
List
Comprehensions

Python’s higher-order
functions

• Python supports higher-order functions that
operate on lists similar to Scheme’s
>>> def square(x):

 return x*x

>>> def even(x):
 return 0 == x % 2

>>> map(square, range(10,20))

[100, 121, 144, 169, 196, 225, 256, 289, 324, 361]

>>> filter(even, range(10,20))

[10, 12, 14, 16, 18]

>>> map(square, filter(even, range(10,20)))

[100, 144, 196, 256, 324]

• But many Python programmers prefer to use
list comprehensions, instead

List Comprehensions
• A list comprehension is a programming

language construct for creating a list based on
existing lists
•  Haskell, Erlang, Scala and Python have them

• Why “comprehension”? The term is borrowed
from math’s set comprehension notation for
defining sets in terms of other sets

• A powerful and popular feature in Python
•  Generate a new list by applying a function to every

member of an original list
• Python’s notation:

[expression for name in list]

List Comprehensions
• The syntax of a list comprehension is

somewhat tricky

[x-10 for x in grades if x>0]

• Syntax suggests that of a for-loop, an in
operation, or an if statement
• All three of these keywords (‘for’, ‘in’,

and ‘if’) are also used in the syntax of
forms of list comprehensions

[expression for name in list]

List Comprehensions

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]
[6, 12, 4, 14]

[expression for name in list]

•  Where expression is some calculation or operation
acting upon the variable name.

•  For each member of the list, the list comprehension
1.  sets name equal to that member,
2.  calculates a new value using expression,

•  It then collects these new values into a list which is
the return value of the list comprehension.

Note: Non-standard
colors on next few
slides clarify the list
comprehension syntax.

[expression for name in list]

List Comprehensions

• If list contains elements of different types, then
expression must operate correctly on the types
of all of list members.

• If the elements of list are other containers, then
name can consist of a container of names
matching the type and “shape” of the list
members.

>>> li = [(‘a’ , 1), (‘b’, 2), (‘c’, 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

• Containers are objects that contain references
to other objects (e.g., lists, types, dictionaries)

[expression for name in list]

• expression can also contain user-defined
functions.

>>> def subtract(a, b):
 return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]
>>> [subtract(y, x) for (x, y) in oplist]
[-3, 6, 0]

List Comprehensions

[expression for name in list]

Syntactic sugar
List comprehensions can be viewed as
syntactic sugar for a typical higher-order
functions
[expression for name in list]
map(lambda name: expression, list)

[2*x+1 for x in [10, 20, 30]]
map(lambda x: 2*x+1, [10, 20, 30])

Filtered List Comprehension
• Filter determines whether expression is

performed on each member of the list.

• For each element of list, checks if it satisfies the
filter condition.

• If the filter condition returns False, that element
is omitted from the list before the list
comprehension is evaluated.

[expression for name in list if filter]

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem*2 for elem in li if elem > 4]
[12, 14, 18]

• Only 6, 7, and 9 satisfy the filter condition
• So, only 12, 14, and 18 are produce.

Filtered List Comprehension

[expression for name in list if filter]

More syntactic sugar
Including an if clause begins to show the
benefits of the sweetened form

[expression for name in list if filt]
map(lambda name . expression, filter(filt, list))

[2*x+1 for x in [10, 20, 30] if x > 0]
map(lambda x: 2*x+1,
 filter(lambda x: x > 0 , [10, 20, 30])

• Since list comprehensions take a list as input
and produce a list as output, they are easily
nested

>>> li = [3, 2, 4, 1]
>>> [elem*2 for elem in
 [item+1 for item in li]]

[8, 6, 10, 4]

• The inner comprehension produces: [4, 3, 5, 2]
• So, the outer one produces: [8, 6, 10, 4]

Nested List Comprehensions

[expression for name in list]

Syntactic sugar
[e1 for n1 in [e1 for n1 list]]
map(lambda n1: e1,
 map(lambda n2: e2, list))

[2*x+1 for x in [y*y for y in [10, 20, 30]]]
map(lambda x: 2*x+1,
 map(lambda y: y*y, [10, 20, 30]))

