
CMSC 671 (Principles of AI)

Homework 1: AI, Agents, Search I

Turnin:	Blackboard.	
Submit:	 •	 Parts	I-IV	together	as	a	single	PDF	file	named	yourlastname_hw1.pdf.	

• Part	V	as	a	single	python	file	named	yourlastname_hw1.py.	
Notes:		 •		 These	are	individual	assignments,	not	group	work.	

•				Please	clearly	delineate	individual	sections	of	the	homework.	
	
	
PART	I.		BEING	INTELLIGENT	(40	PTS)	
Reading:	Read	Chapter	27.1	and	27.2	 in	our	 textbook.	You	will	 likely	need	 to	 look	 for	additional	
information	about	artificial	 intelligence	 tasks,	 successes,	 and	 failures	over	 time.	Make	sure	 to	 list	
these	additional	sources	in	a	bibliography.
	
Assignment:	 Answer	 all	 of	 the	 following	 in	 a	 single	 short	 essay	 (roughly	 500-750	 words,	 not	
counting	 your	 bibliography).	 Because	 this	 is	 an	 essay,	 all	 parts	 of	 your	 answer	 must	 form	 a	
consistent,	coherent	story.	Do	not	give	bullet	points,	and	do	not	give	separate	essays.	

• Do	you	think	an	artificial	agent	can	be	‘intelligent’?	Why	or	why	not?	
o Discuss	 your	 answer	 in	 terms	 of	 the	 traditional	 arguments	 against	 thinking	

machines—do	you	agree	with	some	of	those	arguments?	Why	or	why	not?	
• Consider	 the	 things	AI	 can	 currently	do,	 and	 some	outstanding	problems/tasks	AI	 cannot	

currently	handle.		
o What	is	the	most	useful	thing	AI	can	currently	do?	What	are	you	most	excited	about	

that	AI	can’t	currently	do	but	should	be	able	to	in	future?	
o What	tasks	do	you	think	will	be	hardest	for	machines	to	accomplish,	and	why?	Do	you	

think	an	AI	will	eventually	be	able	to	accomplish	it?	Why	or	why	not?	
	
	
PART	II.		AGENTS	(15	PTS)	

Fill	out	the	following	PEAS	information	for	agents	doing	these	tasks.	This	is	a	design	question—how	
would	you	design	this	agent?	What	would	you	use	from	the	environment?	What	would	you	consider	
a	‘good’	performance?	(Create	your	own	table	of	responses.)

System	 Performance	
measure	 Environment	 Actuators	 Sensors	

Example:	Robot	Soccer	
Player	

Winning	games,	
scoring	goals	for	
team

Field,	ball,	
teammates,	other	
team,	own	body	

Kickers	(legs),	
movement	(legs	
or	wheels)	

Camera,	touch	
sensors,	wheel	
encoders	

(a)	Stock	market	agent	
(b)	Luggage	robot	
navigating	an	airport

(c)	Minesweeper-	
playing	agent

(d)	Adaptive	thermostat		

Figure	1:	A	simple	search	tree	

S	

A	

C	 E	

B	

D	

H	G	F	

2	 1	 4	

1	

6	 9	

3	

4	

1	

	

	
PART	III.		SEARCH	ALGORITHMS	(20	PTS)	
Description:	For	the	tree	in	Figure	1,	S	is	the	start	state,	and	any	node	
with	a	double	line	is	a	goal	state.	Actual	arc	costs	are	given	on	the	arcs	
(in	blue).	Table	1	gives	the	value	of	a	heuristic	function	for	each	node.		

1) For	each	of	 the	 following	algorithms,	at	each	timestep,	please	give	
the	current	node	 plus	all	nodes	on	the	 frontier	 in	order,	using	
the	same	notation	as	we	used	in	class.	

a) Depth-first		

	

	

b) Breadth-first	search	

	

	

c) Uniform-cost	search	

	

	

d) A*	search	

	

	

	

	

	

	

	
	
	
	

Table	1:	Values	of	
some	heuristic	
function	applied	
to	the	nodes	of	
that	tree.	

h(S) = 2	
h(A) = 3	
h(B) = 5	
h(C) = ∞	
h(D) = 4	
h(E) = 9	
h(F) = 0	
h(H) = 0	
h(G) = ∞	

	

	
PART	IV.		NAVIGATING	(SEARCH	SPACES	AND	STATES)	(35		PTS)	

The General Idea
Consider	navigating	an	n	x	m	space	(3	x	3	example	shown	to	
the	 right).	There	are	 three	kinds	of	 terrain1,	 each	of	which	
takes	 some	 amount	 of	 effort	 to	 traverse:	 entering	 a	 “path”	
cell	costs	10	calories,	entering	a	“sand”	cell	costs	50	calories,	
and	 entering	 a	 “mountain”	 cell	 costs	 200	 calories.	 In	 this	
example,	 your	 agent	 is	 at	 (0,1),	 as	 shown,	 and	 is	 trying	 to	
reach	 square	 (2,1)	 (marked	 ‘!’)	 via	 the	 path	 that	 costs	 the	
fewest	possible	calories.	The	agent	cannot	move	diagonally.	

Assignment:	 Answer	 the	 following	 questions	 about	
puzzles	of	this	kind.	

	
2) Represent	this	as	a	search	problem.	(10	pts)	

a) Describe	the	state	space.	(That	is,	explain	what	information	is	needed	to	describe	any	state	
an	agent	may	be	in	while	solving	such	a	puzzle.)	

b) Provide	a	list	of	actions	(operators),	including	constraints.	

c) Draw	the	undirected	search	graph	representing	the	complete	space	of	the	example	puzzle.	
Mark	the	start	and	goal	states.	

d) What	is	the	goal	test	for	the	example	puzzle?	

3) What	is	the	(worst-case)	branching	factor	b	for	an	n	x	n	puzzle?	(5	pts)	

4) How	many	unique,	legal,	reachable	states	are	there	in	this	search	space?	(5	pts)	

5) If	you	were	using	heuristic	search:	(15	pts)	

a) If	the	grid	is	n	by	n,	what	is	the	(maximum)	size	of	the	state	space?	Justify	your	answer.	

b) Describe	an	admissible	heuristic	h(n)	for	this	problem.	

c) Explain	how	you	know	it	is	admissible.	

d) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	completeness	
of	the	search?	Why	or	why	not?	

e) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	optimality	of	
the	search?	Why	or	why	not?	

	

	
1	Image	credits:	pixabay.com/en/road-crossing-crosswalk-street-304283,	pixabay.com/en/sand-beach-island-palm-sun-
tree-304525,	pixabay.com/en/mountain-peak-snow-summit-304054	

	

	
PART	V.		PATH-FINDING	(40	PTS)	

The General Idea
Write	a	program	in	Python	to	read	in	and	solve	puzzles	of	the	
type	 described	 above.	 The	 puzzle	may	 be	 of	 any	 size	 and	will	
have	a	random	selection	of	path,	sand,	and	mountain	cells.	The	
goal	of	the	puzzle	is	to	move	your	agent	from	a	starting	cell	to	a	
goal	cell.	S	and	G	may	be	any	cell.	The	agent’s	task	is	to	find	the	
lowest-cost	path	from	S	to	G.	

Some	puzzles	of	this	form	will	have	multiple	optimal	solutions.	

Details
You	may	assume:	

• The	size	of	the	square	is	nonzero.	
• The	agent	may	only	move	one	square	at	a	time	(not	diagonally).	
• The	array	is	always	0-indexed.	
• Tuples	are	always	in	(x,y)	order.	(horizontal,	vertical/row,	column)	

You	may	not	assume:	
• The	agent	is	unable	to	backtrack.	(The	search	may	and	probably	will,	but	the	agent	can	too!)	
• Start	or	goal	states	will	always	be	along	an	edge.	(They	won’t!)	
• The	start	state	will	be	different	from	the	goal	state.	(Usually	it	will,	but	not	always!)	

Assignment:	Write	 a	 function	 called	 solve	which	 takes	 a	matrix	 (the	 problem)	 and	 two	 tuples	
(start	and	goal),	and	tries	to	find	a	path	from	the	start	state	to	the	goal	state	that	is	optimal	(lowest	
possible	cost).	Our	two	examples	would	be	passed	in	as	follows:	
 >>> solve((1,0), (2,1), [[p,p,p], [p,m,p], [s,s,s]])

 >>> solve((2,2), (0,0), [[m,m,m,s], [m,m,m,s], [m,m,m,s], [p,p,p,p]])

Your	 solver	 should	 take	 these	 values,	 and	return	 (not	 print)	 a	 string	 containing	 a	 list	 of	moves.	
Moves	should	be	represented	by	the	capital	letters	N,S,E,W	for	north,	south,	east,	and	west	moves.	
The	optimal	solution	to	the	3 x	3	board	would	be	returned	as	“NEESS”.	Please	don’t	print	anything	
inside	the	function;	everything	must	be	in	the	return	value.	

Implement	your	solution	to	this	problem	as:	A*	search.	Use	the	heuristic	you	gave	in	Part	I.	For	now,	
you	may	not	 use	 any	 of	 the	 optimizations	we	 covered	 in	 class	 (e.g.,	 keeping	 track	 of	 previously	
expanded	nodes)—this	is	pure	A*.	

