
Information Gain for Splitting a Decision Tree 
 
For some dataset, our goal is to get to the point where all the leaves are the same—that is, we can 
say that things at that leaf node belong to a certain class. Here’s an example we did in class, 
which uses the attributes Bipedal, Feathers, and Flies to classify whether something is a Bird. 
Each time we split on an attribute, we end up with a subset of the data on one side of the split: 
 
Examples 
(training 
data) 

Attributes 
Outcome 

Bipedal Flies Feathers 

Sparrow Y Y Y B 
 Monkey Y N N M 
Ostrich Y N Y B 
Pangolin N N N M 
Bat Y Y N M 
Elephant N N N M 
Chickadee N Y Y B 
 
But this is a silly tree, because we could have just split on Feathers. More specifically, our goal is 
to find the attribute that, when we split on it, leads to subsets of the data that are most 
homogeneous or most pure. Splitting on Feathers would give us two subsets of the data, each of 
which is perfectly homogeneous—birds on one side, not-birds on the other. 
 
So given a set of attributes, how do we work out the “best” split (the one that leads to the purest 
subsets of the data)? For that, we need some formal measure of homogeneity.  
 
Entropy 
 
Entropy can be used to characterize the (im)purity of an arbitrary collection of examples. The 
lower the entropy, the higher the homogeneity is. (For how this relates to the concept of 
information, see the lecture; for now, we’re going to focus on how to calculate it.) What we want 
is a split of the data that is as pure as possible, so we’re going to calculate, for any given split, 
how much it changes the entropy of the overall system. Our goal is to progressively reduce the 
total entropy by subdividing the data into classes. 
 
The entropy of a dataset with n classes has to do with the proportion of the data in each 
subclass—that is, the probability of randomly picking a member of that class, pn. That entropy1 is 
defined as: 
 

I = -(p1*log2(p1) + p2*log2(p2) + .. + pn*log2(pn)) 
 
This will give us a value of entropy that ranges from 0 (a perfectly homogenous dataset) to 1 (a 
completely impure dataset). Let’s see that from some examples. 

 
1 We use I for entropy here. Sometimes people use S, sometimes E. 

Bipedal? 
sparrow, 
monkey, 
ostrich,  
bat 

chickadee, 
pangolin, 
elephant Y N 

Flies? 

Y N chickadee 

B ¬B 

pangolin, 
elephant 

Feathers 

Y N sparrow 

B ¬B 

monkey, 
ostrich, 

bat 



Consider the entropy of a dataset that’s split into halves, exactly half one class and half another. 
This is as impure as a class can get, so we expect the highest possible entropy: 
 
 P = (0.5, 0.5); I(P) = -(0.5 * log2(0.5) + (0.5 * log2(0.5)) = 1 
 
Yep, that’s bad. However, consider a dataset that’s 99% one class and 1% another, that is to say, 
an almost pure dataset: 
 

P = (0.99, 0.01); I(P) = -(0.99 * log2(0.99) + (0.01 * log2(0.01)) = 0.08 
 
That second one is obviously what we want to split our dataset on—the lower entropy reflects 
the fact that we’re almost to the point where we’ve gotten to the “pure” classes we need at the 
leaf nodes of our decision tree. 
 
We can do the same thing but make it a little more concrete. Let’s say we have a dataset that has 
9 samples from one class, and 5 samples from another. What’s the entropy of that dataset? 
 
 Entropy([9+, 5-]) = -(9/14 * log2(9/14) + (5/14 * log2(5/14)) 
         = -(0.64 * log2(0.64) + (0.357 * log2(0.357)) = 0.940 
 
(You can see the slides for more examples.)  
 
So now we can measure the purity of a set of data points that belong to classes. How do we turn 
that into a decision on what attribute to split a tree on? 
 
Information Gain 
 
Remember that we’re trying to progressively reduce the entropy of the whole system, so for any 
possible split, what we care about is the reduction in entropy before and after we split the data. 
To do this, we calculate the information gain. This is a four-step process: 
 

1. Calculate the entropy before the split. 
2. Calculate the entropy of each branch. 
3. Combine branch entropies, weighting each by how many data points that branch covers. 
4. Subtract the combined entropy of the branches from the original. 

 
So if we split the data intro three branches, we’ll calculate entropy four times: once for the 
original dataset S, and once each for its children S1, S2, and S3. We’ll then combine the entropies 
of S1, S2, and S3, taking into account how much data is in each, and subtract that combined value 
from S. 
 
Formally, some attribute A divides the training set S into subsets S1, … , Sv according to their 
values for A, where A has v distinct values. (So for the restaurants dataset, if we split on Type, 
we’ll split into four subsets: French, Italian, Thai, and Burger.) 
 
 



We can then define the information gain of splitting S on some attribute A as: 
 

  
 
Where |Sv| and |S| are the cardinality of those sets, so each subset is weighted by the proportion 
of the data it contains. 
 
This is much easier to follow with an example. 
 
Information Gain Example2 
 
Consider a dataset S with ten items, split evenly into two classes: S = ••••••••••. We’ll say we’re 
trying to classify things into blue and not-blue. Let’s say we’re considering splitting on some 
some attribute A that gives us the following split: S1 = ••••, S2 = ••••••. Let’s follow the steps 
given above: 
 
First we calculate the entropy before the split, I(S): 
 

I(••••••••••) = 1 
 
Then we calculate the entropy of each branch: 
 
 I1(••••) = 0 (pure) 

I2(••••••) = (⅙ log2(⅙) + ⅚ log2(⅚)) = 0.65 
 
Then we calculate the entropy of the total split by weighting each branch’s entropy by how many 
data points that branch covers: 
 

Isplit = (0.4∗0) + (0.6∗0.65) = 0.39 
 
Then finally we subtract Isplit from I: 
 
 1 - 0.39 = 0.61 
 
And that’s it. To build a decision tree, at every step we calculate the possible information gain of 
every attribute, split on the attribute that gives the highest information gain (that is, the greatest 
decrease in entropy), and—with luck!—we end up with a compact, expressive tree. 

 
2 Example from victorzhou.com/blog/information-gain/. 
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