
11/14/24

1

Sequential Decision Making
Under Uncertainty

material from Marie desJardin, Lise Getoor,
Jean-Claude Latombe, Daphne Koller, Stuart

Russell, Dawn Song, Mark Hasegawa-
Johnson, Svetlana Lazebnik, Pieter Abbeel,

Dan Klein

1

Bookkeeping

• Phase I (writeup and code) due 17th

• Today: “Planning” under uncertainty (sequential decision making)

• Next lecture: Finding optimal policies; Reinforcement Learning (RL)

2

11/14/24

2

A poor assumption in the planning we’ve seen so far

• NO UNCERTAINTY!
• Assumes the agent knows everything about the world and what can

happen in it.

• Sources of Uncertainty
• Agent may not know all states of the world.

• Agent may not know what state of the world it is in.
• Outcomes of actions may not be known

3

3

Decision Making Under Uncertainty

• Many environments have multiple possible outcomes

• Some of these outcomes may be good; others may be bad

• Some may be very likely; others unlikely

• What’s a poor agent to do??

• To understand how to plan under uncertainty, we need to revisit
expected utilities

4

4

11/14/24

3

Review: Expected Utility

• Random variable X with n values x1,…,xn and distribution (p1,…,pn)
• E.g.: X is the state reached after doing an action A under uncertainty

• Function U of X
• E.g., U is the utility of a state

• The expected utility of A is
EU[A] = Si=1,…,n p(xi|A)U(xi)

5

5

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

U(A1, S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1
= 20 + 35 + 7
= 62

One State/One Action Example

6

11/14/24

4

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62
• U (A2, S0) = 74
• U (S0) = maxa{U(a,S0)}

= 74

One State/Two Actions Example

7

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62 – 5 = 57
• U (A2, S0) = 74 – 25 = 49
• U (S0) = maxa{U(a, S0)}

= 57

-5 -25

Introducing Action Costs

8

11/14/24

5

Review: MEU Principle

• A rational agent should choose the action that maximizes agent’s
expected utility

• This is the basis of the field of decision theory

• The MEU principle provides a normative criterion for rational choice
of action

• So we know what to do when planning actions?

9

9

Sequential decisions under uncertainty

• So far, decision problem is one-shot—concerning only one
action

• Sequential decision problem: agent’s
utility depends on a sequence of actions

• This is where we get into planning

23

11/14/24

6

Decisions Under Uncertainty

• Some areas of AI (e.g., planning) focus on decision making in domains
where the environment is understood with certainty

• What if an agent has to make decisions in a domain that involves
uncertainty?

• An agent’s decision will depend on:
• what actions are available; they often don’t have deterministic outcome
• what beliefs the agent has over the world
• the agent’s goals and preferences

24

The Big Idea

• “Planning”: Find a sequence of steps to accomplish a goal.
• Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
• Transitions are deterministic.

• What if they are stochastic (probabilistic)?
• One time in ten, you drop your sock instead of putting it on

• Probabilistic Planning: Make a plan that accounts for probability by
carrying it through the plan.

25

25

11/14/24

7

Decision Processes

• Often an agent needs to decide how to act in situations that involve
sequences of decisions
• The agent’s utility depends upon the final state reached, and the sequence of

actions taken to get there

• Would like to have an ongoing decision process. At any stage of the
process:
• The agent decides which action to perform
• The new state of the world depends probabilistically upon the previous state

as well as the action performed
• The agent receives rewards or punishments at various points in the process

• Aim: maximize the reward received

26

Sequential Decision Problem Example

• Beginning at the start state, choose an
action at each time step.

• Problem terminates when either goal
state is reached.

• Possible actions are Up, Down, Left, and
Right

• Assume that the environment is fully
observable, i.e., the agent always knows
where it is.

27

27

11/14/24

8

Sequential Decision Problem Example

• Deterministic Solution

• If the environment is deterministic and
the objective is get the maximum reward,
then the solution is easy:

• (Up, Up, Right, Right, Right)

• But that’s assuming the agent always
ends up where it thinks it is going
• Robots do not in general do so L

28

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

29

11/14/24

9

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

30

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

31

11/14/24

10

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

32

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

• D, R, and L have similar probabilistic effects

33

11/14/24

11

Example: Grid World
• A maze-like problem

• The agent lives in a grid
• Walls block the agent’s path

• Noisy movement: actions do not always go as
planned
• 80% of the time, North takes the agent North

(if there is no wall there)
• 10% of the time, North à West; 10% East
• If there is a wall in the direction the agent would

have gone, the agent stays put

• The agent receives rewards each time step
• Small “living” reward r each step (can be negative)
• Big rewards come at the end (good or bad)

• Goal: maximize sum of rewards

34

Example

35

11/14/24

12

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?

• Can the sequence reach the goal in any other way?

36

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?
• Yes, with probability 0.85=0.3278

• Can the sequence reach the goal in any other way?

37

11/14/24

13

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?
• Yes, with probability 0.85=0.3278

• Can the sequence reach the goal in any other way?
• yes, going the other way around with probability 0.14x0.8 = 0.00008

38

Markov Decision Processes

• An MDP is defined by:
• A set of states s Î S
• A set of actions a Î A
• A transition function T(s,a,s’)

• Probability that a from s leads to s’
• i.e., P(s’ | s,a)
• Also called “the model”

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state (or distribution)
• Maybe a terminal state(s)

39

11/14/24

14

Transition Model

• A transition model is a specification of the outcome probabilities for
each action in each possible state.

• T(s,a,s’) denotes the probability of reaching state s’ if action a is done
on state s.

• Make Markov Assumption, i.e., the probability of reaching state s’
from s depends only on s and not on the history of earlier states.

40

40

Rewards and Utilities

• A utility function must be specified for the agent in order to determined the
value of an action.

• Because the problem is sequential, the utility function depends on a
sequence of states (environment history).

• Rewards are assigned to states, i.e., R(s) returns the reward of the state.

• For this example, assume the following:
• The reward for all states, except for the goal states, is -0.04.
• The utility function is the sum of all the states visited.

• E.g., if the agent reaches (4,3) in 10 steps, the total utility is 1 + (10 x -0.04) =
0.6.

• The negative reward is an incentive to stop interacting as quickly as possible.

41

41

11/14/24

15

Markov Property

• We will focus on decision processes that can be
represented as Markovians (as in Markov models)
• Actions have probabilistic outcomes that depend only on

the current state

• Let st be the state at time t
• P(st+1|s0 , a0 ,... ,st , at) = P(st+1|st , at)

• The transition properties depend only on the current state, not on the
previous history (how that state was reached)

• Markov assumption generally: current state only ever depends on
previous state (or finite set of previous states).

42

42

Sequence of Actions

K

• Planned sequence of actions: (U, R)

J

2

3

1

4321

y

x

[3,2]

obstacle à

ß goal
ß start state

44

11/14/24

16

Sequence of Actions

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

y

x

45

Histories

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• 9 possible sequences of states – called histories
• 6 possible final states for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

y

x

46

11/14/24

17

Probability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.8 x 0.8 + 0.1 x 0.1 = 0.65

47

Probability of Reaching the Goal

• Core idea: multiply backward probabilities of each step taken from end
state reached

• But we still need to consider different ways of reaching a state
• Going all the way around the obstacle would be “worse”

48

2

3

1

4321

48

11/14/24

18

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

49

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

50

11/14/24

19

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4321

51

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!

-1

+1

2

3

1

4321

52

11/14/24

20

Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• Histories have utility!
• The utility of a history is defined by the utility of the last

state (+1 or –1) minus n/25, where n is the number of moves
• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4321

53

Utility of an Action Sequence

-1

+1

2

3

1

4321

• Consider the action sequence (U,R) from [3,2]

54

11/14/24

21

Utility of an Action Sequence

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability

55

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

56

11/14/24

22

Optimal Action Sequence

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)
• The optimal sequence is the one with maximal utility

57

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to

compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

58

11/14/24

23

Accessible or
observable state

Reactive Agent Algorithm
59

Repeat:

• s ß sensed state

• If s is a terminal state then exit

• a ß choose action (given s)

• Perform a

59

Solution for an MDP

• Since outcomes of actions are not deterministic, a fixed set of
actions cannot be a solution.
• The solution to our planning problem is not U, U, R, R, R

• But what is it?

• A solution must specify what an a agent should do for any state
that the agent might reach.

• A policy, denoted by π, recommends an action for any given state:

• π(s) is the action recommended by policy π for state s.

60

60

11/14/24

24

Policy (Reactive/Closed-Loop Strategy)

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from
states to actions
• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

61

Optimal Policy

• An optimal policy is a policy that yields the highest expected utility.

• Optimal policy is denoted by π*.

• Once a π* is computed for a problem, then the agent, once identifying
the state (s) that it is in, consults π*(s) for the next action to execute.

62

62

11/14/24

25

Reactive Agent Algorithm

Repeat:

• s ß sensed state

• If s is terminal then exit

• a ßP(s)

• Perform a

63

63

Policies

• A policy p gives an action for each state,
p: S → A

• In deterministic single-agent search
problems, we wanted an optimal plan,
or sequence of actions, from start to a
goal

• For MDPs, we want an optimal policy
p*: S → A
• An optimal policy maximizes expected utility
• An explicit policy defines a reflex agent

64

11/14/24

26

Solving MDPs

• In search problems, aim is to find an optimal state sequence

• In MDPs, aim is to find an optimal policy π(s)
• A policy π(s) specifies what the agent should do in each state s
• Because the environment is stochastic, a policy can generate a set of

environment histories (sequences of states) with different probabilities

• Optimal policy maximizes the expected total reward, where the
expectation is taken over the set of possible state sequences
generated by the policy
• Each state sequence associated with that policy has a given amount of total

reward
• Total reward is a function of the rewards of its individual states (we’ll see how)

65

Optimal Policy in our Example

• Let’s suppose that, in our example, the total reward of an
environment history is simply the sum of the individual rewards
• For instance, with a penalty of -0.04 in not terminal states, reaching (3,4) in

10 steps gives a total reward of 0.6

• Penalty designed to make the agent go for shorter solution paths

66

11/14/24

27

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history (sequence of steps ending at a terminal state)
with maximal expected utility

2

3

1

4321

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

67

Rewards and Optimal Policy

• Optimal Policy when penalty in non-terminal
states is -0.04

• Note that here the cost of taking steps is small
compared to the cost of ending into (4,2)
• Thus, the optimal policy for state (3,1) is to take

the long way around the obstacle rather then
risking to fall into (4,2) by taking the shorter way
that passes next to it

• But the optimal policy may change if the reward
in the non-terminal states (let’s call it r) changes

68

11/14/24

28

Rewards and Optimal Policy

• Optimal Policy when r < -1.6284

• Why is the agent heading straight into
(4,2) from its surrounding states?

• The cost of taking a step is so high that
the agent heads straight into the
nearest terminal state, even if this is
(4,2) (reward -1)

3

2

1

1 2 3 4

69

Rewards and Optimal Policy

• Optimal Policy when
-0.427 < r < -0.085

• The cost of taking a step is high
enough to make the agent take the
shortcut to (4,3) from (3,1)

3

2

1

1 2 3 4

70

11/14/24

29

Rewards and Optimal Policy

• Optimal Policy when -0.0218 < r < 0

• Why is the agent heading straight into
the obstacle from (3,2)?

• Staying longer in the grid is not
penalized as much as before. The
agent is willing to take longer routes
to avoid (4,2)

• This is true even when it means
banging against the obstacle a few
times when moving from (3,2)

3

2

1

1 2 3 4

71

Rewards and Optimal Policy

• Optimal Policy when r > 0

• What happens when the agent is
rewarded for every step it takes?

• It is basically rewarded for sticking
around

• The only actions that matter are the
ones in states that are adjacent to the
terminal states: take the agent away
from them

state where every
action belongs to
an optimal policy

3

2

1

1 2 3 4

72

11/14/24

30

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history with maximal expected utility

2

3

1

4321

73

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute p*?

74

11/14/24

31

Computing the optimal policy π*

• Additive utility

• State utilities

• Action sequences

• The Bellman equation

• Value iteration

• Policy iteration

75

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:
U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

76

Reward
• The reward accumulates

as you step through
states.

76

11/14/24

32

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:
U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

• Robot navigation example:
• R(n) = +1 if sn = [4,3]

• R(n) = -1 if sn = [4,2]

• R(i) = -1/25 if i = 0, …, n-1

77

-1

+1

77

Defining the optimal policy

• Given a policy p, we can define the expected utility over all possible
state sequences produced by following that policy:

• The optimal policy should maximize this utility

• But how to define the utility of a state sequence?
• Sum of rewards of individual states

• Problem: infinite state sequences

U π (s0) = P(sequence)U(sequence)
state sequences
starting from s0

∑

78

11/14/24

33

Utilities of state sequences
• Normally, we would define the utility of a state sequence as the sum of the

rewards of the individual states

• Problem: infinite state sequences

• Solution: discount the individual state rewards by a factor g between 0 and 1:

• Sooner rewards “count” more than later rewards

• Makes sure the total utility stays bounded

• Helps algorithms converge

!"#$
"

!$

!$!$!$%!&&&$'

()*

#

+
+

"#+"#

<<
−

≤=

+++=

∑
∞

=

γ
γ

γ

γγ
!"!

"!"!"!"""#

$
$

$

!!

79

Sum of discounted rewards
• To define the utility of a state sequence, discount the individual state rewards

by a factor g between 0 and 1:

• When g = 1 this is just additive utility

U([s0, s1, s2,...]) = R(s0)+γR(s1)+γ
2R(s2)+...

80

11/14/24

34

Utilities of states

• Expected utility obtained by policy p starting in state s:

𝑈" 𝑠 = %
&'(') &)*+),-)&
&'(.'/,0 1.23 &

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|𝑠, 𝑎 = 𝜋 𝑠 𝑈 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states

81

Defining State Utility

Problem:

• When making a decision, we only know the reward so far, and the
possible actions

• We’ve defined utility retroactively (i.e., the utility of a history is known
once we finish it)

• What is the utility of a particular state in the middle of decision
making?

• Need to compute expected utility of possible future histories

82

82

11/14/24

35

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

U(s’)

Max node

Chance
node

P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

83

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

∑
!

"!#"$%!#
!

!"#!!$

U(s’)

Max node

Chance
node

P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

84

11/14/24

36

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

∑
!

"!#"$%!#
!

!"#!!$

U(s’)

Max node

Chance
node

∑
∈

=
!"#

$ "!#"%&!#'()(*+"#
!!"#

!A#!!%!π
P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

85

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

∑
!

"!#"$%!#
!

!"#!!$

U(s’)

Max node

Chance
node

∑
∈

=
!"#

$ "!#"%&!#'()(*+"#
!!"#

!A#!!%!π
P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

∑+=
!

"!#"$%!#&'("#"#
!

" !#"!!$!%!# γ

86

11/14/24

37

The Bellman equation

• Recursive relationship between the utilities of successive states:

∑
∈

+=
!"#

"!#"$%!#&'("#"#
!!"#

!A#!!%!&!A γ

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by g)

Receive reward R(s)

Choose optimal action a

87

The Bellman equation

• Recursive relationship between the utilities of successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP

• The “max” means that there is no closed-form solution. Need to use an
iterative solution method, which might not converge to the globally optimum
solution.

• Two solution methods: value iteration and policy iteration

∑
∈

+=
!"#

"!#"$%!#&'("#"#
!!"#

!A#!!%!&!A γ

88

11/14/24

38

Method 1: Value iteration

• Start out with iteration 𝑖 = 0, every 𝑈/ (𝑠) = 0

• Iterate until convergence
• During the ith iteration, update the utility of each state according to this rule:

• So we’re looking at utility of each state based on its successors

• In the limit of infinitely many iterations, guaranteed to find the correct
utility values.
• Error decreases exponentially, so in practice, don’t need infinite iterations

∑
∈+ +←

!"#$ "!#"%&!#'()"#"#
!

"!#A" !%A!!&!'!% γ

89

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

90

11/14/24

39

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

It can be proven
that this algorithm
converges to the
correct solutions of
the Bellman
equations. Details
can be found in
Russell and
Norvig.

91

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

The main operation is
in red.

Use the Bellman
equation to update
values 𝑈(𝑠) using the
previous estimates for
those values.

This is called a
Bellman update.

92

11/14/24

40

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

So, the value iteration
algorithm is:

Initialize utilities of
states to zero values.

Repeatedly update
utilities of states using
Bellman updates, until
the estimated values
converge.

93

A Value Iteration Example

• Let's see how the value
iteration algorithm works
on our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a

non-terminal state.
• 𝛾 = 0.9

• We initialize all utility
values to 0.

+1

-1

START1

2

3

1 2 3 4

0 0 0 0

0 0 0

0 0 0 01

2

3

1 2 3 4
Utility Values

94

11/14/24

41

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.04 -0.04 -0.04 +1

-0.04 -0.04 -1

-0.04 -0.04 -0.04 -0.041

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after one
round of updates:
• The current estimate for each

state 𝑠 is 𝑅(𝑠).

95

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.08 -0.08 0.67 +1

-0.08 -0.08 -1

-0.08 -0.08 -0.08 -0.081

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after two
rounds of updates:
• Information about the +1

reward reached state (3,3).

96

11/14/24

42

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.11 0.43 0.73 +1

-0.11 0.35 -1

-0.11 -0.11 -0.11 -0.111

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after three
rounds of updates:
• Information about the +1

reward reached more states.

97

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.25 0.57 0.78 +1

-0.14 0.43 -1

-0.14 -0.14 0.19 -0.141

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after four
rounds of updates:
• Information about the +1

reward reached more states.

98

11/14/24

43

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.38 0.62 0.79 +1

0.12 0.47 -1

-0.16 0.07 0.24 -0.011

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after five
rounds of updates:
• Information about the +1

reward reached more states.

99

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.45 0.64 0.79 +1

0.25 0.48 -1

0.04 0.15 0.30 0.051

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after six
rounds of updates:
• Information about the +1

reward has reached all states.

100

11/14/24

44

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.48 0.65 0.79 +1

0.33 0.48 -1

0.16 0.21 0.32 0.091

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after seven
rounds of updates:
• Values keep getting

updated.

101

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.50 0.65 0.80 +1

0.37 0.49 -1

0.23 0.23 0.34 0.111

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after eight
rounds of updates:
• Values continue changing.

102

11/14/24

45

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.51 0.65 0.80 +1

0.40 0.49 -1

0.30 0.25 0.34 0.131

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after 13
rounds of updates:
• Values don't change much

anymore after this round.

103

Computing the Optimal Policy

• The value iteration algorithm computes U 𝑠 for every state 𝑠.

• Once we have computed all values U 𝑠 , we can get the optimal policy 𝜋∗
using this equation:

• 𝜋∗ 𝑠 = argmax
(∈U(&)

∑&N 𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• Thus, 𝜋∗ 𝑠 identifies the action that leads to the highest expected utility for
the next state, as measured over all possible outcomes of that action.

• This approach is called one-step look-ahead.

104

104

11/14/24

46

Approach 2: Policy Iteration
• There is a more efficient algorithm for computing optimal policies

• Remember that, if we know the utility of each state, we can compute the
optimal policy 𝜋∗ using:

𝜋∗ 𝑠 = argmax
(∈U(&)

%
&N

𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• However, to get the right 𝜋∗ 𝑠 , we don't need to know the utilities very
accurately.

• We just need to know the utilities accurately enough so that, for each state 𝑠,
argmax chooses the right action.

105

105

Method 2: Policy Iteration

• Start with some initial policy p0 and alternate between the following
steps:
• Policy Evaluation: calculate the utility of every state under the assumption

that the given policy is fixed and unchanging.
• Policy Improvement: calculate a new policy pi+1 based on the updated utilities.

• Kind of like gradient descent:
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite
number of steps, as long as the state space and action set are both
finite.

106

11/14/24

47

The Policy Iteration Algorithm

• This alternative algorithm for computing optimal policies is called the
policy iteration algorithm.

• It is an iterative algorithm.

• Initialization:
• Initiate some policy 𝜋c with random choices for the best action at each state.

• Main loop:
• Policy evaluation: given the current policy 𝜋/, calculate utility values 𝑈"d(s),

corresponding to the utility of each state s if the agent follows policy 𝝅𝒊.
• Policy improvement: Given current utility values 𝑈"d(s), use one-step look-

ahead to compute new policy 𝜋/gh.

107

107

The Policy Evaluation Step
• Task: calculate utility values 𝑈"d(s), corresponding to the assumption that the

agent follows policy 𝝅𝒊.

• When the policy was not known, we used the Bellman equation:

U 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U(&)

%
&N

𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• Now that the policy 𝜋/ is specified, we can instead use a simplified version of the
Bellman equation:

𝑈"d 𝑠 = 𝑅 𝑠 + 𝛾%
&N

𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈"d 𝑠N

• Key difference: now 𝜋/(𝑠) specifies the action for each state 𝑠, so we do not need
to look for the max over all possible actions.

108

108

11/14/24

48

The Policy Evaluation Step

• 𝑈"d 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈"d 𝑠N

• This is a linear equation.
• The original Bellman equation, taking the max out of all possible actions, is

not linear.

• If we have 𝑁 states, we get 𝑁 linear equations of this form, with 𝑁
unknowns.

• We can solve those 𝑁 linear equations in O 𝑁k time, using
standard linear algebra methods.

109

109

The Policy Evaluation Step
• For large state spaces, O 𝑁k is prohibitive.

• Alternative: do some rounds of iterations.

• Obviously, doing 𝐾 iterations does not guarantee that the utilities are computed
correctly.

• Parameter 𝐾 allows us to trade speed for accuracy. Larger values lead to slower
runtimes and higher accuracy.

110

function PolicyEvaluation(𝕊, p, R, 𝛾, 𝜋/, 𝐾, U)
Uc = copy of U
for 𝒌 = 𝟏 to 𝑲:

for each state s in 𝕊:
𝑈p 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈pqh 𝑠N

return 𝑈p

110

11/14/24

49

The Policy Evaluation Step
• For large state spaces, O 𝑁k is prohibitive.

• Alternative: do some rounds of iterations.

• The PolicyEvaluation function takes as argument a current estimate U.

111

function PolicyEvaluation(𝕊, p, R, 𝛾, 𝜋/, 𝐾, U)
Uc = copy of U
for 𝒌 = 𝟏 to 𝑲:

for each state s in 𝕊:
𝑈p 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈pqh 𝑠N

return 𝑈p

111

Policy Iteration

• Pick a policy π at random

• Repeat:
• Compute the utility of each state for π

Ut+1(i) ßR(i) + SkP(k | π(i).i) Ut(k)

• Compute the policy π’ given these utilities

π’ (i) = arg maxa SkP(k | a.i) U(k)
• If π’ = π then return π

112

112

11/14/24

50

Policy Iteration: Convergence

• Convergence assured in a finite number of iterations
• Since finite number of policies and each step improves value, then must

converge to optimal

• Gives exact value of optimal policy

113

113

Policy Iteration Complexity

• Each iteration runs in polynomial time in the number of states and
actions

• There are at most |A|n policies and PI never repeats a policy
• So at most an exponential number of iterations

• Not a very good complexity bound

• Empirically O(n) iterations are required – often it seems like O(1)

• Recent polynomial bounds.

114

114

11/14/24

51

Value Iteration: Summary

• Value iteration:
• Initialize state values (expected utilities) randomly
• Repeatedly update state values using best action, according to current

approximation of state values

• Terminate when state values stabilize
• Resulting policy will be the best policy because it’s based on accurate state

value estimation

115

115

Policy Iteration: Summary

• Policy iteration:
• Initialize policy randomly
• Repeatedly update state values using best action, according to current

approximation of state values

• Then update policy based on new state values
• Terminate when policy stabilizes

• Resulting policy is the best policy, but state values may not be accurate
(may not have converged yet)

• Policy iteration is often faster (because we don’t have to get the state
values right)

116

116

11/14/24

52

Value Iteration vs. Policy Iteration

• Which is faster, VI or PI?
• It depends on the problem

• VI takes more iterations than PI, but PI requires more time on each
iteration
• PI must perform policy evaluation on each iteration which involves solving a

linear system

• VI is easier to implement since it does not require the policy
evaluation step

• Both methods have a major weakness: They require us to know the
transition function exactly in advance!

117

