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Machine Learning: Decision Trees and 
Information, Evaluating ML Models 

(Ch. 18.1–18.3)
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Bookkeeping

• Midterm—see next slide

• HW3 now due 10/25—please see schedule

• Today
• Back to ML 2—more about decision trees; all about information gain
• Measuring model quality

• Next time
• Knowledge-based agents
• Propositional logics
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Midterm

• Returned at end of class today

• Reminder: take time to try to work out the correct answers
• 24 hours after return until we’ll answer questions

• Next class we’ll take time to go over some sticking points

• Average was about 50; maximum was 88

• Approximate grade cutoffs: A = 55+; B = 30-54

• 20% of total grade

3

Inductive Learning Pipeline
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Classifier 
(trained 
model)

Training data, X
TRAINING

Text-
ure Ears Legs Class

Fuzzy Round 4 +
Slimy Missing 4 -

Fuzzy Pointy 4 -
Fuzzy Round 4 +

Fuzzy Pointy 4 +
…

Classifier 
(trained 
model)

TEST

Label:
+

Test data
x1 = 
<Fuzzy, 
Pointy, 4>
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Learning Decision Trees

• Each non-leaf node is an 
attribute (feature)

• Each arc is one value of 
the attribute at the node 
it comes from

• Each leaf node is a 
classification (+ or -)

5
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A Training Set
Datum Attributes

Outcome 
(Label)

altern-
atives bar Friday hungry people $ rain reser-

vation type wait 
time Wait?

X1 Yes No No Yes Some $$$ No Yes French 0-10 Yes

X2 Yes No No Yes Full $ No No Thai 30-60 No

X3 No Yes No No Some $ No No Burger 0-10 Yes

X4 Yes No Yes Yes Full $ Yes No Thai 10-30 Yes

X5 Yes No Yes No Full $$$ No Yes French >60 No

X6 No Yes No Yes Some $$ Yes Yes Italian 0-10 Yes

X7 No Yes No No None $ Yes No Burger 0-10 No

X8 No No No Yes Some $$ Yes Yes Thai 0-10 Yes

X9 No Yes Yes No Full $ Yes No Burger >60 No

X10 Yes Yes Yes Yes Full $$$ No Yes Italian 0-30 No

X11 No No No No None $ No No Thai 0-10 No

X12 Yes Yes Yes Yes Full $ No No Burger 30-60 Yes

6
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Decision Tree from Inspection

Problem from R&N, table from Dr. Manfred Kerber @ Birmingham, with thanks – www.cs.bham.ac.uk/~mmk/Teaching/AI/l3.html 
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Bird or Not-Bird?
1. Select attribute

2. Generate child nodes

3. Partition examples 

4. Assign examples to child

5. Repeat until examples are +ve or -ve

Examples
(training

data)

Attributes
Outcome

Bipedal Flies Feathers

Sparrow Y Y Y B

Monkey Y N N ¬B

Ostrich Y N Y B

Pangolin N N N ¬B

Bat Y Y N ¬B

Elephant N N N ¬B

Chickadee N Y Y B

Test
mouse: <B:N, Fl:N, Fe:N>

But… we should 
have split on 
feathers first

Bipedal?
sparrow, 
monkey, 
ostrich, 
bat

chickadee, 
pangolin, 
elephantY N

Flies?

Y N
chickadee

B ¬B

pangolin, 
elephant

Feathers

Y N
sparrow

B ¬B

monkey,
ostrich,

bat
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ID3/C4.5

• A greedy algorithm for decision tree construction 
• Ross Quinlan, 1987 

• Construct decision tree top-down by recursively selecting the “best 
attribute” to use at current node 
• Select best attribute for current node
• Generate child nodes (one for each possible value of attribute)
• Partition training data using attribute values
• Assign subsets of examples to the appropriate child node
• Repeat for each child node until all examples associated with a node are either 

all positive or all negative

9

how?

9

Choosing the Best Attribute

• Key problem: what attribute to split on?

• Some possibilities are:
• Random: Select any attribute at random 
• Least-Values: Choose attribute with smallest number of values 
• Most-Values: Choose attribute with largest number of values 
• Max-Gain: Choose attribute that has the largest expected information gain—

the attribute that will result in the smallest expected size of the subtrees
rooted at its children

• ID3 uses Max-Gain to select the best attribute

10
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Choosing an Attribute

• Core idea: a good attribute splits the examples into subsets that are 
(ideally) “all positive” or “all negative” – that is, we want pure groups

>

11

ID3-induced Decision Tree

12

To build the best 
decision tree, we’re 
going to have to talk 
about information.

12
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Information Theory 101

• Information: the minimum number of bits needed to store or 
send some information
• Wikipedia: “The measure of data, known as information entropy, is 

usually expressed by the average number of bits needed for storage or 
communication”

• Intuition: minimize effort to communicate/store
• Common words (a, the, dog) are shorter than less common ones 

(parliamentarian, foreshadowing)
• In Morse code, common (probable) letters have shorter encodings

“A Mathematical Theory of  Communication,” Bell System 
Technical Journal, 1948, Claude E. Shannon, Bell Labs

13

Information Theory 102
• Information is measured in bits.

• Information in a message depends on its probability.

• Given n equally probable possible messages, what is probability pn of 
each one?

1/n

• Information conveyed by a message is:

log2(n) = -log2(pn)

• Example: with 16 possible messages, log2(16) = 4, and we need 4 bits 
to identify/send each message

14
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Information Theory 102.b

• Information conveyed by a message is log2(n) = -log2(p)

• Given a probability distribution for n messages:

P = (p1,p2…pn)

• The information conveyed by that distribution is: 

I(P) = -(p1*log2(p1) + p2*log2(p2) + .. + pn*log2(pn))

• This is the entropy of P.

n  = messages
pn = probability 

of n occurring

15

Entropy Interlude

• Entropy (S): the homogeneity (purity) of a sample
• If everything is the same, S = 0
• If differences are even S = 1

S = 0
S = 0 S = 1 S = 1

16
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Information Theory 103
• Entropy: average number of bits (per message) needed to represent a 

stream of messages 
I(P) = -(p1*log2 (p1) + p2*log2 (p2) + .. + pn*log2 (pn))

• Examples:
• P = (0.5, 0.5)      :  I(P) = 1 à entropy of a fair coin flip
• P = (0.67, 0.33)  :  I(P) = 0.92
• P = (0.99, 0.01)  :  I(P) = 0.08
• P = (1, 0)            :  I(P) = 0

• As the distribution becomes more skewed, the amount of information 
decreases. Why?

• Because I can just predict the most likely element, and usually be right

17
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Entropy as Measure of Homogeneity of Examples

• Entropy can be used to characterize the (im)purity of an arbitrary 
collection of examples

• Low entropy implies high homogeneity 
• Given a collection S (like the table of 12 examples for the restaurant domain), 

containing positive and negative examples of some target concept, the entropy 
of S relative to its Boolean classification is:

I(S) = -(p+*log2 (p+) + p-*log2 (p-))

Entropy([6+, 6-]) = 1
Entropy([9+, 5-]) = 0.940

18
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Information Gain

• Information gain: how much entropy decreases (homogeneity 
increases) when a dataset is split on an attribute.
• High homogeneity à high likelihood samples will have the same class

• Information Gain is the expected reduction in entropy of target 
variable Y for data sample S

• Constructing a decision tree is all about finding the attribute that 
returns the highest information gain (i.e., the most homogeneous 
branches)

19

19

Information Gain, cont.

• Use to rank attributes and build decision tree!

• Choose nodes using attribute with greatest info gain
• Meaning least information remaining after split
• I.e., subsets are all as skewed as possible

• Why?
• Create small decision trees: predictions can be made with few attribute tests
• Try to find a minimal process that still captures the data (Occam’s Razor)

20
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Information Theory 103b

• Entropy over a dataset

• Consider a dataset with 1 blue, 2 greens, and 3 reds: ••••••

• I(••••••) = −Σi (pilog2(pi))

= −(pblog2(pb) + (pglog2(pg)) + (prlog2(pr)) 

= −(⅙ log2(⅙) + (⅓ log2(⅓)) + (½ log2(½))

= 1.46

21

Entropy is between 0 and 1 only in 
binary cases—with > than 2 outcomes 
you can need >1 bit of information!

21

Information Gain: Using Information

• A chosen attribute A divides the training set S into subsets S1, … , Sv according 
to their values for A, where A has v distinct values.

• The information gain IG(S,A) (or just IG(S)) of an attribute A relative to a 
collection of examples S is defined as: 

• This is the gain in information due to attribute A
• Expected reduction in entropy (≡ increase in homogeneity)

• This represents the difference between 
• I(S)—the entropy of the original collection S
• Remainder(A)—expected value of the entropy after S is partitioned using attribute A

22

)(
||
||)(),(

)( vAValuesv
v SI
S
SSIASIG ´-= åÎ

22



10/22/24

12

Information Gain: Example

• First we calculate the entropy before the split, I(S)
• I(••••••••••) = 1 (perfectly balanced)

• Split, then calculate the entropy of each branch
• Ileft(••••) = 0 (pure)
• Iright(••••••) = – (⅙ log2(⅙) + ⅚ log2(⅚)) = 0.65

• Then we calculate the entropy of the split by weighting each branch’s 
entropy by how many data points that branch covers
• Left has 4 data points: 4/10 of the data, 0.4. Right has 0.6 of the data.
• Isplit = (0.4∗0) + (0.6∗0.65) = 0.39

• Information gain = 1 − 0.39 = 0.61 )(
||
||)(),(

)( vAValuesv
v SI
S
SSIASIG ´-= åÎ

example from victorzhou.com/blog/information-gain/

23

ID3/C4.5

• A greedy algorithm for decision tree construction 
• Ross Quinlan, 1987 

• Construct decision tree top-down by recursively selecting the “best 
attribute” to use at current node 
1. Select best attribute for current node
2. Generate child nodes (one for each possible value of attribute)
3. Partition training data using attribute values
4. Assign subsets of examples to the appropriate child node
5. Repeat for each child node until all examples associated with a node are either 

all positive or all negative

24

Using best information gain

24
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Extensions of the Decision Tree Learning Algorithm

• Real-valued data

• Noisy data and overfitting

• Generation of rules

• Pruning decision trees

• Cross-validation for experimental validation of performance

• C4.5 is a (more applicable) extension of ID3 that accounts for  real-world 
problems: unavailable values, continuous attributes, pruning decision 
trees, rule derivation, …

25

25

Extensions: Real-Valued Data

• Select thresholds defining intervals so each becomes a discrete value of 
attribute

• Use heuristics, e.g. always divide into quartiles

• Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), 
school-aged (5-8)

• Or treat this as another learning problem
• Try different ways to discretize continuous variable; see which yield better 

results w.r.t. some metric
• E.g., try midpoint between every pair of values

31
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Converting Decision Trees to Rules

• 1 rule for each path in tree (from root to a leaf)

• Left-hand side: labels 
of nodes and arcs

Patrons=None à Don’t wait

Patrons=Some à Wait

Patrons=Full ∧ Hungry=No à Don’t wait

etc…

• Resulting rules can be simplified and reasoned over

32

…

32

Pruning Decision Trees

• Replace a whole subtree by a leaf node

• If: a decision rule establishes that he expected error rate in the subtree
is greater than in the single leaf. E.g.,
• Training: one training red success and two training blue failures
• Test: three red failures and one blue success
• Consider replacing this subtree by a single Failure node. (leaf)

• After replacement we will have only two errors instead of five:

33

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Test Pruned

33



10/22/24

15

Summary: Decision Tree Learning

• A widely used learning methods in practice 

• Can out-perform human experts in many problems 

34

• Strengths:
• Fast
• Simple to implement
• Can convert to a set of 

easily interpretable rules
• Empirically valid in many 

commercial products
• Handles noisy data 

• Weaknesses:
• Univariate splits/Partitioning using 

only one attribute at a time (limits 
types of possible trees)

• Large trees hard to understand
• Requires fixed-length feature 

vectors 
• Non-incremental (i.e., batch 

method)

34

How Well Does it Work?

• At least as accurate as human experts (sometimes)
• Diagnosing breast cancer: humans correct 65% of the time; decision tree 

classified 72% correct
• BP designed a decision tree for gas-oil separation for offshore oil 

platforms; replaced an earlier rule-based expert system
• Cessna designed an airplane flight controller using 90,000 examples and 

20 attributes per example
• SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky 

objects an order of magnitude fainter than was previously possible, with 
an accuracy of over 90%.

35
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Measuring Model Quality

• So we went through a bunch of training data and made a 
decision tree (or any other ML model).

• Is that model any good?

36

ML: Measuring Model Quality

• So we have training data, and we have learned a model 
• A learned decision tree is one such model

• We have some set of test data we have
held out

• How do we evaluate whether the model is good?

• How can this process fail?

37

Test 
Data

Classifier 
(trained 
model)

Training 
data, X

TEST

Label:
+

TRAINING

37
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Measuring Model Quality

• How good is a model?

• Predictive accuracy

• False positives / false negatives for a given cutoff threshold
• Loss function (accounts for cost of different types of errors)

• Area under the curve

• Minimizing loss can lead to problems with overfitting

38

38

One Possible Decision Tree

39

sample attributes label

R G B Fuzzy? Yellow?
X1 205 200 40 Y yes

X2 90 250 90 N no

X3 220 10 22 N no

X4 205 210 10 N yes

X5 235 210 30 N yes

X6 50 215 60 Y no

G ≥ 152.5?

X1

X2

X4

X3

not 
yellow

noyes

R ≥ 202.5?

noyes
X2

X1

X4

not 
yellow

yellow
5

6

1

2

3

4
Training 

data Test 
data

39
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One Possible Decision Tree

• Predictions

40

G ≥ 152.5?

not 
yellow

noyes

R ≥ 202.5?

noyes

not 
yellow

yellow

R G B Fuzzy? Prediction: 
Is it yellow?

X7 215 45 190 N no

X8 220 240 225 N yes ✗

7 8

So what went wrong?

40

Measuring Model Quality

• Training error
• Train on all data; measure error on all data
• Subject to overfitting (of course we’ll make good predictions on the data on 

which we trained!)

• Regularization
• Attempt to avoid overfitting
• Explicitly minimize the complexity of the function while minimizing loss
• Tradeoff is modeled with a regularization parameter

41
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Cross-Validation

• Holdout cross-validation:
• Divide data into training set and test set
• Train on training set; measure error on test set
• Better than training error, since we are measuring generalization to new data
• To get a good estimate, we need a reasonably large test set
• But this gives less data to train on, reducing our model quality!

42

5
6

1

2

3

4

42

Cross-Validation, cont.

• k-fold cross-validation:
• Divide data into k folds
• Train on k-1 folds, use the kth fold to measure error
• Repeat k times; use average error to measure generalization 

accuracy
• Statistically valid and gives good accuracy estimates
• 5 and 10 are common values for k

• Leave-one-out cross-validation (LOOCV)
• k-fold cross validation where k=N (test data = 1 instance!)
• Quite accurate, but also quite expensive, since it requires 

building N models

43

5
6

1

2

3

4

6

1

2

5

3
4

6

1

24
5

3
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Correctness

• True positive
• I predict it’s yellow, and it is yellow

• True negative
• I predict it’s not yellow, and it’s not

• False positive
• I predict it’s yellow, 

but it’s not

• False negative
• I predict it’s not yellow, but it is

actual class members

predicted class members

44

Precision/Recall

45

TP TP

TP + FP FN

45
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Precision, or Recall?

• Precision (specificity) and recall (sensitivity) are in tension

• In general, increasing one causes the other to decrease
• The more precise you are, the more things you will miss
• The more you guarantee you will catch everything, the more you will return 

some incorrect things (casting a wide net)

• So… which is better?
• Recall our cancer example

• Studying the precision/recall 
curve is informative

46

Precision and Recall

• If one system’s curve is always above the other, it’s strictly better

47
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F measure

• The F1 measure combines both into a useful single metric

• Idea: both precision and recall need to be reasonably good

• Heavily penalizes small precision or small recall

F1 = 2 × precision×recall
precision + recall

= TP
TP + 1/2 (FP + FN)

48

Confusion Matrix (1)

• A confusion matrix can be a better way to show results

• For binary classifiers it’s simple and is related to type I and type II 
errors (i.e., false positives and false negatives)

• There may be different costs
for each kind of error

• So we need to understand
their frequencies

C ¬C

C True
positive

False 
negative

¬C False
positive

True
negative

predicted

ac
tu

al

49
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Confusion Matrix (2)

• For multi-way classifiers, a confusion matrix is even more useful

• It lets you focus in on where the errors are

predicted

ac
tu

al

Cat Dog rabbit
Cat 5 3 0

Dog 2 3 1
Rabbit 0 2 11

50

Confusion Matrix (2)

• For multi-way classifiers, a confusion matrix is even more useful

• It lets you focus in on where the errors are

Figures: scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

51
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Overfitting

• Sometimes, model fits training data well but doesn’t do well on test 
data

• Can be it “overfit” to the 
training data
• Model is too specific to 

training data 
• Doesn’t generalize to new 

information well

• Learned model: 
(Y∧Y∧YàB ∨ Y∧N∧Nà ¬B ∨ ...)

Examples
(training

data)

Attributes
Outcome

Bipedal Flies Feathers

Sparrow Y Y Y B

Monkey Y N N ¬B

Ostrich Y N Y B

Bat Y Y N ¬B

Elephant N N N ¬B

52

Overfitting 2

• Irrelevant attributes can also lead to overfitting 

• If hypothesis space has 
many dimensions (many 
attributes), may find 
meaningless regularity 
• Ex: Name starts with

[A-M] à ¬Bird

53

Examples
(training

data)

Attributes
Outcome

Bipedal Flies Feathers

Sparrow Y Y Y B

Monkey Y N N ¬B

Ostrich Y N Y B

Bat Y Y N ¬B

Elephant N N N ¬B

53
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Overfitting 3

• Incomplete training data à overfitting

• Bad training/test split à overfitting

54

5

6

1

2

3

4

5
6

1

2

34
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X

Y

Overfitting and Underfitting

Slide credit Richard H. Lathrop 
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X

Y

Y = high-order polynomial in X

A Complex Model

Slide credit Richard H. Lathrop 

56

X

Y

Y = a X  + b  +  noise

A Much Simpler Model

Slide credit Richard H. Lathrop 
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Another example

Slide credit Richard H. Lathrop 

58

Overfitting

• Fix by…
• Getting more training data
• Removing irrelevant features (e.g., remove ‘first letter’ from bird/mammal 

feature vector)
• In decision trees, pruning low nodes (e.g., if improvement from best attribute at 

a node is below a threshold, stop and make this node a leaf rather than 
generating child nodes)

• Regularization

• Lots of other choices…

59
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Noisy Data

• Many kinds of “noise” can occur in the examples:
• Two examples have same attribute/value pairs, but different classifications 
• Some values of attributes are incorrect 

• Errors in the data acquisition process, the preprocessing phase, …
• Classification is wrong (e.g., + instead of -) because of some error 
• Some attributes are irrelevant to the decision-making process, e.g., color of a die 

is irrelevant to its outcome
• Some attributes are missing (are pangolins bipedal?)

60
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Summary: Measuring Model Quality

• Performance on training, test, and deployment data

• Multiple failure modes: false positive vs. false negative
• Which one is more important depends on your use case

• Precision and Recall tradeoff: do we want to be more precise or more
complete? Or both?
• F1 combines precision and recall

• Confusion matrices capture overall confusions

• One major type of failure: overfitting
• Doing well on training data vs. actual deployment cases

61
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