS@UVA
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Summary: reinforcement learning

• It is a family of problems
• Sequential decision making

• It is a family of solutions
• Planning and learning

• It is a collection of fields 
that study the problems 
and solutions

CS@UVA RL2022-Fall

Slide Hongning Wang, Image David Silver
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Why reinforcement learning

• Sequential decision making is everywhere

CS@UVA RL2022-Fall

2016 1997

Slide: Hongning Wang, CS@UVA

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

15

Why reinforcement learning

• Sequential decision making is challenging
• Huge unknown search space

CS@UVA RL2022-Fall

Horror Romance Drama

Slide: Hongning Wang, CS@UVA
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https://en.wikipedia.org/wiki/Go_and_mathematics
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Why reinforcement learning

• Sequential decision making is challenging
• Huge unknown search space

• Supervised ML: generalize to unseen

• RL: what to generalize

CS@UVA RL2022-Fall

Slide: Hongning Wang, CS@UVA
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Reinforcement Learning (RL)

• RL algorithms attempt to find a policy
• Maximizing cumulative reward for the agent over the course of the problem

• Typically represented by a Markov Decision Process

• RL differs from supervised learning: 
• Correct input/output pairs are never presented
• Sub-optimal actions never explicitly corrected

18
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Typical Applications

• Robotics
• Helicopter control
• Robo-soccer 

• Board games
• Checkers
• Backgammon
• Go/Atari 

• Scheduling
• Dynamic channel allocation 
• Inventory problems

Image: https://www.mathworks.com/discovery/reinforcement-learning.html

19

Recap: Defining MDPs
• Markov decision processes:

• States S
• Start state s0

• Actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility (or return) = sum of discounted rewards

a
s

s, a

s,a,
s’ s

’

20
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Animals Game

• Human: I’m thinking of an animal.
• Computer: Is it a bird?

• Human: No.
• Computer: Is it a frog?

• Human: No.
• Computer: What is it?

• Human: A mouse.
• Computer: Tell me a question that distinguishes a frog from a mouse.
• Human: Does it have fur?
• Computer: What is the answer for a frog?
• Human: No.

21

21

Animals Behind the Scene

22

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a 
question that distinguishes 
a frog from a mouse.
Human: Does it have fur?
Computer: What is the 
answer for a frog?
Human: no

22
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Animals Guessing Game Architecture
• All of the parts of ML Architecture:

• The Representation is a sequence of questions and pairs of yes/no answers 
(called a binary decision tree).

• The Actor “walks” the tree, interacting with a human; at each question it 
chooses whether to follow the “yes” branch or the “no” branch.

• The Critic is the human player telling the game whether it has guessed 
correctly.

• The Learner elicits new questions and adds questions, guesses and branches 
to the tree.

23
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Reinforcement Learning

• This is a simple form of Reinforcement Learning

• Feedback is at the end, on a series of actions.

• Very early concept in Artificial Intelligence!

• Arthur Samuels’ checker 
program was a simple 
reinforcement based learner, 
initially developed in 1956.

• In 1962 it beat a human 
checkers master.

www-03.ibm.com/ibm/history/ibm100/
us/en/icons/ibm700series/impacts/

24
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Reward in reinforcement learning

• A scalar feedback signal about the taken action
• Suggest good/bad immediate consequence of the action

• Score in Atari game

• User clicks/purchase in a recommender system
• Change of black-box function value

• Delayed feedback
• GO game

• Generate a sentence in chat-bot
• Goal of learning – maximize cumulative rewards

• Reward hypothesis: “All goals can be described by the maximization of 
expected cumulative reward.”

Slide: Hongning Wang, CS@UVA
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More about rewards

• A reward Rt is a scalar feedback signal

• Indicates how well agent is doing at step t

• The agent’s job is to maximize cumulative reward

Reinforcement learning is based on the reward hypothesis:

• “All goals can be described by the maximization of expected 
cumulative reward”

• (Do we believe this?)

Slide: David Silver
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RL inputs and outputs

Image: Hongning Wang, CS@UVA
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How to take an action 

• With respect to the current observation

Observation 𝑜" Action 𝑎"

Reward 𝑟" Slide: Hongning Wang, CS@UVA

28



11/19/24

14

Agent and environment

• At each step t the agent:
• Executes action At
• Receives observation Ot
• Receives reward Rt

• The environment:
• Receives action At
• Emits observation Ot+1
• Emits scalar reward Rt+1

• t increments at environment step

Slide: David Silver
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Reinforcement Learning (cont.)
• Goal: agent acts in the world to maximize its rewards

• Agent has to figure out what it did that made it get that
reward/punishment
• This is known as the credit assignment problem

• RL can be used to train computers to do many tasks
• Backgammon and chess playing

• Job shop scheduling 
• Controlling robot limbs

30
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• Learning how to act to accomplish goals
• Given: Environment that contains rewards
• Learn: A policy for acting

• Important differences from classification
• You don’t get examples of correct answers
• You have to try things in order to learn

Procedural Learning

31

RL as Operant Conditioning

• RL shapes behavior using reinforcement
• Agent takes actions in an environment (in episodes)
• Those actions change the state and trigger rewards

• Through experience, an agent learns a policy for acting
• Given a state, choose an action
• Maximize cumulative reward during an episode

• Interesting things about this problem
• Requires solving credit assignment

• What action(s) are responsible for a reward?
• Requires both exploring and exploiting

• Do what looks best, or see if something else is really best?

32
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• Search-based:  evolution directly on a policy
• E.g. genetic algorithms

• Model-based:  build a model of the environment
• Then you can use dynamic programming

• Memory-intensive learning method

• Model-free:  learn a policy without any model
• Temporal difference methods (TD)
• Requires limited episodic memory (though more helps)

Types of Reinforcement Learning

33

Simple Example

• Learn to play checkers
• Two-person game
• 8x8 boards, 12 checkers/side

• relatively simple set of rules: 
http://www.darkfish.com/chec
kers/rules.html

• Goal is to eliminate all your 
opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

34

http://www.darkfish.com/checkers/rules.html
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Representing Checkers

• First we need to represent the game

• To completely describe one step in the game you need
• A representation of the game board. 
• A representation of the current pieces

• A variable which indicates whose turn it is
• A variable which tells you which side is “black”

• There is no history needed

• A look at the current board setup gives you 
a complete picture of the state of the game

35

which makes it 
a ___ problem?

35

Representing Rules

• Second, we need to represent the rules

• Represented as a set of allowable moves given board state
• If a checker is at row x, column y, and row x+1 column y±1 is empty, it can 

move there.
• If a checker is at (x,y), a checker of the opposite color is at (x+1, y+1), and 

(x+2,y+2) is empty, the checker must move there, and remove the “jumped” 
checker from play

• There are additional rules, but all can be expressed in terms of the 
state of the board and the checkers

• Each rule includes the outcome of the relevant action in terms of the 
state

36
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What Do We Want to Learn?

• Given 
• A description of some state of the game
• A list of the moves allowed by the rules

• What move should we make?

• Typically more than one move is possible
• Need strategies, heuristics, or hints about what move to make
• This is what we are learning

• We learn from whether the game was won or lost
• Information to learn from is sometimes called “training signal”

39
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Simple Checkers Learning

• Can represent some heuristics in the same formalism as the board 
and rules
• If there is a legal move that will create a king, take it.

• If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.
• If there are two legal moves, choose the one that moves a checker farther 

toward the top row

• If checker(x,y) and checker(p,q) can both move, and x>p, move 
checker(x,y).

• But then each of these heuristics needs some kind of priority or weight.

40
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Formalization for RL Agent

• Given:
• A state space S
• A set of actions a1, …, ak including their results

• A set of heuristics for resolving conflict among actions
• Reward value at the end of each trial (series of action) (may be positive or 

negative) 

• Output:
• A policy (a mapping from states to preferred actions)

41
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Learning Agent

• The general algorithm for this learning agent is:
• Observe some state
• If it is a terminal state

• Stop
• If won, increase the weight on all heuristics used

• If lost, decrease the weight on all heuristics used
• Otherwise choose an action from those possible in that state, using heuristics 

to select the preferred action

• Perform the action

42
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Policy

• A complete mapping from states to actions
• There must be an action for each state
• There may be more than one action
• Not necessarily optimal

• The goal of a learning agent is to tune the policy so that the preferred 
action is optimal, or at least good.
• Analogous to training a classifier

• Checkers
• Trained policy includes all legal actions, with weights
• “Preferred” actions are weighted up

43
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Approaches

• Learn policy directly: Discover function mapping from states to actions
• Could be directly learned values

• Ex: Value of state which removes last opponent checker is +1.

• Or a heuristic function which has itself been trained

• Learn utility values for states (value function)
• Estimate the value for each state
• Checkers:

• How happy am I with this state that turns a piece into a king?

44
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Value Function

• The agent knows what state it is in

• It has actions it can perform in each state

• Initially, don’t know the value of any of the states

• If the outcome of performing an action at a state is deterministic, then 
the agent can update the utility value U() of states:
• U(oldstate) = reward + U(newstate) 

• The agent learns the utility values of states as it works its way through 
the state space

45
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Learning States and Actions

• A typical approach is:

• At state S choose, some action A

• Taking us to new State S1
• If S1 has a positive value: increase value of A at S.
• If S1 has a negative value: decrease value of A at S.
• If S1 is new, initial value is unknown: value of A unchanged.

• One complete learning pass or trial eventually gets to a terminal, 
deterministic state. (E.g., “win” or “lose”)

• Repeat until? Convergence? Some performance level?

46

ß How?

46
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Selecting an Action

• Simply choose action with highest (current) expected utility?

• Problem: each action has two effects
• Yields a reward on current sequence
• Gives information for learning future sequences

• Trade-off: immediate good for long-term well-being
• Like trying a shortcut: might get lost, might find quicker path

• Exploration vs. exploitation
• Exploration finds more information about the environment
• Exploitation exploits known information to maximize reward
• It is usually important to explore as well as exploit

47
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Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
• What action to take?
• Best apparent action, based

on learning to date
• Greedy strategy
• Often prematurely converges to a suboptimal policy!

• Random (or unknown) action
• Will cover entire state space
• Very expensive and slow to learn!
• When to stop being random?

• Balance exploration (try random actions) with exploitation (use best 
action so far)

} Exploitation

} Exploration

48
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Exploration vs. Exploitation
• Restaurant Selection

• Exploitation: Go to your favorite restaurant
• Exploration: Try a new restaurant

• Online Advertisements
• Exploitation: Show the most successful advert
• Exploration: Show a different advert

• Navigation
• Exploitation: Walk to class
• Exploration: Try a possible shortcut through a building

• Game Playing
• Exploitation: Play the move you believe is best
• Exploration: Play an experimental move

Slide: David Silver
Image: Berkeley AI course
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More on Exploration

• Agent may sometimes choose to explore suboptimal moves in hopes 
of finding better outcomes
• Only by visiting all states frequently enough can we guarantee learning the 

true values of all the states

• When the agent is learning, ideal would be to get accurate values 
for all states
• Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get optimal outcome

• A learning agent should have an exploration policy

50
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Exploration Policy

• Wacky approach (exploration): act randomly in hopes of eventually 
exploring entire environment
• Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility using current 
estimate
• Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory) when agent has 
little idea of environment; more greedy when the model is close to 
correct
• Suppose you know no checkers strategy? 
• What’s the best way to get better?

51
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Example: N-Armed Bandits

• A row of slot machines

• Which to play and how often?

• State Space is a set of machines 
• Each has cost, payout, and percentage values

• Action is pull a lever. 

• Each action has a positive or negative result
• …which then adjusts the perceived utility of that action (pulling that lever)

52

¢25
$100
0.1%

¢95
$200
0.6%

$10
$900
10%

52
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N-Armed Bandits Example

• Each action initialized to a standard payout

• Result is either some cash (a win) or none (a lose)

• Exploration: Try things until we have estimates for payouts

• Exploitation: When we have some idea of the value of each action, 
choose the best.

• Clearly this is a heuristic.

• No proof we ever find the best lever to pull!
• The more exploration we can do the better our model
• But the higher the cost over multiple trials

53

After some # of successful trials, or 
with some statistical confidence, 
or when our value function isn’t 
changing (much), or...

53

Mathematical Model - MDP

• Markov decision processes 

• S - set of states

• A - set of actions

• 𝛿 - Transition probability

• R - Reward function

54
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• Search-based:  evolution directly on a policy
• E.g. genetic algorithms

• Model-based:  build a model of the environment
• Then you can use dynamic programming

• Memory-intensive learning method

• Model-free:  learn a policy without any model
• Temporal difference methods (TD)
• Requires limited episodic memory (though more helps)

Types of Reinforcement Learning

55

• Actor-critic learning
• The TD version of Policy Iteration

• Q-learning
• The TD version of Value Iteration

• This is the most widely used RL algorithm

Types of Model-Free RL

56
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• Current state:   s

• Current action:   a

• Transition function:   δ(s, a) = sʹ

• Reward function:   r(s, a) Є R

• Policy π(s) = a

• Q(s, a) ≈ value of taking action a from state s

Q-Learning:  Definitions
Markov property: this is 
independent of previous 
states given current state

In classification we’d 
have examples (s, 
π(s)) to learn from

57

The Q-function
• Q(s, a) estimates the discounted cumulative reward 

• Starting in state s
• Taking action a
• Following the current policy thereafter

• Suppose we have the optimal Q-function
• What’s the optimal policy in state s?
• The action argmaxbQ(s, b)

• But we don’t have the optimal Q-function at first
• Let’s act as if we do
• And update it after each step so it’s closer to optimal
• Eventually it will be optimal!

Q(s, a) ≈ value 
of taking action 
a from state s

58
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Q-Learning:  Updates

• The basic update equation

• With a discount factor to give later rewards less impact

• With a learning rate for non-deterministic worlds

!"#$%&'!"$!"$ !"#$"%$"# !γ+←

[ ] [ ]!"#$%&'!"$!"$(!"$ !"#$"%$"#$"# !γαα ++−←

!"#$%&'!"$!"$ !"#$"%$"# !+←
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Q-Learning:  Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

=→ !"# $$ !"#
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Q-Learning:  Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

γ+=↓ !"#$ % !"#
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Q-Learning:  Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

!
" #$%& γ+=→!"#

γ
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The Need for Exploration

1 2 3

4 5 6

7 8 9

1
0

1
1

γ!γ!γ

!γ

!γ !γ

=←!"#$%&%'( ) !"#
=→!"#$

Explore!
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RL Summary 1:

• Reinforcement learning systems
• Learn series of actions or decisions, rather than a single decision
• Based on feedback given at the end of the series

• A reinforcement learner has
• A goal
• Carries out trial-and-error search 
• Finds the best paths toward that goal

64
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Exploration/Exploitation

• Can’t always choose the action with highest Q-value
• The Q-function is initially unreliable
• Need to explore until it is optimal

• Most common method:  ε-greedy
• Take a random action in a small fraction of steps (ε)
• Decay ε over time

• There is some work on optimizing exploration 
• Kearns & Singh, ML 1998
• But people usually use this simple method

65

Q-Learning:  Convergence

• Under certain conditions, Q-learning will converge to the correct 
Q-function
• The environment model doesn’t change

• States and actions are finite
• Rewards are bounded

• Learning rate decays with visits to state-action pairs
• Exploration method would guarantee infinite visits to every state-action 

pair over an infinite training period

66
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Challenges in Reinforcement Learning

• Feature/reward design can be very involved
• Online learning (no time for tuning)
• Continuous features (handled by tiling)

• Delayed rewards (handled by shaping)

• Parameters can have large effects on learning speed

• Realistic environments can have partial observability

• Realistic environments can be non-stationary

• There may be multiple agents

67

RL Summary 2:

• A typical reinforcement learning system is an active agent, interacting 
with its environment.

• It must balance:
• Exploration: trying different actions and sequences of actions to discover 

which ones work best

• Exploitation (achievement): using sequences which have worked well so far

• Must learn successful sequences of actions in an uncertain 
environment

68
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RL Summary 3

• There are many sophisticated RL algorithms 
• Most notably: probabilistic approaches

• Applicable to game-playing, search, finance, robot control, driving, 
scheduling, diagnosis, …

69

69


