
I tried exploring using text-to-speech to speak these notes aloud for the
classroom, and it was just incredibly annoying. Part of what was
scheduled for class is a quick overview of the midterm—what kinds of
topics and questions you should expect – and for that I have done my
best to type up notes describing what I would have said during lecture.

I will answer questions on Discord during office hour and lecture horus
(only). The rest of the time, Discord is for you to use for team formation,
discussions, etc.

1

Broadly speaking, the exam is pretty standard—it’s closed book, and
the goal is to demonstrate mastery of material from the lectures and
from the readings. At a high level, you’ll be asked to demonstrate a
conceptual grasp of the material; solve problems; and in some cases,
turn a problem description into a formulation, so like for example, “How
would I formulate this description as a search problem” would be the
kind of thing you might see. I care a lot about whether you’re getting the
underlying concepts, and less about whether you can write Python on
the fly or do arithmetic. You won’t need a calculator, since nobody owns
one and you can’t use your phone during the exam. Generally, the
exam questions will be either easier than the homeworks or, for simpler
homework problems, equivalently easy.

2

Some kinds of questions that may appear include standard exam
questions like fill in the blanks or multiple choice, but most of the exam
credit will be in meatier question types like “work something through”—
the homeworks are good examples of that; or something where you do
something that requires more thought, like drawing a tree or network,
writing a short essay, things that require a slightly deeper engagement
with the material. You may be asked to write a short function that
demonstrates knowledge of how an algorithm works; however…

3

…if there are coding questions in the exam, they will be intended to
capture whether you know how something works, not whether you can
write Python on the fly. So please don’t focus on programming practice.

If you’re looking for sample problems to study from, homeworks are a
good source; however, homeworks are not exhaustive—we can’t cover
all the topics in depth and have homeworks that take a sane amount of
time. So look at the questions in the lectures, as well. In the lecture
slides, there are a lot of sort of small sample problems and places that I
ask a question, like “Why is this the case?” These can be useful to
study.

4

Just as a note, don’t try to acquire points by giving a ton of examples or
answers; if I ask for two answers and you give me four, you will lose
points for the wrong ones, not gain ones for the right ones. So don’t try
to scrape up points by filling up the page—instead, focus on exactly
answering the specific questions asked. This also leads into the next
point, which is please to read the instructions carefully. You will have
time, my exams are not intended to be painfully long, and it’s always
really sad to lose points because you didn’t read the exam instructions
carefully. Also, we do talk a lot about terminology in this class, and you
will need to know that terminology—during the exam we won’t define
terms that take more than a one-sentence answer, since that’s more
like teaching during the exam.

5

Okay, so what have we talked about this semester so far? At a high
level, we’ve talked a lot about intelligence, and about AI. We’ve talked
about some of the problems we want to target using AI technology, and
some of the goals of the field. You may need to be able to speak
coherently about goals for AI, or what makes something an AI problem,
for example.

6

We started addressing these questions by defining agents—software or
even robots that do something. Agents are kind of the core mechanism
for demonstrating intelligent action. And in the space of agents, we
talked about how to categorize them, what they are for, what traits they
have like performance or actions they can take. And as well as their
traits, we’ve talked about the environments in which they can operate,
mostly in the context of looking at a significant number of examples.

7

We spent a lot of time on search, and we did that for a reason. Many,
many AI problems, ranging from machine learning in large language
models all the way down to tic tac toe, can be considered as search
problems. You need to know what a search problem is, how to
characterize one, and how to formalize a search problem in terms of the
problem you’re trying to solve. We covered a lot of search algorithms,
which you should be familiar with. So let’s look at some specifics…

8

So how do we formalize search? Well, what are the elements of a
search problem? Broadly speaking, problems have state spaces, that
is, a representation of what the problem can look like at different stages
in the course of operating on it; actions an agent can take, which
usually cause a change of state, and which may have associate costs;
and solution states, which means we need a goal test to see if a state is
a solution, and sometimes an estimate of how far a state is from a goal
state. And both actions and solutions can have costs. So a pretty
common question type might be a description of a problem, like a game
or a navigating robot or something, for you to formulate as a search
problem – describing its state space and possible operations and so on.

9

We’ve done three broad classes of search problem: Uninformed search
is the first, where you don’t know anything too specific about the
problem space, you just know how to go from state to state – that is,
you know what actions you can take and what each action changes in
the state space. And the slide has examples of the algorithms that are
most important for this – some of them, like breadth-first search and
depth-first search, are pretty simple, while uniform-cost search is
capable of taking things like action costs into account. And it’s important
to be able to answer questions like why something is a good aklgorithm
for a particular problem, not just regurgitate the search definition.

10

Informed search, by contrast, is a kind of search where you have some
idea “where” to look for a solution – that is, given a state space, you
have a heuristic you can apply to that state space that says, roughly,
whether it’s closer to a solution than another state space. And this
heuristic – which may be admissible, and important concept to
understand – enables a new set of search algorithms, of which A* is the
core one to know. And again, you may need to be able to speak to why
something is a good search approach.

11

So you may recall this search tree vaguely from the lectures. It has
everything we need to do informed search – action costs and heuristic
values at each node. So I would recommend making sure this makes
sense and that you remember how to do different kinds of search over
something that looks like this. And to bring it back to what we were
talking about earlier, it’s also important to be able to talk about how the
nodes (states) and arcs (actions) tie into the definition of a search
space.

12

The last high level search approach we talked about is local search,
where we don’t care about the path to a goal, but rather about the goal
state itself. (Our canonical example is the n-queens problem, where it
doesn’t matter what sequence of moves got you to a particular board
state, only what that state is.) This enables some much more memory
efficient approaches, but alsio means you can get stuck in a loop in the
search space, or stuck at a local optimum instead of the global
optimum. And for this it’s important to understand local optima and
some of the approaches we use to find a solution, like hill climbing and
simulated annealing.

13

Here are some (non-exhaustive!) examples of the kinds of questions I
might ask about a particular search problem.

14

Our next major topic after search was constraint satisfaction problems,
which are a particular constrained kind of search problem. And you can
handle CSPs by defining the state as a set of variables that you are
trying to find values for, and which have some constraints on their
possible values. So the first thing you need to know is, how might you
express a problem as a CSP? And everyone did fine on that question
for the homework.

15

We went through a few different ways of solving CSPs, where the basic
algorithm is backtracking, and forward checking is a variation on the
backtracking algorithm, but where the search space is reduced by using
local consistency checking.

16

Now, we’ve talked about games a lot as part of search, but the actual
formalization of game playing matters, too. And in talking about games,
we talked about characteristics games can have—like being fair, being
zero sum, being deterministic versus stochastic, and so on. But a lot of
what we talked about is how to do a search tree for adversarial games,
which might or might not have a chance element. So as a thought
experiment, how would you draw a three player game as a search tree?
What if it had a dice roll associated with it? And you should know, for
example, how to draw an expectiminimax tree, or how alpga-beta
pruning works.

17

We spent half a lecture revisiting basic concepts in probability, and in
justifying the need for probabilistic reasoning. And a lot of what we’ve
done since then revolves around understanding joint probabilities (e.g.,
P(A,B)) or conditional probabilities (e.g., P(A|B)).

18

We talked about independence, and the different ways two nodes in a
graph can be independent, or have a dependency induced by observing
another variable, or be made independent by observing another
variable.

19

So make sure you understand both the terminology of basic probability
and the examples we worked through in class of conditional
probabilities, and understanding how this kind of probability table works,
because it’s foundational to…

20

…reasoning about probability and using Bayes’ rule to reason about
evidence and hypotheticals. And you don’t need to memorize much for
this exam, but you should know Bayes’ rule and how it works.

21

So make sure you undertsand joint probability, and how joint
probabilities are expressed as conditional probabiltiy tables, or CPTs…

22

…and how that applies to Bayesian netsworks. Bayesian Belief
Networks basically took up three lectures, because reasoning under
probabilistic or uncertain conditions is a core part of artificial intelligence
as applied to a huge variety of real world problems.

23

24

So given some examples of a Bayesian network, can you reason about
probabilistic statements?

25

Bayes’ nets can be arbitrarily complex, although obviously the
complexity of what you can reason over during an exam time is limited.
However, things like understanding independence makes it much more
feasible.

26

So make sure you really understand how a BBN works. A common
question I might ask is, given a set of factors in the world, draw a BN
and justify each element of it—that exact question may not appear, but
that level of understanding of where BNs come from is necessary.

27

And again, independence really matters for keeping reasoning tractable.
So here are some statements pertaining to independence—if these are
true, A and G are independent.

So remember this network? We did some examples of reasoning over
it, and this is the kind of thing you should be able to answer questions
about—everything from independence, to the probability of a statement
of probability like “What is the probability of A given not-E”.

28

Here’s another way of writing the smart/studied/prepared problem
case, but this time as a BN and with associated values. Can you work
out what this BN says and how to answer questions about it?

29

From Bayes’ nets we went on to reasoning over time and reasoning
over uncertain observations. And one of the core ideas here that you
should hang onto is the idea that the world is split into timesteps, or a
series of sequential states where at each step we have evidence about
the state of the world (which we call observations), and hidden variables
where we don’t know their state, but can reason about it based on the
evidence we do have. And this enables a whole suite of capabiltiies.

31

So here’s an example of what I mean when I say you might need to be
able to formulate a problem. And we did formulate this exact problem in
class, as a Markov chain.

32

And it looks roughly like this. And make sure you understand why CPTs
don‘t add up to one as written. It‘s just because we‘re simplifying what
we write down, because we know they have to add up to one. So here
are the full explanations of the BN shown:

Full matrix for R
0.9 0.1
0.2 0.8

if it’s raining, the probability of carrying an umbrella given that value of
rain is .9
if it’s NOT raining, the probability of carrying an umbrella given that
value of rain is .1

if it’s raining, the probability of NOT carrying an umbrella given that
value of rain is .2
if it’s NOT raining, the probability of NOT carrying an umbrella given that
value of rain is .8

33

But in order to make meaningful choices, we need to take into account
that what exactly we need (or want) is probably not fixed; instead it is
more complex. So this leads us into utility, and the whole question of
decision theory, which describes how a so-called rational agent should
make decisions. And one thing to remember about utility proper is that it
is a function over states the world can be in, not over actions or agents
or anything else.

34

And to reason about the utility of states as a search tree, we can
express the possible states an agent can reach as nodes on a tree
(which is not new), and associate those nodes with the actions that get
us there, the probability of a set of possible outcomes, the utility of the
eventual states, and the costs of taking actions. And that lets us make
decisions about what actions to take, based on the maximum expected
utility.

35

Game theory also has a few ways of describing states in the world as it
pertains to two or more players’ preferences. And the two big ones we
talked about are joint optimality and equilbria. Pareto optimality is one
way in which the world can be ’optimal’ given the combined needs of
two players—it’s a state where there is nothing state that represents an
improvement for all players; that is, some other node that everyone
would agree to move to because it increases that player’s utility.

36

37
5

Whereas an equilibrium is a state where no player is willing to be the first to
change their strategy, because they will not benefit from unilaterally changing,
once they have chosen a strategy. And you should be able to identify Nash
equilibria and Pareto-optimal states, but you should also be able to use those to
justify answer to questions about “what strategy should player X actually use?”

Expect the problems on the exam to be similar in scope to those from
the homeworks, but remember the homeworks only sample from the
space; everything we’ve covered in class could appear. And please use
the lecture slides as a resource for higher-level, conceptual
understanding of the material, while the book goes into much more
depth.

38

