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Midterm Problems: For Fun

• I claim that every card with a B on the front has a 5 on the back. Of the 
following cards, how many and which do you have to flip over to tell 
whether my rule is true for these cards?

B K 5 3

1

First-Order Logic & Higher-Order Logic,
Knowledge-Based Agents

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer 
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Bookkeeping
• HW4 out on 10/31 🎃 🪔 , due 11/20

• No HW5—effort should be going into project at this point

• Designs will be graded this week—read the comments!
• Some people will be asked to turn in a second version
• Please do this ASAP

• Today’s class:
• Midterm review (quickly)
• Review/finalize propositional logic
• Converting to CNF
• First-order logic
• Knowledge-based agents

3

Midterm Problems: Agents and Search

• Possible actions are N, S, E, W, and Clean
• So branching factor is… 5

• For search algorithms, the “and why” mattered
• Did you convey an understanding of the algorithm

and how it would work in this world?

• Given that the robot must interleave exploration and
action, how would (e.g.) DFS work?

N S E W C

N S E W C

UCS: complete with path costs of 0?
No! Can get stuck exploring an 
infinite string of zero-cost arcs
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Midterm Problems: Local Search

• State space
• What is a single state (like the starting state)?
• And another one you can get to from there?
• What then is the set of all possible states?
• All possible assignments of objects to boxes

• Core operation is… moving things in and out of boxes

• Evaluation function should measure for any given state whether that 
state is “good”—e.g., how many boxes are filled? Is everything in a 
box?

• Most local search algorithms work; all have local minima

5

Midterm Problems: Constraint Satisfaction

• What are the random variables?
• That is, what are you trying to assign values to?
• B, A, S, E, L, G, M

• What’s the domain? That is, what values can they take?
• [0..9]

• What are the explicit constraints? What do we know about values?
• B ≠ 0; G ≠ 0; B ≠ A ≠ S ≠ E ≠ L ≠ G ≠ M
• 1000B + 100A + 10S + E + 1000B + 100A + 10L + L = 10000G + 1000A + 100M + 

10E + S
• AKA, 2000B + 2000A + 10S + 11L = 10000G + 1000A + 100M + 10E + S

B A S E
+ B A L L

G A M E S

6



10/29/24

4

Midterm Problems: Constraint Satisfaction

• What’s the Minimum Remaining Values
heuristic?
• Start by assigning values to variables that have

the fewest remaining available values

• How would you apply it here?
• Take one of B, A, S, E, L, G, M; which has fewest available values?

• B or G (because can’t = 0)

B A S E
+ B A L L

G A M E S
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Midterm Problems: Expectiminimax

• Utility values are backed up 
the tree, multiplied by the 
appropriate chance value

• 15 (alpha-beta pruning) was 
not graded or counted—
chance nodes mean you need 
bounds on the evaluation 
function to prune anything 
(this is in the book)

MAX

CHANCE

MIN

3

2

3

4

-1.8

0 -2

2 4

0.5

7 4

0.5

6 0

0.1

5 -2

0.9
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Midterm Problems: Nash Equilibria
• Some people got confused with Pareto 

Optimality (not the same thing!)

• No player benefits by unilaterally changing
strategy while others stay fixed

• Nash equilibria are +1/-1. Let’s go case by case:
• In -10/-10, either player can improve their score unilaterally by switching to going 

straight (-10 à -1)—not an equilibrium state
• In 0/0, player can improve by going straight (0 à +1)—not in equilibrium
• If you’re already swerving and the other player is going straight, switching to straight 

would reduce your score, so no benefit—in equilibrium
• If you’re already going straight and the other player is swerving, you can’t improve 

your score further, so no benefit—in equilibrium

CMSC	671	(Introduction	to	AI)	
Homework	3:	Decision	making,	Multi-agent	systems,	Decision	trees	
Turnin:	Blackboard.	
Please	submit	all	parts	 together	as	a	single	PDF	file	named	 lastname_hw3.pdf,	with	parts	clearly	
marked	and	delineated.	This	assignment	should	be	worked	on	individually.	

All	files	must	start	with	your	last	name(s)	and	have	your	full	name(s)	in	the	file,	at/near	the	top.	
Reminder:	Assignments	must	be	turned	in	on	time.	If	Blackboard	says	it’s	late,	it	is	late.	

PART	I.	FILTERING	(20	PTS.)	
A	student	is	working	the	late	shift	at	a	local	movie	theater.	Although	they	don’t	know	whether	the	
movie	 playing	 is	 popular	 (M),	 one	 of	 their	 tasks	 is	 to	 refill	 the	 kernel	 hopper	 for	 the	 popcorn	
machine;	they	reason	that	if	the	hopper	is	empty	(E),	the	theater	sold	a	lot	of	popcorn,	so	it’s	more	
likely	 that	 the	movie	 is	popular.	They	also	 reason	 that	movies	 tend	 to	decrease	 in	popularity	 the	
longer	they	are	showing,	and	that	75%	of	movies	are	popular	on	opening	night	(that	is,	day	0).	This	
is	represented	as	the	following	model:	
	

	
	

Mt-1	 P(Mt	|	Mt-1)	
	

Et	 P(Et	|	Mt)	
	

T	
F	

0.75	
0.12	

	
T	
F	

0.9	
0.1	

	
1. Showing	all	work:	What	is	the	probability	that	a	movie	is	popular	on	day	3,	given	that	the	

hopper	is	full	on	day	2	and	empty	on	day	3?	
	

PART	II.	MULTI-AGENT	SYSTEMS	(10	POINTS)	

Assignment:	 For	 each	 of	 the	 two	 normal-form	 two-player	 games	 below,	 identify	 the	 Nash	
equilibria	(if	there	are	any).	Explain	why	these	strategy	sets	are	the	Nash	equilibria	of	the	game,	or	
why	no	Nash	equilibria	exist	if	this	is	the	case.	

2. Chicken:	Two	drivers	are	headed	for	a	one-lane	pass.	If	
they	 both	 swerve	 out	 of	 the	 way,	 they	 “tie”	 (nobody	
scores).	If	one	swerves	and	the	other	drives	straight	on,	
the	one	who	swerved	loses	a	point	and	the	other	gains	
a	point.	If	neither	swerves,	they	both	lose	big.	

	
3. Rock-Paper-Scissors:	 each	 of	 two	players	 chooses	 one	

of	Rock,	Paper,	or	Scissors,	then	the	players	reveal	their	
choices	 to	 each	 other	 simultaneously.	 Rock	 beats	
scissors,	scissors	beats	paper,	and	paper	beats	rock,	as	
shown.	

 Straight Swerve 
Straight -10, -10 +1, -1 
Swerve -1, +1 0, 0 

 R P S 
R 0, 0 -1,+1 +1, -1 
P +1, -1 0, 0 -1, +1 
S -1, +1 +1, -1 0, 0 

Mt-1  M
 

Mt+1 

Et-1  Et  Et+1 
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Midterm Problems: Bayesian Belief Networks

• Capture relationships among nodes: directed edges mean a node is 
influenced by another node
• Eating questionable food increases the odds of having an upset stomach

• A node is conditionally independent of other 
nodes in the network given its parents, children, 
and children’s parents (its Markov blanket)
• Is D ⫫ E | A, B? No—they share a parent
• Is A ⫫ C | D? No—C is a child of A
• Is A ⫫ H | C? Yes—C “deactivates” the connection

A

B

C

D

E

F

G

H
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Midterm Problems: Bayesian Belief Networks

P(A , D | B) = 

P(D|A , B) P(A|B) = 

P(D|A , B) P(A) =
(since A and B are independent) 

0.8*0.3 = 0.24

• Please consider 21 and try to work through it, given independences
• Start with P(A|C) = P(C|A)P(A) / P(C) 

11

First-Order Logic
Chapter 8

Some material adopted from notes 
by Andreas Geyer-Schulz

12



10/29/24

7

Review

• Definitions:
• Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, 

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology), etc.

• Syntactic Transformations:
• E.g., (A Þ B) Û (¬A Ú B)

• Truth Tables
• Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)

• Inference by Model Enumeration

13

Review: Schematic perspective

If KB is true in the real world,
then any sentence a entailed by KB
is also true in the  real world.

For example:  If I tell you (1) Sue is Mary’s sister, and (2) Sue is Amy’s mother, then it 
necessarily follows in the world that Mary is Amy’s aunt, even though I told you nothing 

at all about aunts.  This sort of reasoning pattern is what we hope to capture.
14
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Review: Logic
• If a problem domain can be represented formally, then a decision maker can 

use logical reasoning to make rational decisions

• Many types of logic
• Propositional Logic (Boolean logic)
• First-Order Logic (aka first-order predicate calculus)
• Non-Monotonic Logic
• Markov Logic

• A logic includes:
• syntax:  what is a correctly-formed sentence?
• semantics:  what is the meaning of a sentence?
• Inference procedure (reasoning, entailment):  what sentence logically follows given 

knowledge?

15

Review: Propositional Logic

• A symbol in Propositional Logic (PL) is a symbolic variable whose value 
must be either True or False, and which stands for a natural language 
statement that could be either true or false
• A = “Smith has chest pain”
• B = “Smith is depressed”

• C = “It is raining”

16
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Review: Semantics
• An interpretation is a complete True / False assignment to all propositional 

symbols
• Example symbols: P means “It is hot”, Q means “It is humid”, R means “It is raining”
• There are 8 interpretations (TTT, ..., FFF)

• The semantics (meaning) of a sentence is the set of interpretations in which 
the sentence evaluates to True

• Example:  the semantics of the sentence P ∨ Q is the set of 6 interpretations: 
• P=True, Q=True, R=True or False
• P=True, Q=False,  R=True or False
• P=False, Q=True,  R=True or False

• A model of a set of sentences is an interpretation in which all the sentences 
are true

17

Review: Knowledge Base (KB)

• A knowledge base, KB, is a set of sentences
• Example KB:
• HaveLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
• ¬HaveLecture

• It is equivalent to a single long sentence:  the conjunction of all 
sentences
• (HaveLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)) ∧ ¬HaveLecture

• A model of a KB is an interpretation in which all sentences in KB are 
true 

18
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Review: Entailment

• Entailment is the relation of a sentence β  logically following from 
other sentences α  (e.g., KB): α ⊨ β

• α ⊨ β if and only if, in every interpretation in which α is true, β is also 
true;  i.e., whenever α is true, so is β

• Deduction theorem:  α ⊨ β if and only if α ⇒ β is valid (always true)

• Proof by contradiction (refutation, reductio ad absurdum):  α ⊨ β if 
and only if α ∧ ¬β is unsatisfiable 

• There are 2n interpretations to check, if KB has n symbols

19

Review: Entailment vs. Inference

• If your knowledge base KB entails p, then all interpretations that 
evaluate KB to True also evaluate p to True
• (interpretation = assignment of ‘true’ or ‘false’ values to variables)

• KB ⊨ p

• Inference is a procedure for deriving a new sentence q from KB 
following some algorithm
• KB ⊢ q
• Inference is sound if it derives only sentences that are entailed by the KB
• Inference is complete if anything entailed by the KB can also be inferred from 

the KB

20
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So—how do we stay correct?

“Einstein Simplified:
Cartoons on Science”
by Sydney Harris, 1992,
Rutgers University 
Press

How can we make correct inferences?
How can we avoid incorrect inferences?

Is this inference correct?

How do you know?
How can you tell?

21

So—how do we stay correct?

• All men are people;

• Half of all people are women;

• Therefore, half of all men are women.

• Penguins are black and white;

• Some old TV shows are black and white;

• Therefore, some penguins are old TV shows.

Is this inference correct?

How do you know?
How can you tell?

22
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Schematic perspective

If KB is true in the real world,
then any sentence a derived from KB

by a sound inference procedure
is also true in the  real world.

Sentences Sentence
Derives

Inference

23

Conjunctive Normal Form (CNF)

We first rewrite                  into conjunctive normal form (CNF).

We’d like to prove:

KB α∧ ¬

A “conjunction of disjunctions”

(A Ú ¬B) Ù (B Ú ¬C Ú ¬D)

ClauseClause

literals

• Any KB can be converted into CNF.

KB  ⊨ a
(This is equivalent to KB Ù ¬ a is unsatisfiable.)

24



10/29/24

13

Review:  Equivalence & Implication

• Equivalence is a conjoined double implication
• (X Û Y)  =  [(X Þ Y) Ù (Y Þ X)]

• Implication is (NOT antecedent OR consequent)
• (X Þ Y)  =  (¬X Ú Y)

• How do we know this is true?
• We can always use a truth table: p q ¬p p ⇒ q ¬p ∨ q

T T F T T
T F F F F
F T T T T
F F T T T

25

Review:  de Morgan's rules

• How to bring ¬ inside parentheses
• (1) Negate everything inside the parentheses
• (2) Change operators to “the other operator”

• ¬(X Ù Y Ù … Ù Z)  =  (¬X Ú ¬Y Ú … Ú ¬Z)

• ¬(X Ú Y Ú … Ú Z)  =  (¬X Ù ¬Y Ù … Ù ¬Z)

26
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Review:  Boolean Distributive Laws

• Both of these laws are valid:

• AND distributes over OR
• X Ù (Y Ú Z)  =  (X Ù Y) Ú (X Ù Z)
• (W Ú X) Ù (Y Ú Z)  =  (W Ù Y) Ú (X Ù Y) Ú (W Ù Z) Ú (X Ù Z)

• OR distributes over AND
• X Ú (Y Ù Z)  =  (X Ú Y) Ù (X Ú Z)
• (W Ù X) Ú (Y Ù Z)  =  (W Ú Y) Ù (X Ú Y) Ù (W Ú Z) Ù (X Ú Z)

27

Conjunctive Normal Form (CNF)
1. Replace all ⇔ using iff/biconditional elimination

• α ⇔ β   ≡  (α ⇒ β) ∧ (β ⇒ α)

2. Replace all ⇒ using implication elimination
• α ⇒ β  ≡  ¬α ∨ β

3. Move all negations inward using
• double-negation elimination

• ¬(¬α)  ≡  α
• de Morgan's rule

• ¬(α ∨ β)  ≡  ¬α ∧ ¬β
• ¬(α ∧ β)  ≡  ¬α ∨ ¬β

4. Apply distributivity of ∨ over ∧
• α ∧ (β ∨ γ)  ≡  (α ∧ β) ∨ (α ∧ γ)    + 1 more

28
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Example Conversion of Sentence into CNF

• A ⇔ (B ∨ C) starting sentence

• (A ⇒ (B ∨ C)) ∧ ((B ∨ C) ⇒ A ) iff/biconditional elimination

• (¬A ∨ B ∨ C) ∧ (¬(B ∨ C) ∨ A ) implication elimination

• (¬A ∨ B ∨ C) ∧ ((¬B ∧ ¬C) ∨ A ) move negations inward

• (¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A) distribute ∨ over ∧

called a 
“clause”

29

Example: Conversion to CNF

Example: B1,1 Û (P1,2 Ú P2,1)
1. Eliminate Û by replacing α Û β with (α Þ β)Ù(β Þ α).

= (B1,1 Þ (P1,2 Ú P2,1)) Ù ((P1,2 Ú P2,1) Þ B1,1)

2. Eliminate Þ by replacing α Þ β with ¬αÚ β and simplify.
= (¬B1,1 Ú P1,2 Ú P2,1) Ù (¬(P1,2 Ú P2,1) Ú B1,1)

3. Move ¬ inwards using de Morgan's rules and simplify.
¬(α Ú β) º (¬αÙ¬β), ¬(α Ù β) º (¬αÚ¬β)

= (¬B1,1 Ú P1,2 Ú P2,1) Ù ((¬P1,2 Ù ¬P2,1) Ú B1,1)

4. Apply distributive law (Ù over Ú) and simplify.
= (¬B1,1 Ú P1,2 Ú P2,1) Ù (¬P1,2 Ú B1,1) Ù (¬P2,1 Ú B1,1)

30
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Example: Conversion to CNF
• Example: B1,1  Û (P1,2 Ú P2,1)

• From the previous slide we had:
• = (¬B1,1 Ú P1,2 Ú P2,1) Ù (¬P1,2 Ú B1,1) Ù (¬P2,1 Ú B1,1)

5. KB is the conjunction of all of its sentences (all are true),
• so write each clause (disjunct) as a sentence in KB:

• KB = …
(¬B1,1 Ú P1,2 Ú P2,1) 
(¬P1,2 Ú B1,1) 
(¬P2,1 Ú B1,1)
…

• Can do this in Propositional Logic, but often we want to use First Order Logic

Often, Won’t Write “Ù”
(we know it is there)

31

First-Order Logic
• First-order logic (FOL) models the world in terms of 

• Objects, which are things with individual identities
• Properties of objects that distinguish them from other objects
• Relations that hold among sets of objects
• Functions, which are a subset of relations where there is only one “value” for any 

given “input”

• Examples: 
• Objects: students, lectures, companies, cars ... 
• Relations: brother-of, bigger-than, outside, part-of, has-color, occurs-after, 

owns, visits, precedes, ... 
• Properties: blue, oval, even, large, ... 
• Functions: father-of, best-friend, second-half, one-more-than ... 

32
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FOL Contains
• Constant symbols, which represent individuals in the world

• Mary
• 3
• Green

• Function symbols, which map individuals to individuals
• father-of(Mary) = John
• color-of(Sky) = Blue 

• Predicate symbols, which map individuals to truth values
• greater(5,3)
• green(Grass) 
• color(Grass, Green) 

33

FOL Contains

• Variable symbols
• E.g., x, y, foo

• Connectives
• Same as in PL: not (¬), and (Ù), or (Ú), implies (⇒), if and only if 

(biconditional «)

• Quantifiers
• Universal "x or  (Ax)
• Existential $x or (Ex) 

34
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Sentences: Terms and Atoms

• A term (denoting a real-world individual) is:
• A constant symbol: John, or
• A variable symbol: x, or
• An n-place function of n terms

x and f(x1, ..., xn) are terms, where each xi is a term
is-a(John, Professor)

• A term with no variables is a ground term.

• An atomic sentence is an n-place predicate of n terms
• Has a truth value (t or f)

35

First-Order Logic (FOL
• Propositional logic assumes the world contains facts.

• First-order logic (like natural language) assumes the world contains
• Objects: people, houses, numbers, colors, baseball games, wars, …
• Functions: father of, best friend, one more than, plus, …

• Function arguments are objects; function returns an object
• Objects generally correspond to English NOUNS

• Predicates/Relations/Properties: red, round, prime, brother of, bigger than, part of, between…
• Predicate arguments are objects; predicate returns a truth value

• Predicates generally correspond to English VERBS
• First argument is generally the subject, the second the object
• Hit(Bill, Ball) usually means “Bill hit the ball.”
• Likes(Bill, IceCream) usually means “Bill likes IceCream.”
• Verb(Noun1, Noun2) usually means “Noun1 verb noun2.”

36
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Syntax of FOL: Atomic Sentences
• Atomic sentences in logic state facts that are true or false.

• Properties and n-ary relations do just that:
• LargerThan(2, 3) is false.
• Married(Father(Richard), Mother(John)) could be true or false.

• Note: Functions refer to objects, do not state facts, and form no sentence: 
• Brother(Pete) refers to John (his brother) and is neither true nor false.
• Plus(2, 3) refers to the number 5 and is neither true nor false.

• BrotherOf( Pete, Brother(Pete) ) is True.  

Binary relation
is a truth value.

Function refers to John, an object in the 
world, i.e., John is Pete’s brother.

37

Syntax of FOL: Variables
• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
• Variables may be arguments to functions and predicates.

• (A term with NO variables is called a ground term.)

• (A variable not bound by a quantifier is called free.

38
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Syntax of FOL: Basic syntax elements are symbols
• Constant Symbols (correspond to English nouns)

• Stand for objects in the world. E.g., KingJohn, 2, France, ... 

• Predicate Symbols (correspond to English verbs)
• Stand for relations (maps a tuple of objects to a truth-value)

• E.g., Brother(Richard, John), greater_than(3,2), ...

• Function Symbols (correspond to English nouns)
• Stand for functions (maps a tuple of objects to an object)

• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions

• Interpretation maps symbols onto the model (world)
• Very many interpretations are possible for each KB and world!
• Job of the KB is to rule out models inconsistent with our knowledge.

39

Syntax of FOL: Basic elements

• Constants KingJohn, 2, UMBC,... 

• Predicates BrotherOf, >,... (return true or false)

• Functions Sqrt, LeftLegOf,... (return some object)

• Variables x, y, a, b,...

• Quantifiers  ", $

• Connectives ¬, Ù, Ú, Þ, Û (standard)

• Equality = (but causes difficulties….)

40
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Sentences: Terms and Atoms

• A complex sentence is formed from atomic sentences connected by 
the same logical connectives as in propositional logic:
¬P, PÚQ, PÙQ, P⇒Q, P«Q where P and Q are sentences

has-a(x, Bachelors) Ù is-a(x, human)

has-a(John, Bachelors) Ù is-a(John, human)

has-a(Mary, Bachelors)

does NOT SAY everyone with a bachelors’ is human

what does it say?

41

Quantifiers

• Universal quantification
• "x P(x) means that P holds for all values of x in its domain
• States universal truths
• E.g.: "x dolphin(x) ⇒ mammal(x) 

• Existential quantification
• $x P(x) means that P holds for some value of x in the domain associated with 

that variable
• Makes a statement about some object without naming it
• E.g., $x mammal(x) Ù lays-eggs(x)

42
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Sentences: Quantification

• Quantified sentences adds quantifiers " and $

"x has-a(x, Bachelors) ⇒ is-a(x, human)

$x has-a(x, Bachelors)

"x $y Loves(x, y)

Everyone who has a bachelors’ is human.

There exists some who has a bachelors’.

Everybody loves somebody.

43

Sentences: Well-Formedness

• A well-formed formula (wff) is a sentence containing no “free” 
variables. That is, all variables are “bound” by universal or existential 
quantifiers. 

• ("x)P(x,y) has x bound as a universally quantified variable, but y is 
free: It is NOT wff

44
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Quantifiers: Uses of "

• Universal quantifiers often used with “implies” to form “rules”:
("x) student(x) ⇒ smart(x) 
“All students are smart”

• Universal quantification rarely* used to make blanket statements 
about every individual in the world: 
("x)student(x)Ùsmart(x) 

“Everyone in the world is a student and is smart”

*Deliberately, anyway

45

Quantifiers: Uses of $

• Existential quantifiers are usually used with “and” to specify a list of 
properties about an individual:
• ($x) student(x) Ù smart(x) 

• “There is a student who is smart”

• A common mistake is to represent this English sentence as the FOL 
sentence:
• ($x) student(x) ⇒ smart(x) 
• But what happens when there is a person who is not a student?

46
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Translation with Quantifiers

• Universal statements typically use implications
• All S(x) is P(x): 

• "x( S(x) ⇒ P(x) )

• No S(x) is P(x): 
• "x( S(x) ⇒ ¬P(x) )

• Existential statements typically use conjunctions
• Some S(x) is P(x): 

• $x (S(x) Ù P(x))
• Some S(x) is not P(x): 

• $x (S(x) Ù ¬P(x) )

47

Quantifier Scope

• Switching the order of universal quantifiers does not change the 
meaning: 
• ("x)("y)P(x,y) ↔ ("y)("x) P(x,y)

• Similarly, you can switch the order of existential quantifiers:
• ($x)($y)P(x,y) ↔ ($y)($x) P(x,y) 

• Switching the order of universals and existentials does change 
meaning: 
• Everyone likes someone: ("x)($y) likes(x,y) 
• Someone is liked by everyone: ($y)("x) likes(x,y)

48
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Connections between All and Exists

• We can relate sentences involving " and $ using De Morgan’s laws:
• ("x) ¬P(x) ↔ ¬($x) P(x)
• ¬("x) P ↔ ($x) ¬P(x)

• ("x) P(x) ↔ ¬($x) ¬P(x)
• ($x) P(x) ↔ ¬("x) ¬P(x)

49

Quantified Inference Rules

• Universal instantiation
• "x P(x) \ P(A)

• Universal generalization
• P(A) Ù P(B) … \ "x P(x)

• Existential instantiation
• $x P(x) \P(F)     ¬ skolem constant F

• Existential generalization
• P(A) \ $x P(x)
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Universal Instantiation (a.k.a. Universal Elimination)

• If ("x) P(x) is true, then P(C) is true, where C is any constant in the 
domain of x

• Example: 
• ("x) eats(Ziggy, x) Þ eats(Ziggy, IceCream)

• The variable symbol can be replaced by any ground term, i.e., any 
constant symbol or function symbol applied to ground terms only
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Existential Instantiation (a.k.a. Existential Elimination)

• Variable is replaced by a brand-new constant
• I.e., not occurring in the KB

• From ($x) P(x) infer P(c)
• Example:

• ($x) eats(Ziggy, x) ⇒ eats(Ziggy, Stuff)

• “Skolemization” – create a new term that instantiates existence

• Stuff is a skolem constant

• Easier than manipulating the existential quantifier
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Existential Generalization (a.k.a. Existential Introduction)

• If P(c) is true, then ($x) P(x) is inferred. 

• Example
• eats(Ziggy, IceCream) Þ ($x) eats(Ziggy, x)

• All instances of the given constant symbol are replaced by the new 
variable symbol

• Note that the variable symbol cannot already exist anywhere in the 
expression
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Translating English to FOL

• Every gardener likes the sun.
• "x gardener(x) ⇒ likes(x,Sun) 

• You can fool some of the people all of the time.
• $x "t  person(x) Ùtime(t) ⇒ can-fool(x,t)

• You can fool all of the people some of the time.
• "x $t (person(x) ⇒ time(t) Ùcan-fool(x,t))
• "x (person(x) ⇒ $t (time(t) Ùcan-fool(x,t))

• All purple mushrooms are poisonous.
• "x (mushroom(x) Ù purple(x)) ⇒ poisonous(x) 

Equivalent
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Translating English to FOL
• No purple mushroom is poisonous.

• ¬$x purple(x) Ù mushroom(x) Ù poisonous(x) 
• "x  (mushroom(x) Ù purple(x)) ⇒¬poisonous(x) 

• There are exactly two purple mushrooms.
• $x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù purple(y) ^ ¬(x=y) Ù "z 

(mushroom(z) Ù purple(z)) ⇒ ((x=z) Ú (y=z)) 

• Mary is not tall.
• ¬tall(Mary) 

• X is above Y iff X is on directly on top of Y or there is a pile of one or more 
other objects directly on top of one another starting with X and ending with Y.
• "x "y above(x,y) ↔ (on(x,y) Ú $z (on(x,z) Ù above(z,y))) 

Equivalent
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Semantics of FOL
• Domain M: the set of all objects in the world (of interest)

• Interpretation I: includes
• Assign each constant to an object in M
• Define each function of n arguments as a mapping Mn => M
• Define each predicate of n arguments as a mapping Mn => {T, F}
• Therefore, every ground predicate with any instantiation will have a truth value
• In general there is an infinite number of interpretations because |M| is infinite

• Define logical connectives: ~, ^, v, =>, <=> as in PL

• Define semantics of ("x) and ($x)
• ("x) P(x) is true iff P(x) is true under all interpretations 
• ($x) P(x) is true iff P(x) is true under some interpretation 
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Terminology

• Model: an interpretation of a set of sentences such that every 
sentence is True

• A sentence is
• Satisfiable if it is true under some interpretation

• Valid if it is true under all possible interpretations
• Inconsistent if there does not exist any interpretation under which the 

sentence is true

• Logical consequence: S ⊨ X if all models of S are also 
models of X
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Axioms, Definitions and Theorems

• Axioms are facts and rules that attempt to capture all of the (important) facts 
and concepts about a domain; axioms can be used to prove theorems
• Mathematicians don’t want any unnecessary (dependent) axioms –ones that can 

be derived from other axioms
• Dependent axioms can make reasoning faster, however
• Choosing a good set of axioms for a domain is a kind of design problem

• A definition of a predicate is of the form “p(X) ↔ …” and can be decomposed 
into two parts
• Necessary description: “p(x) ⇒…” 
• Sufficient description “… ⇒ p(x)” 
• Some concepts don’t have complete definitions (e.g., person(x))

58



10/29/24

30

Necessary and Sufficient

• p is necessary for q
• ¬p ⇒ ¬q (“no p, no q!”)

• p is sufficient for q
• p ⇒ q (“p is all we need to know!”)

• Note that ¬p ⇒ ¬q is equivalent to q ⇒ p

• So if p is necessary and sufficient for q, then p iff q. 
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More on Definitions

• Examples: define father(x, y) by parent(x, y) and male(x)

• parent(x, y) is a necessary (but not sufficient) description of father(x, y)

• father(x, y) ⇒ parent(x, y)

• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) 
description of father(x, y):

• father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35) 

• parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y) 
• parent(x, y) ^ male(x) ↔ father(x, y)
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Converting FOL to CNF
• Eliminate biconditionals and implications

• Move ¬ inwards

• Standardize variables apart by renaming them: each quantifier should use a 
different variable

• Skolemize: each existential variable is replaced by a Skolem constant or Skolem
function of the enclosing universally quantified variables. 
• For instance, ∃x Rich(x) becomes Rich(G1) where G1 is a new Skolem constant
• “Everyone has a heart” [∀x Person(x) ⇒ ∃y Heart(y)∧Has(x,y)] becomes 

∀x Person(x) ⇒ Heart(H(x)) ∧ Has(x, H(x)), where H is a new symbol (Skolem function)

• Drop universal quantifiers 
• For instance, ∀ x Person(x) becomes Person(x). 

• Distribute ∧ over ∨
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Summary: First Order Logic (FOL)

• Uses the same logical symbols as Propositional Logic (PL)

• Adds: variables, quantification, predicates and functions
• Names of terms: constants, variables, predicates, functions

• Existential and universal quantifiers can be used to create rules

• Need to be able to translate English to and from FOL

• Some extensions…
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Higher-Order Logic

• FOL only allows to quantify over variables, and variables can only 
range over objects. 

• HOL allows us to quantify over relations

• Example: (quantify over functions)
• “two functions are equal iff they produce the same value for all arguments”
• "f "g (f = g) « ("x f(x) = g(x))

• Example: (quantify over predicates)
• "r transitive( r ) ⇒ ("xyz) r(x,y) Ù r(y,z) ⇒ r(x,z)) 

• More expressive, but undecidable. 
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Expressing Uniqueness

• Sometimes we want to say that there is a single, unique object that 
satisfies a certain condition

• “There exists a unique x such that king(x) is true” 
• $x king(x) Ù "y (king(y) ⇒ x=y)

• $x king(x) Ù ¬$y (king(y) Ù x¹y)

• Iota operator: “i x P(x)” means “the unique x such that p(x) is true”
• “The unique ruler of Freedonia is dead”

• dead(i x ruler(freedonia,x))
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Knowledge bases/ontologies

• Ontology: the study of what there is—an inventory of what exists

• An ontology: a hierarchical categorization system for things in the world

• A formally represented corpus of knowledge
• Defined by some grammar
• Incorporates rules (implicitly or explicitly)
• Not divided into tables: more like a graph

• Often hierarchical

• Usually incorporate background knowledge
(not purely domain-specific)
• Although many are in a domain, such as biology

65

65

Ontological knowledge

• Assertions
• (isa RedColor Color)
• (isa Mug-17 Cup)

• Some variables may be unbound:
• (hasColor Mug-17 ?COLOR) 

• And there are rules:
• (implies (isa ?X Cup) (isa ?X Container))

• Combine them to draw conclusions:
• (isa ?WHAT Mug-17) à ??????

This is a formal 
representation space 

than can underpin 
questions like “What 

type of thing is a 
mug?” or “Who is Dr. 

M’s brother?

We’ll do more on 
ontologies when we 

get to knowledge 
representation.
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Notational differences
• Different symbols for and, or, not, implies, ...

• " $ Þ Û Ù Ú ¬ • É
• p v (q ^ r) 
• p + (q * r)
• etc

• Prolog
• cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
(forall ?x (implies (and (furry ?x) 

(meows ?x) 
(has ?x claws))

(cat ?x)))
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Exercise: FOL translation

1. Everything is bitter or sweet.
2. Either everything is bitter or 
everything is sweet.
3. There is somebody who is 
loved by everyone.
4. Nobody is loved by no one.
5. If someone is noisy, everybody 
is annoyed 
6. Frogs are green.
7. Frogs are not green.

Exercises: disi.unitn.it/~bernardi/Courses/LSNL/Slides/fl1.pdf

8. No frog is green.
9. Some frogs are not green. 
10. A mechanic likes Bob.
11. A mechanic likes herself.
12. Every mechanic likes Bob.
13. Some mechanic likes every 
nurse.
14. There is a mechanic who is 
liked by every nurse. 
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Exercise: FOL translation

1. "x (bitter(x) Ú sweet(x))
2. "x (bitter(x)) Ú "x (sweet(x)) 
3. $x "y (loves(y,x))
4. ¬$x ¬$y (loves(y,x))
5. ∃x (noisy(x)) Þ ∀y(annoyed(y))
6. "x (frog(x) Þ green(x))
7. "x (frog(x) Þ ¬green(x))

Exercises: disi.unitn.it/~bernardi/Courses/LSNL/Slides/fl1.pdf

8. ¬$x (frog(x) Ù green(x)) 
9. $x (frog(x) Ù¬green(x)) 
10. $x (mech.(x) Ù likes(x, Bob))
11. $x (mech.(x) Ù likes(x, x)) 
12. "x (mech.(x) Þ likes(x, Bob))
13. $x "y (mech(x) Ù nurse(y)

Þ likes(x, y))
14. ∃x(mech(x) ∧ ∀y(nurse(y)

Þ likes(y, x))
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