
11/19/24

1

Inference & Logical Agents

Based on slides from AIMA, Marie desJardin, Charles R. Dyer, Richard Lathrop

1

Bookkeeping

• Notes
• HW4 out tonight—this will be the last homework (because projects)
• NO CLASS NEXT THURSDAY—please work on projects!

• Today’s class
• A little about higher-order logics
• More on knowledge-based agents

• Situations – reasoning over time
• Inference in knowledge bases, 5 ways

• And a PSA (next)

2

11/19/24

2

https://elections.maryland.gov/voting
/early_voting.html

Early Voting: Ends Thursday 10/31

3

Election Day, 11/5: Find Your Polling Place

https://voterservices.electio
ns.maryland.gov/VoterSear

ch

4

https://elections.maryland.gov/voting/early_voting.html
https://voterservices.elections.maryland.gov/VoterSearch

11/19/24

3

Eligible but Not Registered? Same Day Registration!

https://elections.maryland.gov/voter_registration/index.html

5

https://civiclife.umbc.edu/lea
rning-engagement/election-

resources/

6

https://elections.maryland.gov/voter_registration/index.html
https://civiclife.umbc.edu/learning-engagement/election-resources/

11/19/24

4

Translating English to FOL
• No purple mushroom is poisonous.

• ¬$x purple(x) Ù mushroom(x) Ù poisonous(x)
• "x (mushroom(x) Ù purple(x)) ⇒¬poisonous(x)

• There are exactly two purple mushrooms.
• $x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù purple(y) ^ ¬(x=y) Ù "z

(mushroom(z) Ù purple(z)) ⇒ ((x=z) Ú (y=z))

• Mary is not tall.
• ¬tall(Mary)

• X is above Y iff X is on directly on top of Y or there is a pile of one or more
other objects directly on top of one another starting with X and ending with Y.
• "x "y above(x,y) ↔ (on(x,y) Ú $z (on(x,z) Ù above(z,y)))

Equivalent

7

Semantics of FOL
• Domain M: the set of all objects in the world (of interest)

• Interpretation I: includes
• Assign each constant to an object in M
• Define each function of n arguments as a mapping Mn => M
• Define each predicate of n arguments as a mapping Mn => {T, F}
• Therefore, every ground predicate with any instantiation will have a truth value
• In general there is an infinite number of interpretations because |M| is infinite

• Define logical connectives: ~, ^, v, =>, <=> as in PL

• Define semantics of ("x) and ($x)
• ("x) P(x) is true iff P(x) is true under all interpretations
• ($x) P(x) is true iff P(x) is true under some interpretation

8

11/19/24

5

Terminology

• Model: an interpretation of a set of sentences such that every
sentence is True

• A sentence is
• Satisfiable if it is true under some interpretation
• Valid if it is true under all possible interpretations
• Inconsistent if there does not exist any interpretation under which the

sentence is true

• Logical consequence: S ⊨ X if all models of S are also
models of X

9

Axioms, Definitions and Theorems

• Axioms are facts and rules that attempt to capture all of the (important) facts
and concepts about a domain; axioms can be used to prove theorems
• Mathematicians don’t want any unnecessary (dependent) axioms –ones that can

be derived from other axioms
• Dependent axioms can make reasoning faster, however
• Choosing a good set of axioms for a domain is a kind of design problem

• A definition of a predicate is of the form “p(X) ↔ …” and can be decomposed
into two parts
• Necessary description: “p(x) ⇒…”
• Sufficient description “… ⇒ p(x)”
• Some concepts don’t have complete definitions (e.g., person(x))

10

11/19/24

6

Necessary and Sufficient

• p is necessary for q
• ¬p ⇒ ¬q (“no p, no q!”)

• p is sufficient for q
• p ⇒ q (“p is all we need to know!”)

• Note that ¬p ⇒ ¬q is equivalent to q ⇒ p

• So if p is necessary and sufficient for q, then p iff q.

11

11

More on Definitions

• Examples: define father(x, y) by parent(x, y) and male(x)

• parent(x, y) is a necessary (but not sufficient) description of father(x, y)

• father(x, y) ⇒ parent(x, y)

• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary)
description of father(x, y):
• father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35)

• parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y)

• parent(x, y) ^ male(x) ↔ father(x, y)

12

11/19/24

7

Converting FOL to CNF
• Eliminate biconditionals and implications

• Move ¬ inwards

• Standardize variables apart by renaming them: each quantifier should use a
different variable

• Skolemize: each existential variable is replaced by a Skolem constant or Skolem
function of the enclosing universally quantified variables.
• For instance, ∃x Rich(x) becomes Rich(G1) where G1 is a new Skolem constant
• “Everyone has a heart” [∀x Person(x) ⇒ ∃y Heart(y)∧Has(x,y)] becomes

∀x Person(x) ⇒ Heart(H(x)) ∧ Has(x, H(x)), where H is a new symbol (Skolem function)

• Drop universal quantifiers
• For instance, ∀ x Person(x) becomes Person(x).

• Distribute ∧ over ∨

13

Summary: First Order Logic (FOL)

• Uses the same logical symbols as Propositional Logic (PL)

• Adds: variables, quantification, predicates and functions
• Names of terms: constants, variables, predicates, functions

• Existential and universal quantifiers can be used to create rules

• Need to be able to translate English to and from FOL

• Some extensions…

14

11/19/24

8

Higher-Order Logic

• FOL only allows to quantify over variables, and variables can only
range over objects.

• HOL allows us to quantify over relations

• Example: (quantify over functions)
• “two functions are equal iff they produce the same value for all arguments”
• "f "g (f = g) « ("x f(x) = g(x))

• Example: (quantify over predicates)
• "r transitive(r) ⇒ ("xyz) r(x,y) Ù r(y,z) ⇒ r(x,z))

• More expressive, but undecidable.

15

Expressing Uniqueness

• Sometimes we want to say that there is a single, unique object that
satisfies a certain condition

• “There exists a unique x such that king(x) is true”
• $x king(x) Ù "y (king(y) ⇒ x=y)
• $x king(x) Ù ¬$y (king(y) Ù x¹y)

• Iota operator: “i x P(x)” means “the unique x such that p(x) is true”
• “The unique ruler of Freedonia is dead”
• dead(i x ruler(freedonia,x))

16

11/19/24

9

Knowledge bases/ontologies

• Ontology: the study of what there is—an inventory of what exists

• An ontology: a hierarchical categorization system for things in the world

• A formally represented corpus of knowledge
• Defined by some grammar
• Incorporates rules (implicitly or explicitly)
• Not divided into tables: more like a graph
• Often hierarchical

• Usually incorporate background knowledge
(not purely domain-specific)
• Although many are in a domain, such as biology

17

17

Ontological knowledge

• Assertions
• (isa RedColor Color)
• (isa Mug-17 Cup)

• Some variables may be unbound:
• (hasColor Mug-17 ?COLOR)

• And there are rules:
• (implies (isa ?X Cup) (isa ?X Container))

• Combine them to draw conclusions:
• (isa ?WHAT Mug-17) à ??????

This is a formal
representation space

than can underpin
questions like “What

type of thing is a
mug?” or “Who is Dr.

M’s brother?

We’ll do more on
ontologies when we

get to knowledge
representation.

18

11/19/24

10

Notational differences
• Different symbols for and, or, not, implies, ...

• " $ Þ Û Ù Ú ¬ • É
• p v (q ^ r)
• p + (q * r)
• etc

• Prolog
• cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
(forall ?x (implies (and (furry ?x)

(meows ?x)
(has ?x claws))

(cat ?x)))

19

Exercise: FOL translation

1. Everything is bitter or sweet.
2. Either everything is bitter or
everything is sweet.
3. There is somebody who is
loved by everyone.
4. Nobody is loved by no one.
5. If someone is noisy, everybody
is annoyed
6. Frogs are green.
7. Frogs are not green.

Exercises: disi.unitn.it/~bernardi/Courses/LSNL/Slides/fl1.pdf

8. No frog is green.
9. Some frogs are not green.
10. A mechanic likes Bob.
11. A mechanic likes herself.
12. Every mechanic likes Bob.
13. Some mechanic likes every
nurse.
14. There is a mechanic who is
liked by every nurse.

20

11/19/24

11

Exercise: FOL translation

1. "x (bitter(x) Ú sweet(x))
2. "x (bitter(x)) Ú "x (sweet(x))
3. $x "y (loves(y,x))
4. ¬$x ¬$y (loves(y,x))
5. ∃x (noisy(x)) Þ ∀y(annoyed(y))
6. "x (frog(x) Þ green(x))
7. "x (frog(x) Þ ¬green(x))

Exercises: disi.unitn.it/~bernardi/Courses/LSNL/Slides/fl1.pdf

8. ¬$x (frog(x) Ù green(x))
9. $x (frog(x) Ù¬green(x))
10. $x (mech.(x) Ù likes(x, Bob))
11. $x (mech.(x) Ù likes(x, x))
12. "x (mech.(x) Þ likes(x, Bob))
13. $x "y (mech(x) Ù nurse(y)

Þ likes(x, y))
14. ∃x(mech(x) ∧ ∀y(nurse(y)

Þ likes(y, x))

21

A Note on Common Sense Reasoning – example adapted from Lenat

• You are told: John drove to the grocery store and bought a pound of noodles,
a pound of ground beef, and two pounds of tomatoes.
• Is John 3 years old?
• Is John a child?
• What will John do with the purchases?
• Did John have any money?
• Does John have less money after going to the store?
• Did John buy at least two tomatoes?
• Were the tomatoes made in the supermarket?
• Did John buy any meat?
• Is John a vegetarian?
• Will the tomatoes fit in John’s car?

• Can Propositional Logic support these inferences?

22

11/19/24

12

A Note on Common Sense Reasoning

• There are a number of inferences and conclusions that we can draw
that depend on background knowledge

• We refer to this background knowledge as “common sense”

• Can be represented as a set of statements in a knowledge base
• Only adults can drive
• Tomatoes weigh less than 2 pounds
• Purchasing involves spending money
• When you spend money, you no longer have it [etc.]

• Given these statements, we can infer the answers to the questions

23

Logical Agents for Wumpus World

• Three (non-exclusive) agent architectures:
• Reflex agents

• Have rules that classify situations, specifying how to react to each possible
situation

• Model-based agents
• Construct an internal model of their world

• Goal-based agents
• Form goals and try to achieve them

24

11/19/24

13

A Typical Wumpus World

• The agent always starts in the field
[1,1].

• The task of the agent is to find the
gold, return to the field [1,1] and
climb out of the cave.

25

A Simple Reflex Agent

• Rules to map percepts into observations:
• "b,g,u,c,l Percept([Stench, b, g, u, c], l) ⇒ Smelly(l)
• "s,g,u,c,l Percept([s, Breeze, g, u, c], l) ⇒ Breezy(l)
• "s,b,u,c,l Percept([s, b, Glitter, u, c], l) ⇒ AtGold(l)

• Rules to select an action given observations:
• "l AtGold(l) ⇒ Action(Grab, l)

26

11/19/24

14

A Simple Reflex Agent

• Some difficulties:

• Climb?
• There is no percept that indicates the agent should climb out – position and

holding gold are not part of the percept sequence

• Loops?
• The percept will be repeated when you return to a square, which should cause

the same response (unless we maintain some internal model of the world)

27

KB-Agents Summary

• Logical agents
• Reflex: rules map directly from percepts à beliefs or percepts à actions

"b,g,u,c,t Percept([Stench, b, g, u, c],) ⇒ Smelly(l)

"t AtGold(l) ⇒ Action(Grab, l)

• Model-based: construct a model (set of t/f beliefs about sentences) as they
learn; map from models à actions
Action(Grab, l) ⇒ HaveGold(l) ß the consequent gets asserted into the KB
HaveGold(l) ⇒ Action(RetraceSteps, l)

• Goal-based: form goals, then try to accomplish them
• Encoded as a rule:

("s) Holding(Gold,s) ⇒ GoalLocation([1,1],s)

Wumpus percepts:

[Stench, Breeze, Glitter, Bump, Scream]

28

11/19/24

15

Representing Change
• Representing change in the world in logic can be tricky.

• One way is just to change the KB
• Add and delete sentences from the KB to reflect changes
• How do we remember the past, or reason about changes?

• Situation calculus is another way

• A situation is a snapshot of the world
at some instant in time

• When the agent performs an
action A in situation S1, the
result is a new situation S2.

s2

29

Situations

• Situations over time.
• (We would not

have this level
of full knowledge.)

s2

30

11/19/24

16

Situation Calculus

• A situation is:
• A snapshot of the world
• At an interval of time
• During which nothing changes

• Every true or false statement is made wrt. a situation
• Add situation variables to every predicate.
• at(Agent,1,1) becomes at(Agent,1,1,s0):

at(Agent,1,1) is true in situation (i.e., state) s0.

31

Situation Calculus

• Alternatively, add a special 2nd-order predicate, holds(f,s), that
means “f is true in situation s.” E.g., holds(at(Agent,1,1),s0)

• Or: add a new function, result(a,s), that maps a situation s into a
new situation as a result of performing action a. For example,
result(forward, s) is a function that returns the successor state
(situation) to s

• Example: The action agent-walks-to-location-y could be
represented by

("x)("y)("s) (at(Agent,x,s) Ù ¬onbox(s)) ⇒ at(Agent,y,result(walk(y),s))

32

11/19/24

17

Situations Summary

• Representing a dynamic world
• Situations (s0…sn): the world in situation 0-n

Teaching(DrM,s0) — today,	1:00,	whenNotSick,	…

• Add ‘situation’ argument to statements
AtGold(t,s0)

• Or, add a ‘holds’ predicate that says ‘sentence is true in this situation’

holds(At[2,1], s1)

• Or, add a result(action, situation) function that takes an action and situation,
and returns a new situation

results(Action(goNorth), s0) à s1

s2

33

Deducing Hidden Properties

• From the perceptual information we obtain in situations, we can infer
properties of locations

l = location, s = situation
"l,s at(Agent,l,s) Ù Breeze(s) ⇒ Breezy(l)
"l,s at(Agent,l,s) Ù Stench(s) ⇒ Smelly(l)

• Neither Breezy nor Smelly need situation arguments because pits and
Wumpuses do not move around

34

11/19/24

18

Deducing Hidden Properties II

• We need to write some rules that relate various aspects of a single
world state (as opposed to across states)

• There are two main kinds of such rules:

35

Deducing Hidden Properties II

• We need to write some rules that relate various aspects of a single
world state (as opposed to across states)

• There are two main kinds of such rules:
• Causal rules reflect assumed direction of causality:

("l1,l2,s) At(Wumpus,l1,s) Ù Adjacent(l1,l2) ⇒ Smelly(l2)
(" l1,l2,s) At(Pit,l1,s) Ù Adjacent(l1,l2) ⇒ Breezy(l2)

• Systems that reason with causal rules are called model-based
reasoning systems

36

11/19/24

19

Deducing Hidden Properties II

• We need to write some rules that relate various aspects of a single
world state (as opposed to across states)

• There are two main kinds of such rules:
• Diagnostic rules infer the presence of hidden properties directly

from the percept-derived information. We have already seen two:
(" l,s) At(Agent,l,s) Ù Breeze(s) ⇒ Breezy(l)
(" l,s) At(Agent,l,s) Ù Stench(s) ⇒ Smelly(l)

37

Frames: A Data Structure

• A frame divides knowledge into
substructures by representing
“stereotypical situations.”

• Situations can be visual scenes,
structures of physical objects, …

• Useful for representing
commonsense knowledge.

intelligence.worldofcomputing.net/knowledge-representation/frames.html#.WCHhCNxBo8A

38

11/19/24

20

Representing Change: The Frame Problem

• Frame axioms: If property x doesn’t change as a result of applying
action a in state s, then it stays the same.
• On (x, z, s) Ù Clear (x, s) ⇒

On (x, table, Result(Move(x, table), s)) Ù
¬On(x, z, Result (Move (x, table), s))

• On (y, z, s) Ù y¹ x ⇒ On (y, z, Result (Move (x, table), s))

• The proliferation of frame axioms becomes very cumbersome in
complex domains

39

The Frame Problem II

• Successor-state axiom: General statement that characterizes every
way in which a particular predicate can become true:
• Either it can be made true, or it can already be true and not be changed:
• On (x, table, Result(a,s)) «

[On (x, z, s) Ù Clear (x, s) Ù a = Move(x, table)] v
[On (x, table, s) Ù a ¹ Move (x, z)]

• In complex worlds with longer chains of action, even these are too
cumbersome
• Planning systems use special-purpose inference to reason about the expected

state of the world at any point in time during a multi-step plan

40

11/19/24

21

Qualification Problem

• Qualification problem: How can you possibly characterize every single
effect of an action, or every single exception that might occur?

• When I put my bread into the toaster, and push the button, it will
become toasted after two minutes, unless…
• The toaster is broken, or…
• The power is out, or…
• I blow a fuse, or…
• A neutron bomb explodes nearby and fries all electrical components, or…
• A meteor strikes the earth, and the world we know it ceases to exist, or…

41

Ramification Problem
• How do you describe every effect of every action?

• When I put my bread into the toaster, and push the button, the bread will become
toasted after two minutes, and…
• The crumbs that fall off the bread onto the bottom of the toaster over tray will

also become toasted, and…
• Some of the aforementioned crumbs will become burnt, and…
• The outside molecules of the bread will become “toasted,” and…
• The inside molecules of the bread will remain more “breadlike,” and…
• The toasting process will release a small amount of humidity into the air

because of evaporation, and…
• The heating elements will become a tiny fraction more likely to burn out the

next time I use the toaster, and…
• The electricity meter in the house will move up slightly, and…

42

11/19/24

22

Knowledge Engineering!

• Modeling the “right” conditions and the “right” effects at the “right”
level of abstraction is very difficult

• Knowledge engineering (creating and maintaining knowledge bases for
intelligent reasoning) is a field

• Many researchers hope that automated knowledge acquisition and
machine learning tools can fill the gap:
• Our intelligent systems should be able to learn about the conditions and

effects, just like we do.
• Our intelligent systems should be able to learn when to pay attention to, or

reason about, certain aspects of processes, depending on the context.

43

Preferences Among Actions

• A problem with the Wumpus world knowledge base: It’s hard to
decide which action is best!
• Ex: to decide between a forward and a grab, axioms describing when it is

okay to move would have to mention glitter.

• This is not modular!

• We can solve this problem by separating facts about actions from
facts about goals.

• This way our agent can be reprogrammed just by asking it to
achieve different goals.

44

11/19/24

23

Preferences Among Actions

• The first step is to describe the desirability of actions independent of
each other.

• In doing this we will use a simple scale: actions can be Great, Good,
Medium, Risky, or Deadly.

• Obviously, the agent should always do the best action it can find:
• ("a,s) Great(a,s) ⇒ Action(a,s)
• ("a,s) Good(a,s) Ù ¬($b) Great(b,s) ⇒ Action(a,s)
• ("a,s) Medium(a,s) Ù (¬($b) Great(b,s) Ú Good(b,s)) ⇒ Action(a,s)

...

45

Preferences Among Actions

• We use this action quality scale in the following way.

• Until it finds the gold, the basic strategy for our agent is:
• Great actions include picking up the gold when found and climbing out of the

cave with the gold.
• Good actions include moving to a square that’s OK and hasn't been visited yet.
• Medium actions include moving to a square that is OK and has already been

visited.
• Risky actions include moving to a square that is not known to be deadly or OK.
• Deadly actions are moving into a square that is known to have a pit or a

Wumpus.

46

11/19/24

24

Goal-Based Agents

• Once the gold is found, it is necessary to change strategies. So now we
need a new set of action values.

• We could encode this as a rule:
• ("s) Holding(Gold,s) ⇒ GoalLocation([1,1]),s)

• We must now decide how the agent will work out a sequence of
actions to accomplish the goal.

• Three possible approaches are:
• Inference: good versus wasteful solutions
• Search: make a problem with operators and set of states
• Planning: coming soon!

47

An agent needs to make decisions!

• Where is there a pit?

• Where is there a wumpus?

• Should I fire my arrow?

• Where to explore next?

• Need to draw conclusions from
knowledge in the knowledge
base

• à Inference!

48

11/19/24

25

Logical Inference
Chapter 9

49

Review: English to FOL using quantifiers

3. There is somebody who is loved by everyone.
$x "y (loves(y,x)) — this person also loves themselves

6. Frogs are green.
"x (frog(x) Þ green(x)) — this is how we express rules

10. A mechanic likes Bob.
$x (mech.(x) Ù likes(x, Bob)) — express existence of something

• Usually:
• Use AND with $ (so we don’t have a false antecedent)
• Use IMPLIES with " (so we don’t make too-strong claims)

50

11/19/24

26

Syntactic Ambiguity

• FOL provides many ways to represent the same thing.

• E.g., “Ball-5 is red.”
• HasColor(Ball-5, Red): Ball-5 and Red are objects related by HasColor.
• Red(Ball-5): Red is a unary predicate applied to the Ball-5 object.
• HasProperty(Ball-5, Color, Red): Ball-5, Color, and Red are objects related by

HasProperty.
• ColorOf(Ball-5) = Red: Ball-5 and Red are objects, and ColorOf() is a function.
• HasColor(Ball-5(), Red()): Ball-5() and Red() are functions of zero arguments

that both return an object, which objects are related by HasColor.

• This can GREATLY confuse a pattern-matching reasoner.

51

More choices to be made

• “For every food, there is a person who eats that food.”

• [Use: Food(x), Person(y), Eats(y, x)]
• ∀x ∃y Food(x) Þ (Person(y) Ù Eats(y, x))
• ∀x Food(x) Þ ∃y (Person(y) Ù Eats(y, x))
• ∀x ∃y ¬Food(x) ˅ (Person(y) Ù Eats(y, x))
• ∀x ∃y (¬Food(x) ˅ Person(y)) Ù (¬ Food(x) ˅ Eats(y, x))
• ∀x ∃y (Food(x) Þ Person(y)) Ù (Food(x) Þ Eats(y, x))

• Common Mistakes:
• ∀x ∃y (Food(x) Ù Person(y)) Þ Eats(y, x)
• ∀x ∃y Food(x) Ù Person(y) Ù Eats(y, x)

52

11/19/24

27

And yet more…

• “Every person eats some food.”

• [Use: Person (x), Food (y), Eats(x, y)]
• ∀x ∃y Person(x) Þ [Food(y) Ù Eats(x, y)]

• ∀x Person(x) Þ ∃y [Food(y) Ù Eats(x, y)]
• ∀x ∃y ¬Person(x) ˅ [Food(y) Ù Eats(x, y)]
• ∀x ∃y [¬Person(x) ˅ Food(y)] Ù [¬Person(x) ˅ Eats(x, y)]

• Common Mistakes:
• ∀x ∃y [Person(x) Ù Food(y)] Þ Eats(x, y)
• ∀x ∃y Person(x) Ù Food(y) Ù Eats(x, y)

53

Syntactic Ambiguity—Partial Solution
• FOL can be too expressive, can offer too many choices

• Likely confusion, especially for teams of Knowledge Engineers

• Different team members can make different representation choices
• E.g., represent “Ball43 is Red.” as:

• a predicate (= verb)? E.g., “Red(Ball43)” ?
• an object (= noun)? E.g., “Red = Color(Ball43))” ?
• a property (= adjective)? E.g., “HasProperty(Ball43, Red)” ?

• Partial solution
• An upon-agreed ontology that settles these questions
• Ontology = what exists in the world & how it is represented
• The Knowledge Engineering teams agrees upon an ontology BEFORE they begin

encoding knowledge

56

11/19/24

28

57

Reminder: Schematic perspective

If KB is true in the real world,
then any sentence a derived from KB

by a sound inference procedure
is also true in the real world.

Sentences Sentence
Derives

Inference

So how do we
derive new
sentences? We
prove things

58

11/19/24

29

Proof methods

• Proof methods divide into (roughly) two kinds:

• Model checking:
• Searching through truth assignments.
• Improved backtracking: Davis-Putnam-Logemann-Loveland (DPLL)
• Heuristic search in model space: Walksat

• Application of inference rules:
• Legitimate (sound) generation of new sentences from old.
• Forward & Backward chaining
• Resolution — KB is in Conjunctive Normal Form (CNF)

59

Model Checking

• Given some knowledge base (KB), does sentence S hold?

• Basically generate and test:
• Generate all the possible models
• Consider the models M in which KB is TRUE
• If "M(S), then S is provably true
• If "M(¬S), then S is provably false
• Otherwise ($M1 S Ù $M2 ¬S): S is satisfiable but neither provably true or

provably false

What does
model mean?

Model: an interpretation – or assignment
of truth values to literals – of a set of
sentences such that every sentence is True

60

11/19/24

30

Method 1: Inference by Enumeration

• Also called Model Checking or Truth Table Enumeration

• LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

• QUERY: KB ⊨ β ?

A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

NOTE: The computer doesn't
know the meaning
of the proposition symbols

So, all logically distinct cases
must be checked to prove
that a sentence can be
derived from KB

62

Inference by Enumeration

• LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

• QUERY: KB ⊨ β ?

A∨C B∨ ~C KB
false true false
true false false
false true false
true true true
true true true
true false false
true true true
true true true

Rows where all of
sentences in KB
are true are the
models of KB

A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

63

11/19/24

31

Inference by Enumeration

• LET: KB = A ∨ C, B ∨ ¬C β = A ∨ B

• QUERY: KB ⊨ β ?

A∨C B∨ ~C KB
false true false
true false false
false true false
true true true
true true true
true false false
true true true
true true true

β is entailed by
KB if all models of
KB are models of
β, i.e., all rows
where KB is true,
β is also true

A B C
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

A∨B
false

false

true
true
true
true
true
true

In other words:
KB ⇒ β is valid

KB⇒β
true
true
true
true
true
true
true
true

64

Inference by Enumeration

• Using inference by enumeration to build a complete truth table in
order to tell if a sentence is entailed by KB is a complete inference
algorithm for Propositional Logic

• But very slow: exponential time

• Imagine we had 5 literals… or 30, or hundreds, or millions

65

11/19/24

32

Method 2: Natural Deduction = Constructing a Proof

• A Proof is a sequence of inference steps that leads from α (i.e., KB)
to β (i.e., query)

• This is a search problem!

KB:
(P ∧ Q) ⇒ R
(S ∧ T) ⇒ Q
S
T
P

Query:
R

67

Proof by Natural Deduction
1. S Premise (i.e., given sentence in KB)

2. T Premise

3. S ∧ T Conjunction(1, 2) (And-Introduction)

4. (S ∧ T) ⇒ Q Premise

5. Q Modus Ponens(3, 4)

6. P Premise

7. P ∧ Q Conjunction(5, 6)

8. (P ∧ Q) ⇒ R Premise

9. R Modus Ponens(7, 8)

KB:
(P ∧ Q) ⇒ R
(S ∧ T) ⇒ Q
S
T
P

Query:
R

This is the
expected
format of

proofs in the
homework!

68

11/19/24

33

Proof by Natural Deduction

• KB:
• HaveLecture ⇔ (isTuesday ∨ isThursday)
• ¬ HaveLecture

• Query:
• ¬ isTuesday

69

Proof
KB:

1. HaveLecture ⇔ (isTuesday ∨ isThursday)
2. ¬HaveLecture

3. (HaveLecture ⇒ (isTuesday ∨ isThursday)) ∧
((isTuesday ∨ isThursday) ⇒ HaveLecture) iff elimination to 1

4. (isTuesday ∨ isThursday) ⇒ HaveLecture and-elimination to 3
5. ¬HaveLecture ⇒ ¬(isTuesday ∨ isThursday) contraposition to 4
6. ¬(isTuesday ∨ isThursday) Modus Ponens 2,5
7. ¬isTuesday ∧ ¬isThursday de Morgan to 6
8. ¬isTuesday and-elimination to 7

Contraposition:
(P ⇒ Q) ≡ (¬Q ⇒ ¬P)

70

11/19/24

34

Automating FOL Inference
with Generalized Modus Ponens

71

Automated Inference for FOL

• Automated inference using FOL is harder than PL
• Variables can take on an infinite number of possible values

• From their domains, anyway
• This is a reason to do careful KR!

• So, potentially infinite ways to apply Universal Elimination

• Godel’s Completeness Theorem says that FOL entailment is only
semidecidable*
• If a sentence is true given a set of axioms, can prove it
• If the sentence is false, then there is no guarantee that a procedure will ever

determine this
• Inference may never halt

*The “halting problem”

72

11/19/24

35

Generalized Modus Ponens (GMP)

• Apply modus ponens reasoning to generalized rules

• Combines And-Introduction, Universal-Elimination, and Modus Ponens
• From P(c) and Q(c) and ("x)(P(x) Ù Q(x)) ⇒ R(x) derive R(c)

• General case: Given
• atomic sentences P1, P2, ..., PN

• implication sentence (Q1 Ù Q2 Ù ... Ù QN) ⇒ R
• Q1, ..., QN and R are atomic sentences

• substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N
• Derive new sentence: subst(θ, R)

73

Generalized Modus Ponens (GMP)

• Derive new sentence: subst(θ, R)

• Substitutions
• subst(θ, α) denotes the result of applying a set of substitutions, defined by θ,

to the sentence α
• A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences of

variable symbol vi by term ti

• Substitutions are made in left-to-right order in the list
• subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream)

74

11/19/24

36

Review: Horn Clauses

• A Horn sentence or Horn clause has the form:

P1 Ù P2 Ù P3 ... Ù Pn ⇒ Q

• or alternatively

¬P1 Ú ¬P2 Ú ¬P3 ... Ú ¬Pn Ú Q

• where Ps and Q are non-negated atoms

• To get a proof for Horn sentences, apply Modus Ponens repeatedly
until nothing can be done

• Horn clauses are a subset of the set of sentences representable in FOL

75

Horn Clauses II

• These are Horn clauses (special cases):
• P1 Ù P2 Ù … Pn ⇒ Q
• P1 Ù P2 Ù … Pn ⇒ false
• true ⇒ Q

• These are not Horn clauses:
• p Ú q (all but one literal must be negated)
• (P Ù Q) ⇒ (R Ú S) (non-literal after the implication)

76

11/19/24

37

Inference with Horn KBs

• If everything is Horn clauses, only 1 rule of inference needed

• Generalized Modus Ponens (GMP):

Given P, Q, and (P ∧ Q) ⇒ R, conclude R

• Written as:

P, Q, (P ∧ Q) ⇒ R
R

77

Method 3: Forward Chaining

• Proofs start with the given axioms/premises in KB, deriving new
sentences using GMP until the goal/query sentence is derived

• This defines a forward-chaining inference procedure because it
moves “forward” from the KB to the goal [eventually]

• Forward chaining with Horn clause KB is complete
• A formal system is called complete with respect to a particular property if

every formula having the property can be derived using that system, i.e. is
one of its theorems;

• Intuitively, a system is called complete if it can derive every formula that is
true.

78

11/19/24

38

Forward Chaining

• “Apply” any rule whose premises are satisfied in the KB

• Add its conclusion to the KB until query is derived

KB:

query: Q

P ⇒ Q
L ∧ M ⇒ P
B ∧ L ⇒ M
A ∧ P ⇒ L
A ∧ B ⇒ L
A
B

79

Forward Chaining

1. P ⇒ Q
2. L ∧ M ⇒ P
3. B ∧ L ⇒ M
4. A ∧ P ⇒ L
5. A ∧ B ⇒ L
6. A
7. B
8. L GMP(5,6,7)
9. M GMP(3,7,8)
10. P GMP(2,8,9)
11. Q GMP(1,10)

Given
KB

80

11/19/24

39

Forward Chaining Example

• KB:
• allergies(X) ⇒ sneeze(X)
• cat(Y) Ù allergic-to-cats(X) ⇒ allergies(X)
• cat(Felix)
• allergic-to-cats(Lise)

• Goal:
• sneeze(Lise)

82

Forward Chaining

sneeze(Lise) ß thing to infer truth of

• Forward Chaining: apply rules

cat(Y) Ù allergic-cats(X) ⇒ allergies(X) Ù cat(Felix)
⇒

cat(Felix) Ù allergic-cats(X) ⇒ allergies(X) Ù allergic-cats(Lise)
⇒

allergies(Lise) Ù allergies(X) ⇒ sneeze(X)
⇒

sneeze(Lise) ✓

Knowledge Base
1. Allergies lead to sneezing.

allergies(X) ⇒ sneeze(X)
2. Cats cause allergies if allergic to cats.

cat(Y) Ù allergic-cats(X) ⇒ allergies(X)
3. Felix is a cat.

cat(Felix)
4. Lise is allergic to cats.

allergic-cats(Lise)
variable binding

(query)

add new
sentence
to KB

83

11/19/24

40

Forward Chaining Exercise

• Consider the following KB:
1. J ⇒ Q
2. A ∧ I ⇒ J
3. E ∧ F ⇒ I
4. B ⇒ F
5. A ∧ B ⇒ E

6. A
7. B

• Prove Q. (Remember, you’ll just use GMP over and over!)
• A, B, (A ∧ B) ⇒ C, ∴ C

8. E (GMP 5,6,7)
9. F (GMP 4,7)
10. I (GMP 3,8,9)
11. J (GMP 2,6,10)
12. Q (GMP 1,11)

P, Q, (P ∧ Q)
R

84

Method 4: Backward Chaining

• Forward chaining problem: can generate a lot of irrelevant conclusions
• Search forward, start state = KB, goal test = state contains query

• Backward chaining
• Work backwards from goal to premises
• Find all implications of the form (…) ⇒ query
• Prove all the premises of one of these implications
• Avoid loops: check if new subgoal is already on the goal stack
• Avoid repeated work: check if new subgoal

• Has already been proved true, or
• Has already failed

85

11/19/24

41

Backward Chaining

• Backward-chaining deduction using GMP
• Complete for KBs containing only Horn clauses.

• Proofs:
• Start with the goal query
• Find rules with that conclusion
• Prove each of the antecedents

in the implication

• Keep going until you reach premises!

Avoid loops
- Is new subgoal already on goal stack?

Avoid repeated work: has subgoal
- Already been proved true?
- Already failed?

86

Backward Chaining Example

• KB:
• allergies(X) ⇒ sneeze(X)
• cat(Y) Ù allergic-to-cats(X) ⇒ allergies(X)
• cat(Felix)
• allergic-to-cats(Lise)

• Goal:
• sneeze(Lise)

88

11/19/24

42

Backward Chaining
sneeze(Lise) ß query

• Backward Chaining: apply rules
that end with the goal

allergies(X) ® sneeze(X) + sneeze(Lise)
new query: allergies(Lise)?

cat(Y) Ù allergic-cats(X) ® allergies(X) + allergies(Lise)
new query: cat(Y) Ù allergic-cats(Lise)?

cat(Felix) + cat(Y) Ù allergic-cats(Lise)
new sentence: cat(Felix) Ù allergic-cats(Lise) ✓

variable binding

Knowledge Base
1. Allergies lead to sneezing.

allergies(X) ⇒ sneeze(X)
2. Cats cause allergies if allergic to cats.

cat(Y) Ù allergic-cats(X) ⇒ allergies(X)
3. Felix is a cat.

cat(Felix)
4. Lise is allergic to cats.

allergic-cats(Lise)

89

Forward vs. Backward Chaining

• FC is data-driven
• Automatic, unconscious processing
• E.g., object recognition, routine decisions
• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving
• Where are my keys? How do I get to my next class?
• Complexity of BC can be much less than linear in the size of the KB

91

11/19/24

43

Completeness of GMP
• GMP (using forward or backward chaining) is complete for KBs that contain

only Horn clauses

• It is not complete for simple KBs that contain non-Horn clauses

• The following KB entails that S(A) is true:
• ("x) P(x) ⇒ Q(x)
• ("x) ¬P(x) ⇒ R(x)
• ("x) Q(x) ⇒ S(x)
• ("x) R(x) ⇒ S(x)

• If we want to conclude S(A), with GMP we cannot, since the second one is not
a Horn clause

• It is equivalent to P(x) Ú R(x)

92

93

Automating FOL Inference
with Resolution

93

11/19/24

44

Resolution Rule of Inference

• Resolution Rule of Inference:

• Examples
!

"#"A! ¬∨
!"#AB

!"CD#EABC
∨¬∨∨¬∨

∨¬∨¬∨¬∨∨

!"
!#!#$"

∨
∨¬∨

94

Resolution

• Take any two “clauses” where one contains some symbol, and the
other contains its complement (negative)

P ∨ Q ∨ R ¬Q ∨ S ∨ T

• Merge (resolve) them, by throwing away the symbol and its
complement, to obtain their resolvent clause:

P ∨ R ∨ S ∨ T

• If two clauses resolve and there’s no symbol left, you have derived
False, aka the empty clause

95

11/19/24

45

Method 5: Resolution Refutation

• Show KB ⊨ α by proving that KB ∧ ¬α is unsatisifiable, i.e., deducing
False from KB ∧ ¬α

• Your algorithm can use all the logical equivalences to derive new
sentences, plus:

• Resolution rule: a single inference rule
• Sound: only derives entailed sentences
• Complete: can derive any entailed sentence

• Resolution is refutation complete: if KB ⊨ β, then KB ∧ ¬ β ⊢ False
• But the sentences need to be preprocessed into CNF
• But all sentences can be converted into this form

96

Resolution Refutation Algorithm

1. Add negation of query to KB

2. Pick 2 sentences that haven’t been used before and can be used with
the Resolution Rule of inference

3. If none, halt and answer that the query is NOT entailed by KB

4. Compute resolvent and add it to KB

5. If False in KB
• Then halt and answer that the query IS entailed by KB
• Else Goto 2

97

11/19/24

46

Review: Converting to CNF
• Replace all ⇔ using biconditional elimination

• α ⇔ β ≡ (α ⇒ β) ∧ (β ⇒ α)

• Replace all ⇒ using implication elimination
• α ⇒ β ≡ ¬α ∨ β

• Move all negations inward using
• double-negation elimination

• ¬(¬α) ≡ α
• de Morgan's rule

• ¬(α ∨ β) ≡ ¬α ∧ ¬β
• ¬(α ∧ β) ≡ ¬α ∨ ¬β

• Apply distributivity of ∨ over ∧
• α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ)

Result: something with clauses made
up of ORs, separated by ANDs:

(¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A)

99

Resolution Refutation Steps

• Given KB and β (query)

• Add ¬β to KB, and convert all sentences to CNF

• Show this leads to False (aka “empty clause”). Proof by contradiction

• Example KB:
• A ⇔ (B ∨ C)
• ¬A

• Example query: ¬B

100

11/19/24

47

Review: Example Conversion to CNF

• Example: A Û (B Ú C)

• Eliminate Û by replacing α Û β with (α Þ β)Ù(β Þ α).
• = (A Þ (B Ú C)) Ù ((B Ú C) Þ A)

• 2. Eliminate Þ by replacing α Þ β with ¬αÚ β and simplify.
• = (¬A Ú B Ú C) Ù (¬(B Ú C) Ú A)

• 3. Move ¬ inwards using de Morgan's rules and simplify.
• = (¬A Ú B Ú C) Ù ((¬B Ù ¬C) Ú A)

• 4. Apply distributive law (Ù over Ú) and simplify.
• = (¬A Ú B Ú C) Ù (¬B Ú A) Ù (¬C Ú A)

101

Resolution Refutation Preprocessing

• Add ¬β to KB, and convert to CNF:
• 1: ¬A ∨ B ∨ C
• 2: ¬B ∨ A
• 3: ¬C ∨ A
• 4: ¬A
• 5: B

• Want to reach goal: False (empty clause)

Example KB:
A ⇔ (B ∨ C)
¬A

Example query:
¬B

CNF conversion
of A ⇔ (B ∨ C)

102

11/19/24

48

Resolution Refutation Example

• 1: ¬A ∨ B ∨ C

• 2: ¬B ∨ A

• 3: ¬C ∨ A

• 4: ¬A

• 5: B

• 6: A Resolve 2, 5

• 7: false/empty clause Resolve 6, 4

103

Refutation Resolution Proof Tree

104

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergic-to-cats(z) Ú allergies(z)

¬cat(y) v sneeze(z) Ú ¬allergic-to-cats(z) cat(Felix)

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

false

¬sneeze(Lise)sneeze(Lise)

w/z

y/Felix

z/Lise

negated query

104

11/19/24

49

Exercise: Did Curiosity Kill the Cat?

• Jack owns a dog. Every dog owner is an animal lover. No animal lover
kills an animal. Either Jack or Curiosity killed the cat, who is named
Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
• A. ($x) Dog(x) Ù Owns(Jack,x)
• B. ("x) (($y) Dog(y) Ù Owns(x, y)) ® AnimalLover(x)
• C. ("x) AnimalLover(x) ® (("y) Animal(y) ® ¬Kills(x,y))
• D. Kills(Jack,Tuna) Ú Kills(Curiosity,Tuna)
• E. Cat(Tuna)
• F. ("x) Cat(x) ® Animal(x)
• G. Kills(Curiosity, Tuna)

105

Query

105

Resolution Proof

106

• Did Curiosity kill the cat?
A. ($x) Dog(x) Ù Owns(Jack,x)
B. ("x) (($y) Dog(y) Ù Owns(x, y))

®AnimalLover(x)
C. ("x) AnimalLover(x) ®

(("y) Animal(y) ® ¬Kills(x,y))
D. Kills(Jack,Tuna) Ú

Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. ("x) Cat(x) ®Animal(x)
G. Kills(Curiosity, Tuna) – goal:

must be negated in your KB!

RESOLUTION STEP: Given sentences
P1 Ú ... Ú Pn Q1 Ú ... Ú Qm

• if Pj and ¬Qk unify with substitution list θ, then derive the resolvent sentence:
subst(θ, P1 Ú... Ú Pj-1 Ú Pj+1 ... Pn Ú Q1 Ú …Qk-1 Ú Qk+1 Ú... Ú Qm)

CLAUSAL FORM CONVERSION:
1. Eliminate all ↔ connectives
2. Eliminate all à connectives
3. Reduce the scope of each negation symbol to a
single predicate
4. Standardize variables
5. Eliminate existential quantification with Skolem
constants/functions
6. Remove universal quantifiers
7. Put into conjunctive normal form (conjunction of
disjunctions)
8. Split conjuncts into separate clauses
9. Standardize variables again

106

11/19/24

50

Steps

• Convert to clause form
• A1. (Dog(D))
• A2. (Owns(Jack,D))
• B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))
• C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
• D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

• E. Cat(Tuna)
• F. (¬Cat(z), Animal(z))

• Add the negation of query:
• ¬G: (¬Kills(Curiosity, Tuna))

107

D is a skolem constant

107

The Resolution Refutation Proof
• R1: ¬G, D, {} (Kills(Jack, Tuna))

• R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),
~Animal(Tuna))

• R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),
~Animal(Tuna))

• R4: R3, A1, {y/D} (~Owns(Jack, D),
~Animal(Tuna))

• R5: R4, A2, {} (~Animal(Tuna))

• R6: R5, F, {z/Tuna} (~Cat(Tuna))

• R7: R6, E, {} FALSE

108

108

11/19/24

51

The proof tree

109

¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) Ú ¬A(T)

R3: ¬D(y) Ú ¬O(J,y) Ú ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

109

Resolution Refutation

• Given a consistent set of axioms KB and goal sentence Q, show that
KB ⊨ Q

• Proof by contradiction: Add ¬Q to KB and try to prove false.
• i.e., (KB ⊢ Q) ↔ (KB Ù ¬Q ⊢ False)

• Resolution is refutation complete: it can establish that a given
sentence Q is entailed by KB, but can’t (in general) be used to
generate all logical consequences of a set of sentences
• Also, it cannot be used to prove that Q is not entailed by KB.

110

110

11/19/24

52

Efficiency of Resolution Refutation
• Run time can be exponential in the worst case

• Often much faster

• Factoring: if a new clause contains duplicates of the same symbol, delete the
duplicates
• P ∨ R ∨ P ∨ T ≡ P ∨ R ∨ T

• If a clause contains a symbol and its complement, the clause is a tautology
and is useless; it can be thrown away
• a1: (¬A ∨ B ∨ C)
• a2: (¬B ∨ A)
• Resolvent of a1 and a2 is: B ∨ C ∨ ¬B
• Which is valid, so throw it away

111

Resolution Theorem Proving as Search

• Resolution can be thought of as the bottom-up construction of a
search tree, where the leaves are the clauses produced by KB and the
negation of the goal

• When a pair of clauses generates a new resolvent clause, add a new
node to the tree with arcs directed from the resolvent to the two
parent clauses

• Resolution succeeds when a node containing the False clause is
produced, becoming the root node of the tree

• A strategy is complete if its use guarantees that the empty clause (i.e.,
false) can be derived whenever it is entailed

112

112

11/19/24

53

Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions

• Basic concepts of logic:
• syntax: formal structure of sentences
• semantics: truth of sentences wrt models
• entailment: necessary truth of one sentence given another
• inference: deriving sentences from other sentences
• soundness: derivations produce only entailed sentences
• completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic.
Forward and backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power

113

Next Time

• Final bits of reasoning via inference

• Knowledge Representation

• Project work – bring computers

114

