Machine Learning: Decision Trees and Information, Evaluating ML Models

(Ch. 18.1-18.3)

1

Bookkeeping

- Midterm—see next slide
- HW3 now due 10/25—please see schedule
- Today
 - Back to ML 2—more about decision trees; all about information gain
 - · Measuring model quality
- Next time
 - · Knowledge-based agents
 - · Propositional logics

Midterm

- Returned at end of class today
- · Reminder: take time to try to work out the correct answers
 - 24 hours after return until we'll answer questions
- Next class we'll take time to go over some sticking points
- Average was about 50; maximum was 88
- Approximate grade cutoffs: A = 55+; B = 30-54
- 20% of total grade

3

Inductive Learning Pipeline

Learning Decision Trees

- Each **non-leaf** node is an attribute (feature)
- Each arc is one value of the attribute at the node it comes from
- Each leaf node is a classification (+ or -)

5

A Training Set

Datum	n Attributes							Outcome (Label)			
	altern- atives	bar	Friday	hungry	people	\$	rain	reser- vation	type	wait time	Wait?
X ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X ₂	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X ₃	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X ₄	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X ₅	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X ₇	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	No
X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

ID3/C4.5

- A greedy algorithm for decision tree construction
 - Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the "best attribute" to use at current node
 - Select best attribute for current node how?
 - Generate child nodes (one for each possible value of attribute)
 - Partition training data using attribute values
 - Assign subsets of examples to the appropriate child node
 - Repeat for each child node until all examples associated with a node are either all positive or all negative

9

Choosing the Best Attribute

- Key problem: what attribute to split on?
- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose attribute with smallest number of values
 - Most-Values: Choose attribute with largest number of values
 - Max-Gain: Choose attribute that has the largest expected information gain the attribute that will result in the smallest expected size of the subtrees rooted at its children
- ID3 uses Max-Gain to select the best attribute

Choosing an Attribute

 Core idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" – that is, we want pure groups

11

Information Theory 101

- Information: the minimum number of bits needed to store or send some information
 - Wikipedia: "The measure of data, known as information entropy, is usually expressed by the average number of bits needed for storage or communication"
- Intuition: minimize effort to communicate/store
 - Common words (a, the, dog) are shorter than less common ones (parliamentarian, foreshadowing)
 - In Morse code, common (probable) letters have shorter encodings

"A Mathematical Theory of Communication," Bell System Technical Journal, 1948, Claude E. Shannon, Bell Labs

13

Information Theory 102

- Information is measured in bits.
- Information in a message depends on its probability.
- Given n equally probable possible messages, what is probability p_n of each one?

1/n

• Information conveyed by a message is:

$$log_2(n) = -log_2(p_n)$$

• Example: with 16 possible messages, $log_2(16) = 4$, and we need 4 bits to identify/send each message

Information Theory 102.b

- Information conveyed by a message is log₂(n) = -log₂(p)
- Given a probability distribution for n messages:

$$P = (p_1, p_2...p_n)$$

The information conveyed by that distribution is:

$$I(P) = -(p_1*log_2(p_1) + p_2*log_2(p_2) + .. + p_n*log_2(p_n))$$

• This is the entropy of P.

n = messagesp_n = probabilityof n occurring

15

Entropy Interlude

- Entropy (S): the homogeneity (purity) of a sample
 - If everything is the same, S = 0
 - If differences are even S = 1

Information Theory 103

 Entropy: average number of bits (per message) needed to represent a stream of messages

$$I(P) = -(p_1*log_2(p_1) + p_2*log_2(p_2) + ... + p_n*log_2(p_n))$$

- Examples:
 - P = (0.5, 0.5) : I(P) = 1 \rightarrow entropy of a fair coin flip
 - P = (0.67, 0.33) : I(P) = 0.92
 - P = (0.99, 0.01) : I(P) = 0.08
 - P = (1, 0) : I(P) = 0
- As the distribution becomes more skewed, the amount of information decreases. Why?
- Because I can just predict the most likely element, and usually be right

17

Entropy as Measure of Homogeneity of Examples

- Entropy can be used to characterize the (im)purity of an arbitrary collection of examples
- · Low entropy implies high homogeneity
 - Given a collection *S* (like the table of 12 examples for the restaurant domain), containing positive and negative examples of some target concept, the entropy of *S* relative to its Boolean classification is:

$$I(S) = -(p_{+}*log_{2}(p_{+}) + p_{-}*log_{2}(p_{-}))$$

Entropy([6+, 6-]) = 1

Entropy([9+, 5-]) = 0.940

Information Gain

- Information gain: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute.
 - High homogeneity → high likelihood samples will have the same class
- Information Gain is the expected reduction in entropy of target variable Y for data sample S
- Constructing a decision tree is all about finding the attribute that returns the highest information gain (i.e., the most homogeneous branches)

19

Information Gain, cont.

- Use to rank attributes and build decision tree!
- Choose nodes using attribute with greatest info gain
 - · Meaning least information remaining after split
 - I.e., subsets are all as skewed as possible
- Why?
 - Create small decision trees: predictions can be made with few attribute tests
 - Try to find a minimal process that still captures the data (Occam's Razor)

Information Theory 103b

- Entropy over a dataset
- Consider a dataset with 1 blue, 2 greens, and 3 reds: ●●●●●
- $I(\bullet \bullet \bullet \bullet \bullet) = -\Sigma_i (p_i \log_2(p_i))$ $= -(p_b \log_2(p_b) + (p_g \log_2(p_g)) + (p_r \log_2(p_r))$ $= -(\frac{1}{6} \log_2(\frac{1}{6}) + (\frac{1}{3} \log_2(\frac{1}{3})) + (\frac{1}{2} \log_2(\frac{1}{2}))$ = 1.46

Entropy is between 0 and 1 only in binary cases—with > than 2 outcomes you can need > 1 bit of information!

21

Information Gain: Using Information

- A chosen attribute A divides the training set S into subsets S_1 , ..., S_v according to their values for A, where A has v distinct values.
- The information gain IG(S,A) (or just IG(S)) of an attribute A relative to a collection of examples S is defined as:

$$IG(S, A) = I(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \times I(S_v)$$

- · This is the gain in information due to attribute A
 - Expected reduction in entropy (≡ increase in homogeneity)
- This represents the difference between
 - I(S)—the entropy of the original collection S
 - Remainder(A)—expected value of the entropy after S is partitioned using attribute A

Information Gain: Example

- First we calculate the entropy *before* the split, *I*(*S*)
 - $I(\bullet \bullet \bullet \bullet \bullet \bullet) = 1$ (perfectly balanced)

•
$$I_{right}(\bullet\bullet\bullet\bullet\bullet) = -(\frac{1}{6}\log_2(\frac{1}{6}) + \frac{5}{6}\log_2(\frac{5}{6})) = 0.65$$

- Then we calculate the entropy of the split by weighting each branch's entropy by how many data points that branch covers
 - Left has 4 data points: 4/10 of the data, 0.4. Right has 0.6 of the data.
 - $I_{split} = (0.4*0) + (0.6*0.65) =$ **0.39**
- Information gain = 1 0.39 = 0.61

$$IG(S, A) = I(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \times I(S_v)$$

example from victorzhou.com/blog/information-gain/

23

ID3/C4.5

- A greedy algorithm for decision tree construction
 - Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the "best attribute" to use at current node
 - Select best attribute for current node Using best information gain
 - 2. Generate child nodes (one for each possible value of attribute)
 - 3. Partition training data using attribute values
 - 4. Assign subsets of examples to the appropriate child node
 - 5. Repeat for each child node until all examples associated with a node are either all positive or all negative

Extensions of the Decision Tree Learning Algorithm

- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Pruning decision trees
- Cross-validation for experimental validation of performance
- C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, ...

25

Extensions: Real-Valued Data

- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics, e.g. always divide into quartiles
- Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- · Or treat this as another learning problem
 - Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 - E.g., try midpoint between every pair of values

Converting Decision Trees to Rules

- 1 rule for each path in tree (from root to a leaf)
- Left-hand side: labels of nodes and arcs

Patrons=None → Don't wait

Patrons=Some → Wait

Patrons=Full ∧ Hungry=No → Don't wait etc...

Yes Hungry
Yes No
Type No

Patrons

Some Full

None

Resulting rules can be simplified and reasoned over

32

Pruning Decision Trees

- Replace a whole subtree by a leaf node
- If: a decision rule establishes that he expected error rate in the subtree is greater than in the single leaf. E.g.,
 - Training: one training red success and two training blue failures
 - Test: three red failures and one blue success
 - Consider replacing this subtree by a single Failure node. (leaf)
- After replacement we will have only two errors instead of five:

FAILURE

2 success
4 failure

Summary: Decision Tree Learning

- · A widely used learning methods in practice
- · Can out-perform human experts in many problems
 - Strengths:
 - Fast
 - Simple to implement
 - Can convert to a set of easily interpretable rules
 - Empirically valid in many commercial products
 - · Handles noisy data

- Weaknesses:
 - Univariate splits/Partitioning using only one attribute at a time (limits types of possible trees)
 - Large trees hard to understand
 - Requires fixed-length feature vectors
 - Non-incremental (i.e., batch method)

34

How Well Does it Work?

- At least as accurate as human experts (sometimes)
 - Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72% correct
 - BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system
 - Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
 - SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky
 objects an order of magnitude fainter than was previously possible, with
 an accuracy of over 90%.

Measuring Model Quality

- So we went through a bunch of training data and made a decision tree (or any other ML model).
- Is that model any good?

36

ML: Measuring Model Quality

- So we have training data, and we have learned a model
 - · A learned decision tree is one such model
- We have some set of test data we have held out
- How do we evaluate whether the model is good?
- How can this process fail?

Measuring Model Quality

- · How good is a model?
- Predictive accuracy
- · False positives / false negatives for a given cutoff threshold
 - Loss function (accounts for cost of different types of errors)
- Area under the curve
- Minimizing loss can lead to problems with overfitting

38

One Possible Decision Tree sample attributes label G Fuzzy? Yellow? G ≥ 152.5? X_1 205 200 yes X_2 90 90 250 Ν no X_2 220 22 Ν 10 no 205 210 10 yes R ≥ 202.5? yellow **X**₄ not **Training** yellow yellow data data

40

Measuring Model Quality

- Training error
 - · Train on all data; measure error on all data
 - Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
 - · Attempt to avoid overfitting
 - Explicitly minimize the complexity of the function while minimizing loss
 - · Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
 - · Divide data into training set and test set
 - Train on training set; measure error on test set
 - Better than training error, since we are measuring generalization to new data
 - To get a good estimate, we need a reasonably large test set
 - But this gives less data to train on, reducing our model quality!

42

Cross-Validation, cont.

- *k*-fold cross-validation:
 - Divide data into *k* folds
 - Train on k-1 folds, use the kth fold to measure error
 - Repeat k times; use average error to measure generalization accuracy
 - Statistically valid and gives good accuracy estimates
 - 5 and 10 are common values for k
- Leave-one-out cross-validation (LOOCV)
 - k-fold cross validation where k=N (test data = 1 instance!)
 - Quite accurate, but also quite expensive, since it requires building N models

Precision/Recall

relevant elements

false negatives

true negatives

selected elements

How many selected items are relevant?

TP

Precision = TP

TP

Recall = TP

FN

Precision, or Recall?

- Precision (specificity) and recall (sensitivity) are in tension
- In general, increasing one causes the other to decrease
 - The more *precise* you are, the more things you will miss
 - The more you guarantee you will catch everything, the more you will return some incorrect things (casting a wide net)
- So... which is better?
 - Recall our cancer example
- Studying the precision/recall curve is informative

46

Precision and Recall

• If one system's curve is always above the other, it's strictly better

F measure

• The F1 measure combines both into a useful single metric

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$
$$= \frac{TP}{TP + 1/2 (FP + FN)}$$

- Idea: both precision and recall need to be reasonably good
- Heavily penalizes small precision or small recall

48

Confusion Matrix (1)

- A confusion matrix can be a better way to show results
- For binary classifiers it's simple and is related to type I and type II errors (i.e., false positives and false negatives)
- There may be different costs for each kind of error
- So we need to understand their frequencies

predicted

		С	¬C
	С	True positive	False negative
5	¬С	False positive	True negative

Confusion Matrix (2)

- For multi-way classifiers, a confusion matrix is even more useful
- It lets you focus in on where the errors are

predicted

		Cat	Dog	rabbit
actual	Cat	5	3	0
	Dog	2	3	1
	Rabbit	0	2	11

50

Confusion Matrix (2)

- For multi-way classifiers, a confusion matrix is even more useful
- It lets you focus in on where the errors are

Overfitting

- Sometimes, model fits training data well but doesn't do well on test data
- Can be it "overfit" to the training data
 - Model is too specific to training data
 - Doesn't generalize to new information well
- Learned model: (Y∧Y∧Y→B ∨ Y∧N∧N→¬B ∨ ...)

Examples				
(training data)	Bipedal	Flies	Feathers	Outcome
Sparrow	Y	Y	Y	В
Monkey	Y	N	N	¬B
Ostrich	Y	Ν	Y	В
Bat	Y	Υ	N	¬B
Elephant	N	Ν	N	¬B

52

Overfitting 2

- Irrelevant attributes can also lead to overfitting
- If hypothesis space has many dimensions (many attributes), may find meaningless regularity
 - Ex: Name starts with
 [A-M] → ¬Bird

Examples				
(training data)	Bipedal	Flies	Feathers	Outcome
Sparrow	Υ	Y	Y	В
Monkey	Y	N	N	¬B
Ostrich	Y	Ν	Y	В
Bat	Υ	Υ	N	¬В
Elephant	N	N	N	¬B

Overfitting 3

Incomplete training data → overfitting

Bad training/test split → overfitting

54

Another example

Slide credit Richard H. Lathrop

58

Overfitting

- Fix by...
 - Getting more training data
 - Removing irrelevant features (e.g., remove 'first letter' from bird/mammal feature vector)
 - In decision trees, pruning low nodes (e.g., if improvement from best attribute at a node is below a threshold, stop and make this node a leaf rather than generating child nodes)
- Regularization
- Lots of other choices...

Noisy Data

- Many kinds of "noise" can occur in the examples:
 - Two examples have same attribute/value pairs, but different classifications
 - Some values of attributes are incorrect
 - Errors in the data acquisition process, the preprocessing phase, ...
 - Classification is wrong (e.g., + instead of -) because of some error
 - Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
 - Some attributes are missing (are pangolins bipedal?)

60

Summary: Measuring Model Quality

- Performance on training, test, and deployment data
- Multiple failure modes: false positive vs. false negative
 - · Which one is more important depends on your use case
- Precision and Recall tradeoff: do we want to be more precise or more complete? Or both?
 - F1 combines precision and recall
- Confusion matrices capture overall confusions
- · One major type of failure: overfitting
 - Doing well on training data vs. actual deployment cases