11/19/24

Reinforcement
Learning

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Bookkeeping

* HWA4 due 11/20

Project phase Il (code final) now due 12/7

e Final paper now due 12/15

« We will not use 12/17

* No office hours Thursday

e Lasttime

* “Probabilistic planning” —learning action policies
* Value iteration (lots); policy iteration (some)

* Today

* Reinforcement learning

* Project work

11/19/24

Review: What is ML?

« MLis a way to get a computer to do things without having to explicitly
describe what steps to take.

» By giving it examples (training data)

e Or by giving it feedback

* It can then look for patterns which explain or predict what happens.

* The learned system of beliefs is called a model.

Review: Representation

* Alearning system must have a representation or model of what is
being learned.

* This is what changes based on experience.

* In a machine learning system this may be:

A mathematical model or formula
A set of rules

A decision tree

A policy

Or some other form of information

11/19/24

Review: Formalizing Agents

* Given:
* Astate space S
* Aset of actions as, ..., akincluding their results
* Reward value at the end of each trial (series of action) (may be positive or
negative)
e Output:
* A mapping from states to actions to take
* Which is a policy, it

Learning Without a Model

« We saw how to learn a value function and/or a policy from a transition model
* What if we don’t have a transition model?

* |dea #1: Build one
* Explore the environment for a long time
* Record all transitions
* Learn the transition model
« Apply value iteration/policy iteration
* Slow, requires a lot of exploration, no intermediate learning

» Idea #2: Learn a value function (or policy) directly from interactions with the
environment, while exploring

11/19/24

Reinforcement Learning

* We often have an agent which has a task to perform
* It takes some actions in the world
* At some later point, gets feedback on how well it did

e The agent performs the same task repeatedly

* This problem is called reinforcement learning:
* The agent gets positive reinforcement for tasks done well
* And gets negative reinforcement for tasks done poorly

* Must somehow figure out which actions to take next time

9
Characteristics of Reinforcement Learning
* What makes reinforcement learning different from other machine
learning paradigms?
e There is no supervisor, only a reward signal
* Feedback is delayed, not instantaneous
« Time really matters (sequential, non i.i.d data)
* Agent’s actions affect the subsequent data it receives
10

11/19/24

Reinforcement learning

* Itis afamily of problems

* Sequential decision making

Game Self- Conversational
playing driving car System

11
Reinforcement learning
* Atypical (narrow) view of the problem formulation
AGENT ENVIRONMENT
-State s €S
- Take action a € A
/\
\/
- Getreward
-Newstate s’ € S
Image credit: Lil'Log
12

11/19/24

Reinforcement learning

* Itis afamily of solutions

* Taking a series of actions to maximum cumulative return

Planning o -RI-a-n-m-ng—wh-l-l-e Ieéfhing

Reinforcem
Image credit: David Silver,
e nt “Model-Free Prediction”

13

Summary: reinforcement learning

* Itis afamily of problems Co;npchrScbr;;\
+ Sequential decision making peg— - ‘\
[X \'.
* Itis a family of solutions / | oA ’ \

/ l’:‘“"‘l'lr" -
i | Fewar
* Itis a collection of fields > S
that study the problems ,..so:/{ é\ssic-hnn

. ' - Resear ‘ I\Iigninb‘ o
and solutions oG megm |

Planning and learning

14

11/19/24

Why reinforcement learning

* Sequential decision making is everywhere

Percent legal L (legal positions) (A094777) "

1" 3 3333%

A L P H Board size nxn

() (mem) () %2 70.37%
3x3 19,683 64 4
¥ | ax4 56.4
4‘- | 5x5 48.9
9x9 34
13%13 86

19%19 1 1.20%

201 6 Source: https://en.wikipedia.org/wiki/Go and mathematics1 997

15
Why reinforcement learning
» Sequential decision making is challenging
* Huge unknown search space
”Romange Draga
CET R IEE
2 o ?2 2?2?22 22
16

https://en.wikipedia.org/wiki/Go_and_mathematics

11/19/24

Why reinforcement learning

* Sequential decision making is challenging
* Huge unknown search space
» Supervised ML: generalize to unseen

* RL: what to generalize

17
Reinforcement Learning (RL)
* RLalgorithms attempt to find a policy
Maximizing cumulative reward for the agent over the course of the problem
* Typically represented by a Markov Decision Process
» RL differs from supervised learning:
« Correct input/output pairs are never presented
* Sub-optimal actions never explicitly corrected
18

11/19/24

Typical Applications

* Robotics
* Helicopter control

* Robo-soccer Qgen-{- 0\
|

environment

* Board games

e Checkers ‘

actions

d
« Backgammon w —=wores
+ Go/Atari <obser'vod'lons y 1
* Scheduling

* Dynamic channel allocation
* Inventory problems

19
Recap: Defining MDPs
* Markov decision processes:
e States S
» Startstate sg
* Actions A
e Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y)
« MDP quantities so far:
* Policy = Choice of action for each state
e Utility (or return) = sum of discounted rewards
20

11/19/24

Animals Game

* Human: I’'m thinking of an animal.

Computer: Isit a bird?
e Human: No.
 Computer:Isit a frog?
e Human: No.
* Computer: What is it?

¢ Human: A mouse.

* Computer: Tell me a question that distinguishes a frog from a mouse.

* Human: Does it have fur?

e Computer: What is the answer for a frog?

¢ Human: No.

21

Animals Behind the Scene

Computer: Is it a bird?
Human: No

Computer: Is it a frog?
Human: No

Computer: What is it?
Human: A mouse
Computer: Tell me a
question that distinguishes
a frog from a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

Is it a bird?
Yes, \No

Is it a penguin? Does it have fur?

g Yes %

Is it a mouse?

After several rounds...

Is it a frog?

22

10

11/19/24

Animals Guessing Game Architecture

* All of the parts of ML Architecture:

The Representation is a sequence of questions and pairs of yes/no answers
(called a binary decision tree).

The Actor “walks” the tree, interacting with a human; at each question it
chooses whether to follow the “yes” branch or the “no” branch.

The Critic is the human player telling the game whether it has guessed
correctly.

The Learner elicits new questions and adds questions, guesses and branches
to the tree.

23
Reinforcement Learning
* This is a simple form of Reinforcement Learning
* Feedback is at the end, on a series of actions.
* \Very early concept in Artificial Intelligence!
* Arthur Samuels’ checker
program was a simple
reinforcement based learner,
initially developed in 1956.
* In 1962 it beat a human
checkers master.
24

11

11/19/24

Reward in reinforcement learning

* A scalar feedback signal about the taken action

¢ Suggest good/bad immediate consequence of the action
* Score in Atari game
« User clicks/purchase in a recommender system
» Change of black-box function value

* Delayed feedback
* GO game
* Generate a sentence in chat-bot

e Goal of learning — maximize cumulative rewards

* Reward hypothesis: “All goals can be described by the maximization of
expected cumulative reward.”

25
More about rewards
* Avreward R, is a scalar feedback signal
* Indicates how well agent is doing at step t
* The agent’s job is to maximize cumulative reward
Reinforcement learning is based on the reward hypothesis:
« “All goals can be described by the maximization of expected
cumulative reward”
* (Do we believe this?)
26

12

11/19/24

RL inputs and outputs

ACTION

=
#

[[
M AGENT ENVIRONMENT

t |

STATE, REWARD

27

How to take an action

With respect to the current observation

Observation o; Action a;

Reward r;

28

13

11/19/24

Agent and environment

At each step t the agent:
* Executes action A,
* Receives observation O,

* Receives reward R,

The environment:
* Receives action A,
* Emits observation Oy

* Emits scalar reward Ry,

tincrements at environment step

observation

o

— [

29

Reinforcement Learning (cont.)

Goal: agent acts in the world to maximize its rewards

Agent has to figure out what it did that made it get that

reward/punishment

* Thisis known as the credit assignment problem

RL can be used to train computers to do many tasks

* Backgammon and chess playing
* Job shop scheduling
* Controlling robot limbs

30

14

11/19/24

Procedural Learning

* Learning how to act to accomplish goals
e Given: Environment that contains rewards

* Learn: A policy for acting

* Important differences from classification
* You don’t get examples of correct answers

* You have to try things in order to learn

31
RL as Operant Conditioning
* RL shapes behavior using reinforcement
* Agent takes actions in an environment (in episodes)
* Those actions change the state and trigger rewards
* Through experience, an agent learns a policy for acting
* Given a state, choose an action
* Maximize cumulative reward during an episode
* Interesting things about this problem
* Requires solving credit assignment
* What action(s) are responsible for a reward?
* Requires both exploring and exploiting
* Do what looks best, or see if something else is really best?
32

15

11/19/24

+ E.g. genetic algorithms

Types of Reinforcement Learning

* Then you can use dynamic programming

* Memory-intensive learning method

e Temporal difference methods (TD)

« Search-based: evolution directly on a policy

* Model-based: build a model of the environment

* Model-free: learn a policy without any model

e Requires limited episodic memory (though more helps)

33
Simple Example
* Learn to play checkers
« Two-person game . @ 9S
e 8x8 boards, 12 checkers/side .L .L .L .;
« relatively simple set of rules: .; .L . .
http://www.darkfish.com/chec
kers/rules.html i.i.i.
* Goalis to eliminate all your i i -
opponent’s pieces -i-i -i-
= = [=
SH=H=H:
sH=H=H=H
34

16

http://www.darkfish.com/checkers/rules.html

11/19/24

Representing Checkers

* First we need to represent the game

* To completely describe one step in the game you need
* Arepresentation of the game board.
* Arepresentation of the current pieces
* Avariable which indicates whose turn it is

* Avariable which tells you which side is “black”

* There is no history needed

* Alook at the current board setup gives you [which makes it
a complete picture of the state of the game |2 __ problem!

35
Representing Rules
* Second, we need to represent the rules
* Represented as a set of allowable moves given board state
* If acheckeris atrow x, columny, and row x+1 column y+1 is empty, it can
move there.
« Ifacheckeris at (x,y), a checker of the opposite color is at (x+1, y+1), and
(x+2,y+2) is empty, the checker must move there, and remove the “jumped”
checker from play
* There are additional rules, but all can be expressed in terms of the
state of the board and the checkers
* Each rule includes the outcome of the relevant action in terms of the
state
36

17

11/19/24

What Do We Want to Learn?

Given
* A description of some state of the game
* Alist of the moves allowed by the rules

« What move should we make?

Typically more than one move is possible
* Need strategies, heuristics, or hints about what move to make

* This is what we are learning

We learn from whether the game was won or lost

e Information to learn from is sometimes called “training signal”

39
Simple Checkers Learning
Can represent some heuristics in the same formalism as the board
and rules
* If thereis a legal move that will create a king, take it.
« If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.
* If there are two legal moves, choose the one that moves a checker farther
toward the top row
» If checker(x,y) and checker(p,q) can both move, and x>p, move
checker(x,y).
* But then each of these heuristics needs some kind of priority or weight.
40

18

11/19/24

Formalization for RL Agent

* Given:
* Astate space S
* Asetof actions ay, ..., ay including their results
* A set of heuristics for resolving conflict among actions

* Reward value at the end of each trial (series of action) (may be positive or
negative)

e Output:

* A policy (a mapping from states to preferred actions)

41
Learning Agent
* The general algorithm for this learning agent is:
=+ Observe some state
* |Ifitis aterminal state
o Stop —)>
* If won, increase the weight on all heuristics used
» If lost, decrease the weight on all heuristics used
* Otherwise choose an action from those possible in that state, using heuristics
to select the preferred action
* Perform the action
|
42

19

11/19/24

Policy

* A complete mapping from states to actions
* There must be an action for each state
* There may be more than one action
* Not necessarily optimal

* The goal of a learning agent is to tune the policy so that the preferred
action is optimal, or at least good.
* Analogous to training a classifier

* Checkers
* Trained policy includes all legal actions, with weights
o “Preferred” actions are weighted up

43
Approaches
* Learn policy directly: Discover function mapping from states to actions
* Could be directly learned values
» Ex: Value of state which removes last opponent checker is +1.
e Or a heuristic function which has itself been trained
* Learn utility values for states (value function)
e Estimate the value for each state
* Checkers:
* How happy am | with this state that turns a piece into a king?
44

20

11/19/24

Value Function

The agent knows what state it is in
It has actions it can perform in each state
Initially, don’t know the value of any of the states

If the outcome of performing an action at a state is deterministic, then
the agent can update the utility value U() of states:

* U(oldstate) = reward + U(newstate)

The agent learns the utility values of states as it works its way through
the state space

45

Learning States and Actions

A typical approach is:

Taking us to new State S,

* If S; has a positive value: increase value of A at S.

* If S; has a negative value: decrease value of A at S.

* IfS;is new, initial value is unknown: value of A unchanged.

One complete learning pass or trial eventually gets to a terminal,
deterministic state. (E.g., “win” or “lose”)

Repeat until? Convergence? Some performance level?

46

21

11/19/24

Selecting an Action

Simply choose action with highest (current) expected utility?

Problem: each action has two effects
* Yields a reward on current sequence
* Gives information for learning future sequences

Trade-off: immediate good for long-term well-being
» Like trying a shortcut: might get lost, might find quicker path

Exploration vs. exploitation
* Exploration finds more information about the environment

* Exploitation exploits known information to maximize reward
e Itis usually important to explore as well as exploit

47
Exploration vs. Exploitation
Problem with naive reinforcement learning:
* What action to take?
* Best app.arent action, based } Exploitation
on learning to date
* Greedy strategy
» Often prematurely converges to a suboptimal policy!
+ Random (or unknown) action } Exploration
* Will cover entire state space
* Very expensive and slow to learn!
* When to stop being random?
Balance exploration (try random actions) with exploitation (use best
action so far)
48

22

Exploration vs. Exploitation

* Restaurant Selection
* Exploitation: Go to your favorite restaurant
* Exploration: Try a new restaurant

* Online Advertisements
* Exploitation: Show the most successful advert
* Exploration: Show a different advert

* Navigation
» Exploitation: Walk to class
* Exploration: Try a possible shortcut through a building

* Game Playing

* Exploitation: Play the move you believe is best
» Exploration: Play an experimental move

49
More on Exploration
* Agent may sometimes choose to explore suboptimal moves in hopes
of finding better outcomes
* Only by visiting all states frequently enough can we guarantee learning the
true values of all the states
 When the agent is learning, ideal would be to get accurate values
for all states
* Even though that may mean getting a negative outcome
* When agent is performing, ideal would be to get optimal outcome
* Alearning agent should have an exploration policy
50

11/19/24

23

Exploration Policy

* Wacky approach (exploration): act randomly in hopes of eventually
exploring entire environment

* Choose any legal checkers move

* Greedy approach (exploitation): act to maximize utility using current
estimate

* Choose moves that have in the past led to wins

* Reasonable balance: act more wacky (exploratory) when agent has
little idea of environment; more greedy when the model is close to
correct

* Suppose you know no checkers strategy?
* What’s the best way to get better?

51
Example: N-Armed Bandits
* Arow of slot machines — K
.
* Which to play and how often? = =
. : : ¢25 ¢95 $10
State Space is a set of machines $100 $200 $900
+ Each has cost, payout, and percentage values 0.1% 0.6% 10%
* Action is pull a lever.
* Each action has a positive or negative result
e ...which then adjusts the perceived utility of that action (pulling that lever)
52

11/19/24

24

11/19/24

N-Armed Bandits Example

* Each action initialized to a standard payout
* Result is either some cash (a win) or none (a lose)
* Exploration: Try things until we have estimates for payouts

* Exploitation: When we have some idea of the value of each action,

choose the best. After some # qf §uccessfu| trials, or
with some statistical confidence,
or when our value function isn’t

» Clearly this is a heuristic. changing (much), or...

* No proof we ever find the best lever to pull!

e The more exploration we can do the better our model
* But the higher the cost over multiple trials

53
Mathematical Model - MDP
* Markov decision processes
* S-set of states
 A-setof actions
* § - Transition probability
* R -Reward function
54

25

11/19/24

Types of Reinforcement Learning

« Search-based: evolution directly on a policy

+ E.g. genetic algorithms

* Model-based: build a model of the environment
e Then you can use dynamic programming

* Memory-intensive learning method

* Model-free: learn a policy without any model
e Temporal difference methods (TD)

e Requires limited episodic memory (though more helps)

55
Types of Model-Free RL
* Actor-critic learning
e The TD version of Policy Iteration
* Q-learning
* The TD version of Value Iteration
e Thisis the most widely used RL algorithm
56

26

11/19/24

Q-Learning: Definitions

Markov property: this is
independent of previous

e Current state: s

« Current action: a states given current state

« Transition function: &(s, a) =s’

In classification we’d
have examples (s,

 Policy ni(s) = a n(s)) to learn from

* Reward function: r(s,a)eR

* Q(s, a) = value of taking action a from state s

57
The Q-function
* Q(s, a) estimates the discounted cumulative reward
e Startingin state s
* Taking action a
« Following the current policy thereafter Q(S, a) =~ value
* Suppose we have the optimal Q-function of takmg action
+ What’s the optimal policy in state s? a from state s
* The action argmax,Q(s, b)
* But we don’t have the optimal Q-function at first
e Let’sactasif we do
* And update it after each step so it’s closer to optimal
* Eventually it will be optimal!
58

27

11/19/24

Q-Learning: Updates

« The basic update equation
0(s,a) «—r(s,a)+max, Q(s',D)

« With a discount factor to give later rewards less impact
O(s,a)«—r(s,a)+ ymax, O(s',b)

« With a learning rate for non-deterministic worlds

O(s,a)«—1—a]0(s,a) + a|r(s,a) + y max, O(s',b)]

59

Q-Learning: Update Example

Q(Sll7a4) = 8

60

28

11/19/24

Q-Learning: Update Example

2

Q(S‘)aai)zo'i'}/%

61

Q-Learning: Update Example

2

O(sy,a,) =0+

62

29

11/19/24

The Need for Exploration

argmax Q(s,,a) =<

best =—
63
RL Summary 1:
* Reinforcement learning systems
* Learn series of actions or decisions, rather than a single decision
* Based on feedback given at the end of the series
* Areinforcement learner has
* Agoal
* Carries out trial-and-error search
* Finds the best paths toward that goal
64

30

11/19/24

Exploration/Exploitation

* Can’t always choose the action with highest Q-value
* The Q-function is initially unreliable

* Need to explore until it is optimal

* Most common method: e-greedy
» Take a random action in a small fraction of steps (g)

* Decay € over time

* There is some work on optimizing exploration
* Kearns & Singh, ML 1998

* But people usually use this simple method

65
Q-Learning: Convergence
* Under certain conditions, Q-learning will converge to the correct
Q-function
e The environment model doesn’t change
+ States and actions are finite
* Rewards are bounded
* Learning rate decays with visits to state-action pairs
* Exploration method would guarantee infinite visits to every state-action
pair over an infinite training period
66

31

11/19/24

Challenges in Reinforcement Learning

» Feature/reward design can be very involved
¢ Online learning (no time for tuning)
« Continuous features (handled by tiling)

* Delayed rewards (handled by shaping)
* Parameters can have large effects on learning speed

» Realistic environments can have partial observability

» Realistic environments can be non-stationary

* There may be multiple agents

67

RL Summary 2:

* A typical reinforcement learning system is an active agent, interacting
with its environment.

e |t must balance:

* Exploration: trying different actions and sequences of actions to discover
which ones work best

* Exploitation (achievement): using sequences which have worked well so far

* Must learn successful sequences of actions in an uncertain
environment

68

32

11/19/24

RL Summary 3

* There are many sophisticated RL algorithms
* Most notably: probabilistic approaches

* Applicable to game-playing, search, finance, robot control, driving,
scheduling, diagnosis, ...

69

33

