
Python Control
of Flow

if Statements
if x == 3:

 print “X equals 3.”
elif x == 2:

 print “X equals 2.”
else:

 print “X equals something else.”
print “This is outside the ‘if’.”

Be careful! The keyword if is also used in the
syntax of filtered list comprehensions. Note:
•  Use of indentation for blocks
•  Colon (:) after boolean expression

Another if form
• An alternative if form returns a value
• This can simplify your code
• Example:

•  return x+1 if x < 0 else x -1
•  return ‘hold’ if delta==0 else sell if delta < 0

else ‘buy’
• Added in Python v 2.6 (?)

while Loops
>>> x = 3
>>> while x < 5:
 print x, "still in the loop"
 x = x + 1
3 still in the loop
4 still in the loop
>>> x = 6
>>> while x < 5:
 print x, "still in the loop"

>>>

break and continue
• You can use the keyword break inside a

loop to leave the while loop entirely.

• You can use the keyword continue
inside a loop to stop processing the
current iteration of the loop and to
immediately go on to the next one.

assert
• An assert statement will check to make

sure that something is true during the
course of a program.
•  If the condition if false, the program stops

— (more accurately: the program
throws an exception)

 assert(number_of_players < 5)

For Loops

For Loops / List Comprehensions
• Python’s list comprehensions provide a

natural idiom that usually requires a for-loop in
other programming languages.
• As a result, Python code uses many fewer

for-loops
• Nevertheless, it’s important to learn about

for-loops.

• Take care! The keywords for and in are also
used in the syntax of list comprehensions, but
this is a totally different construction.

For Loops 1

• A for-loop steps through each of the items in a
collection type, or any other type of object
which is “iterable”
for <item> in <collection>:
<statements>

• If <collection> is a list or a tuple, then the loop
steps through each element of the sequence

• If <collection> is a string, then the loop steps
through each character of the string
for someChar in “Hello World”:
 print someChar

For Loops 2
for <item> in <collection>:
<statements>

• <item> can be more than a single variable name
• When the <collection> elements are themselves

sequences, then <item> can match the structure
of the elements.

• This multiple assignment can make it easier to
access the individual parts of each element
for (x,y) in [(a,1),(b,2),(c,3),(d,4)]:
 print x

For loops & the range() function
• Since a variable often ranges over some

sequence of numbers, the range() function
returns a list of numbers from 0 up to but not
including the number we pass to it.

• range(5) returns [0,1,2,3,4]
• So we could say:
for x in range(5):
 print x

• (There are more complex forms of range() that
provide richer functionality…)

For Loops and Dictionaries
>>> ages = { "Sam" : 4, "Mary" : 3, "Bill" : 2 }
>>> ages
{'Bill': 2, 'Mary': 3, 'Sam': 4}
>>> for name in ages.keys():
 print name, ages[name]

Bill 2
Mary 3
Sam 4
>>>

