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Knowledge Representation
Project Work

Bookkeeping

* Project designs have been returned, with feedback

Please feel free to talk to me about your project plan!

* Today’s lecture:
A little more about inference
Knowledge Representation & Reasoning
Planning
* Whatis planning?

* Approaches to planning
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La st Tl me: AgentS Wumpus percepts:

——| [Stench, Breeze, Glitter, Bump, Scream]

* Logical agents
» Reflex: rules map directly from percepts = beliefs or percepts = actions
Vb,g,u,c,t Percept([Stench, b, g, u, c], t) — Stench(t)
Vt AtGold(t) — Action(Grab, t)

¢ Model-based: construct a model (set of t/f beliefs about sentences) as they
learn; map from models = actions

Action(Grab, t) - HaveGold(t)
HaveGold(t) — Action(RetraceSteps, t)

* Goal-based: form goals, then try to accomplish them

Last Time: Goal-Based Agents

* Once the gold is found, need new goals!

* So, need a new set of actions.

* Encoded as arule:
(Vs) Holding(Gold,s) — Goallocation([1,1],s)

« How does the agent find a sequence of actions for goal?

* Three possible approaches are:
* Inference: good versus wasteful solutions

» Search: make a problem with operators and set of states
* Planning: coming soon!
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Last Time: Situations

* Representing a dynamic world

« Situations (sg...s,): the world in situation 0-n
Teaching(DrM,sy) — today, 1:00, whenNotSick, ...

* Add ‘situation’ argument to statements
AtGold(t,so)
* Or, add a ‘holds’ predicate that says ‘sentence is true in this situation’
holds(At[2,1], s))
* Or, add a result(action, situation) function that takes an action and situation,
and returns a new situation
results(Action(goNorth), sg) =2 s,

Last Time: Inference by Enumeration

 LET: KB=AVC,BV-C B=AVB
« QUERY: KBEB?

A | B [ c |avc[evec([kB |aVB[KB=f
false [falselfalse[false [true  [false [false | true
false [falseftrue [true [false [false [false | true
false [true [falseffalse true [false Jtrue Jtrue
false |true [true [true |true  |true |true true
true |[falselfalseltrue |true |true |true true
true [falseftrue [true [false |false |true true
true [true [falseltrue |true |true |true true
true [true [true |true |true  |true [true [true

B is entailed by
KB if all models of
KB are models of
B, i.e., all rows
where KB is true,
B is also true

In other words:
KB = [ is valid
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Automating FOL Inference
with Generalized Modus Ponens

Automated Inference for FOL

* Automated inference using FOL is harder than PL
* Variables can take on an infinite number of possible values
* From their domains, anyway
* This is a reason to do careful KR!
* So, potentially infinite ways to apply Universal Elimination

* Godel’s Completeness Theorem says that FOL entailment is only
semidecidable*
* If a sentence is true given a set of axioms, can prove it

* If the sentence is false, then there is no guarantee that a procedure will ever
determine this

* Inference may never halt

*The “halting problem”
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Generalized Modus Ponens (GMP)

* Apply modus ponens reasoning to generalized rules

« Combines And-Introduction, Universal-Elimination, and Modus Ponens

¢ From P(c) and Q(c) and ( Vx)(P(x) ~ Q(x)) = R(x) derive R(c)

* General case: Given
+ atomic sentences P, P,, ..., Py
+ implication sentence (Q; A Q; A ... AQy) = R
* Qy, ..., Qyand R are atomic sentences
* substitution subst(6, P;) = subst(6, Q;) for i=1,...,N
+ Derive new sentence: subst(0, R)

Method 3: Forward Chaining

* Proofs start with the given axioms/premises in KB, deriving new
sentences using GMP until the goal/query sentence is derived

* This defines a forward-chaining inference procedure because it
moves “forward” from the KB to the goal [eventually]

* Forward chaining with Horn clause KB is complete

* Aformal system is called complete with respect to a particular property if
every formula having the property can be derived using that system, i.e. is
one of its theorems;

* Intuitively, a system is called complete if it can derive every formula that is
true.

14
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Forward Chaining

* “Apply” any rule whose premises are satisfied in the KB
» Add its conclusion to the KB until query is derived

P=0
LAM=P
BANL=>M
ANP=>L
ANB=>L
A

B

KB:

query: Q

15

Forward Chaining

. P=>Q

LAM=P
BAL=>M
AANP=L

Given< AAB=L

KB

GMP(5,6,7)
GMP(3,7,8)
. (
(

GMP(2,8,9)
GMP(1,10)

A—\so.m.[.@.m.#.w!v
OU=Z=rwmy>

16
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Forward Chaining Exercise

* Consider the following KB:

N o un s w N e

1=Q

AANI=) 8. E (GMP 5,6,7)
EAF=I 9. F (GMP4,7)
B=F 10.1  (GMP 3,8,9)
AAB=E 11. J (GMP 2,6,10)
2 12.Q (GMP 1,11)

* Prove Q. (Remember, you’ll just use GMP over and over!)

A,B,(AAB)=C, = C

20

Method 4: Backward Chaining

* Forward chaining problem: can generate a lot of irrelevant conclusions

Search forward, start state = KB, goal test = state contains query

» Backward chaining

Work backwards from goal to premises

Find all implications of the form (...) = query

Prove all the premises of one of these implications

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

* Has already been proved true, or

* Has already failed

21



11/6/24

Backward Chaining

* Backward-chaining deduction using GMP

* Complete for KBs containing only Horn clauses.

* Proofs:
. Avoid loops
* Start with the goal query - Is new subgoal already on goal stack?
* Find rules with that conclusion Avoid repeated work: has subgoal

- Already been proved true!?

*  Prove each of the antecedents - Already failed?

in the implication

* Keep going until you reach premises!

22
Backward Chaining Example
 KB:
« allergies(X) = sneeze(X)
« cat(Y) A allergic-to-cats(X) = allergies(X)
« cat(Felix)
» allergic-to-cats(Lise)
* Goal:
¢ sneeze(Lise)
24
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Knowledge Base

3. Felix is a cat.

. cat(Felix)
» Backward Chaining: apply rules 4. Lise is allergic to cats.

that end with the goal allergic-cats(Lise)

B a C kwa rd C h a | n | n g | Allergies lead to sneezing.

allergies(X) = sneeze(X)
2. Cats cause allergies if allergic to cats.
sneeze(Lise) & query cat(Y) A allergic-cats(X) = allergies(X)

variable binding

r

allergies(X) — sneeze(X) + sneeze(Lise)
new query: allergies(Lise)?

cat(Y) A allergic-cats(X) — allergies(X) + allergies(Lise)
new query: cat(Y) A allergic-cats(Lise)?

cat(Felix) + cat(Y) A allergic-cats(Lise)
new sentence: cat(Felix) A allergic-cats(Lise) v

25
Forward vs. Backward Chaining
* FCis data-driven
* Automatic, unconscious processing
» E.g., object recognition, routine decisions
* May do lots of work that is irrelevant to the goal
» BCis goal-driven, appropriate for problem-solving
*  Where are my keys? How do | get to my next class?
* Complexity of BC can be much less than linear in the size of the KB
27



11/6/24

Completeness of GMP

GMP (using forward or backward chaining) is complete for KBs that contain
only Horn clauses

It is not complete for simple KBs that contain non-Horn clauses

The following KB entails that S(A) is true:
(Vx) P(x) = Q(x)
(Vx) =P(x) = R(x)
(Vx) Q(x) = S(x)
(Vx) R(x) = S(x)

If we want to conclude S(A), with GMP we cannot, since the second one is not
a Horn clause

It is equivalent to P(x) v R(x)

28
Knowledge Representation
and Reasoning (KR&R)
50

10
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Agent’s knowledge representation

SEensors

N

actuators

What have we seen so far for
knowledge representation?

51

Knowledge-based agent

SEensors

Knowledge
base

52

11
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Knowledge-based approach

Questions, Answers, Examples,
requests  analyses Statements

Knowledge base stores
facts/information/rules
about the world

53
What is in a knowledge base?
* Facts...
» Specific:
Middlebury College is a private college
Prof. Kauchak teaches at Middlebury College
e 2+2=4
« The answer to the ultimate question of life is 42
* General:
« All triangles have three sides
« All tomatoes are red
* n2=n*n
54

12
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Inference

* Given facts, we’d like to ask questions

Key: depending on how we store the facts, this can be easy or hard
People do this naturally (though not perfectly)
» For computers, we need specific rules

* For example:

Johnny likes to program in C
C is a hard programming language
Computer scientists like to program in hard languages

« What can we infer?

55
Inference
* For example:
+ Johnny likes to program in C
« Cis a hard programming language
«  Computer scientists like to program in hard languages
* Be careful!
* we cannot infer that Johnny is a computer scientist
*  What about now:
* All people who like to program in hard languages are computer scientists
* What can we infer?
56

13
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Creating a knowledge-based agent

* Representation: how are we going to store our facts?

* Inference: How can we infer information from our facts? How can we
ask questions?

* Learning: How will we populate our facts?

57
Introduction
» Real knowledge representation and reasoning systems: several varieties
» These differ in their intended use, expressivity, features,...
* Some major families are
* Logic programming languages
* Theorem provers
*  Rule-based or production systems
*  Semantic networks
* Frame-based representation languages
» Databases (deductive, relational, object-oriented, etc.)
e Constraint reasoning systems
» Description logics
*  Bayesian networks
* Evidential reasoning
58

14
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Ontologies

* Representations of general concepts

* Usually represented as a type hierarchy

« Sort of a special case of a semantic network (wait for it...)

* “Ontological engineering” is hard!
*  How do you create an ontology for a particular application?
* How do you maintain an ontology for changing needs?
*  How do you merge ontologies from different fields?

How do you map across ontologies from different fields?

59
Ontology
» First-order logic states relationships between objects
* One easy way to represent a similar concept is with a graph
* nodes are the objects
* edges represent relationships between nodes
* some of the quantifier capability is lost
legs clothing .
wornOn \ instanceOf air
instanceOf 7 o
pants socks
Tnstanceof
khakis
60

15
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Ontology

* Intuitive representation for people

» Can pose questions as graph traversals which is often more
comfortable/efficient

legs clothing .
R air
wornOn instanceOf
instanceOf
pants socks
Tmstanceof
khakis
61
Upper Ontologies
* Highest-level categories: typically these might include:
* Measurements
* Objects and their properties (including fluent, or changing, properties)
* Events and temporal relationships
* Continuous processes
+ Mental events, processes; “beliefs, desires, and intentions”
* Also useful:
* Subtype relationships
* PartOf relationships
* Composite objects
62

16
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Semantic Networks

A semantic network is a representation scheme that uses a graph of
labeled nodes and labeled, directed arcs to encode knowledge.
* Usually used to represent static, taxonomic, concept dictionaries

Typically used with a special set of procedures to perform reasoning
* e.g., inheritance of values and relationships

Semantic networks were very popular in the ‘60s and ‘70s but are less
frequently used today.

* Often much less expressive than other KR formalisms

The graphical depiction associated with a semantic network is a
significant reason for their popularity.

63
Nodes and Arcs
* Arcs define binary relationships that hold between objects denoted by
the nodes.
age
mother(john,sue)
age(john,5)
wife(sue,max)
age(max,34)
64

17
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Semantic Network Example

HAS-PART

HAS-PART

animal

EATS

65
Semantic Networks
* The ISA (is-a) or AKO (a-kind-of)
relation is often used to link instances Animall
to classes, classes to superclasses _
sa
* Some links (e.g. hasPart) are inherited Bird M‘
along ISA paths. : Wing
sa
* The semantics of a semantic net can Robin
be informal or very formal isa '\isa
» often defined at the implementation
level
Rusty Red
66

18
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Reification

* Non-binary relationships can be represented by “turning the
relationship into an object”

* This is an example of what logicians call “reification”

«  We might want to represent the generic give event as a relation
involving three things: a giver, a recipient and an object,

give(john,mary,book32)
giver -
@ ~Gom

Tecipient m‘

67
Individuals and Classes
* Many semantic networks enus
distinguish: ' 6
* Nodes representing individuals Animal
and those representing classes subclas instance
e The “subclass” relation from the . hasPart
“instance-of” relation Bird '
subclass — Wing
Robin
instance Vnstance
Rusty Red
68

19
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Inference by Inheritance

* One of the main kinds of reasoning done in a semantic net is the
inheritance of values along the subclass and instance links.

* Semantic networks differ in how they handle the case of inheriting
multiple different values.
* All possible values are inherited, or

* Only the “lowest” value or values are inherited

70
Conflicting Inherited Values
Animate
Vacalization Vocalization
Speech -E gﬁgl?e?cr;er Penguin l—'-,] Squawks
4 y
%/b{gpf @g.@é
Opus
71

20
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Multiple Inheritance

A node can have any number of superclasses that contain it, enabling a
node to inherit properties from multiple “parent” nodes and their
ancestors in the network.

These rules are often used to determine inheritance in such “tangled”
networks where multiple inheritance is allowed:
* If X<A<B and both A and B have property P, then X inherits A’s property.

e If X<A and X<B but neither A<B nor B<A, and A and B have property P with
different and inconsistent values, then X does not inherit property P at all.

72
From Semantic Nets to Frames
« Semantic networks morphed into Frame Representation Languages
in the ‘70s and ‘80s
* Aframe is a lot like the notion of an object in OOP, but has more
meta-data
* A frame has a set of slots.
* Aslot represents a relation to another frame (or value).
* Aslot has one or more facets.
» A facet represents some aspect of the relation.
74

21
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Animals
— Rel(Alive Animals.T)
T Rel(Flies Animals. F)
F
& D) Birds C Animals
6’@ Y‘%’/ Mammals C Animals
Birds Mammals Rel(Flies Birds T)
Teas ] 2 Rel(Legs Birds.2)
T 4 Rel(Legs.Mammals 4)
] ] Penguins C Birds
T ] St Cats € Mammals
S E X Bats C Mammals
Penguins Cats Bats Rel{Flies.Penguins.F)
3 > Rel(Legs Bats.2)
F -?95_1 Rel(Flies Bats.T)
T Opus € Penguins
1) i " Bill €Cats
g § E Pat € Bats
= = =
- Name(Opus."Opus")
Opus Bil Pat Name(Bill "Bill")
Name: Opus Name: Bill Name: Pat Friend(Opus.Bill)
Friend: ——4w=| Friend: Friend(Bill.Opus)
Name(Pat."Pat")
A
(a) A frame-based knowledge base (b) Translation into first-order logic
75
Description Logics
» Description logics provide a family of frame-like KR systems with a
formal semantics.
* E.g., KL-ONE, LOOM, Classic, ...
* These logics can be used to determine whether categories belong within other
categories (i.e., subsumption tasks)
* An additional kind of inference done by these systems is automatic
classification
» finding the right place in a hierarchy of objects for a new description
* Current systems take care to keep the languages simple, so that all
inference can be done in polynomial time (in the number of objects)
* ensuring tractability of inference
76

22
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Abduction

* Abduction is a reasoning process that tries to form plausible explanations for
abnormal observations

e Abduction is distinctly different from deduction and induction
* Abduction is inherently uncertain

* Uncertainty is an important issue in abductive reasoning

* Some major formalisms for representing and reasoning about uncertainty:
*  Mpycin’s certainty factors (an early representative)
*  Probability theory (esp. Bayesian belief networks)
* Dempster-Shafer theory
*  Fuzzy logic
»  Truth maintenance systems
*  Nonmonotonic reasoning

77
Abduction
« Definition (Encyclopedia Britannica): reasoning that derives an
explanatory hypothesis from a given set of facts
e Theinference result is a hypothesis that, if true, could explain the
occurrence of the given facts
* Examples
+ Dendral, an expert system to construct 3D structure of chemical compounds
* Fact: mass spectrometer data of the compound and its chemical formula
» KB: chemistry, esp. strength of different types of bounds
* Reasoning: form a hypothetical 3D structure that satisfies the chemical
formula, and that would most likely produce the given mass spectrum
78
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Abduction Examples (cont.)

* Medical diagnosis
* Facts: symptoms, lab test results, and other observed findings (called
manifestations)
» KB: causal associations between diseases and manifestations

* Reasoning: one or more diseases whose presence would causally explain
the occurrence of the given manifestations

* Many other reasoning processes (e.g., word sense disambiguation in natural
language process, image understanding, criminal investigation) can also been
seen as abductive reasoning

79
Abduction, Deduction, Induction
L . . A=>B
Deduction: major premise: All balls in the box are black [ ‘4
minor premise: These balls are from the box | --------
conclusion: These balls are black B
Abduction: rule: All balls in the box are black A=>11§
observation: These balls are black | oo
explanation: These balls are from the box Possi
ossibly
A
Induction: case: These balls are from the box :V:fl?:;e
observation: These balls are black B
hypothesized rule: All ball in the box are black | 7777
Possibl
Deduction reasons from causes to effects Aoiil By
Abduction reasons from effects to causes
Induction reasons from specific cases to general rules
80

24
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Characteristics of Abductive Reasoning

* “Conclusions” are hypotheses, not theorems (may be false even if
rules and facts are true)

* E.g., misdiagnosis in medicine

* There may be multiple plausible hypotheses

* Givenrules A =>B and C => B, and fact B, both A and C are plausible
hypotheses

* Abduction is inherently uncertain

* Hypotheses can be ranked by their plausibility (if it can be determined)

81
Characteristics of Abductive Reasoning (cont.)
* Reasoning is often a hypothesize-and-test cycle
* Hypothesize: Postulate possible hypotheses, any of which would explain the
given facts (or at least most of the important facts)
» Test: Test the plausibility of all or some of these hypotheses
* One way to test a hypothesis H is to ask whether something that is currently
unknown-but can be predicted from H—is actually true
e |f we also know A => D and C =>E, then ask if D and E are true
» If Distrue and E is false, then hypothesis A becomes more plausible
(support for A is increased; support for C is decreased)
82

25
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Characteristics of Abductive Reasoning (cont.)

* Reasoning is non-monotonic

« Thatiis, the plausibility of hypotheses can increase/decrease as new facts are
collected

* In contrast, deductive inference is monotonic: it never change a sentence’s
truth value, once known

* In abductive (and inductive) reasoning, some hypotheses may be discarded,
and new ones formed, when new observations are made

83
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