
Python I
Some material adapted
from Upenn cmpe391
slides and other sources

Overview

•  Names & Assignment
•  Data types
•  Sequences types: Lists, Tuples, and

Strings
•  Mutability
•  Understanding Reference Semantics in

Python

A Code Sample (in IDLE)

 x = 34 - 23 # A comment.
 y = “Hello” # Another one.

 z = 3.45

 if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

 print x

 print y

Enough to Understand the Code

•  Indentation matters to meaning the code
•  Block structure indicated by indentation

•  The first assignment to a variable creates it
•  Dynamic typing: no declarations, names don’t have

types, objects do
•  Assignment uses = and comparison uses ==
•  For numbers + - * / % are as expected.

•  Use of + for string concatenation.
•  Use of % for string formatting (like printf in C)

•  Logical operators are words (and,or,not)
not symbols

•  The basic printing command is print

Basic Datatypes
•  Integers (default for numbers)

z = 5 / 2 # Answer 2, integer division

•  Floats
x = 3.456

•  Strings
•  Can use ”…" or ’…’ to specify, "foo" == 'foo’
•  Unmatched can occur within the string

“John’s” or ‘John said “foo!”.’
•  Use triple double-quotes for multi-line strings or

strings than contain both ‘ and “ inside of them:
“““a‘b“c”””

Whitespace
Whitespace is meaningful in Python, especially
indentation and placement of newlines
• Use a newline to end a line of code

Use \ when must go to next line prematurely

• No braces {} to mark blocks of code, use
consistent indentation instead

•  First line with less indentation is outside of the block
•  First line with more indentation starts a nested block

• Colons start of a new block in many constructs,
e.g. function definitions, then clauses

Comments
• Start comments with #, rest of line is ignored
• Can include a “documentation string” as the

first line of a new function or class you define
• Development environments, debugger, and

other tools use it: it’s good style to include one

def fact(n):

 “““fact(n) assumes n is a positive
integer and returns facorial of n.”””
assert(n>0)

 return 1 if n==1 else n*fact(n-1)

Assignment
•  Binding a variable in Python means setting a

name to hold a reference to some object
•  Assignment creates references, not copies

•  Names in Python don’t have an intrinsic type,
objects have types

Python determines type of the reference auto-
matically based on what data is assigned to it

•  You create a name the first time it appears on the
left side of an assignment expression:
 x = 3

•  A reference is deleted via garbage collection after
any names bound to it have passed out of scope

•  Python uses reference semantics (more later)

Naming Rules
•  Names are case sensitive and cannot start

with a number. They can contain letters,
numbers, and underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

•  There are some reserved words:
 and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, if,
import, in, is, lambda, not, or,
pass, print, raise, return, try,
while

Naming conventions
The Python community has these
recommended naming conventions
• joined_lower for functions, methods and,

attributes
• joined_lower or ALL_CAPS for constants
• StudlyCaps for classes
• camelCase only to conform to pre-existing

conventions
• Attributes: interface, _internal, __private

Python PEPs
•  Where do such conventions come from?

•  The community of users
•  Codified in PEPs

•  Python's development is done via the Python
Enhancement Proposal (PEP) process

•  PEP: a standardized design document, e.g.
proposals, descriptions, design rationales,
and explanations for language features
•  Similar to IETF RFCs
•  See the PEP index

•  PEP 8: Style Guide for Python Code

Assignment
• You can assign to multiple names at the

same time
>>> x, y = 2, 3
>>> x
2
>>> y
3

• This makes it easy to swap values
>>> x, y = y, x

• Assignments can be chained
>>> a = b = x = 2

Accessing Non-Existent Name

Accessing a name before it’s been properly
created (by placing it on the left side of an
assignment), raises an error

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Python’s data types

Everything is an object
• Python data is represented by objects or by

relations between objects
• Every object has an identity, a type and a value
• Identity never changes once created Location

or address in memory
• Type (e.g., integer, list) is unchangeable and

determines the possible values it could have and
operations that can be applied

• Value of some objects is fixed (e.g., an integer)
and can change for others (e.g., list)

Python’s built-in type hierarchy

Sequence types:
Tuples, Lists, and

Strings

Sequence Types
• Sequences are containers that hold objects
• Finite, ordered, indexed by integers
• Tuple: (1, “a”, [100], “foo”)!
• An immutable ordered sequence of items
•  Items can be of mixed types, including collection types

• Strings: “foo bar”!
• An immutable ordered sequence of chars
•  Conceptually very much like a tuple

• List: [“one”, “two”, 3]!
• A Mutable ordered sequence of items of mixed types

Similar Syntax
•  All three sequence types (tuples,

strings, and lists) share much of the
same syntax and functionality.

•  Key difference:
•  Tuples and strings are immutable
•  Lists are mutable

•  The operations shown in this section
can be applied to all sequence types
• most examples will just show the

operation performed on one

Sequence Types 1

•  Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

•  Define lists are using square brackets and
commas
>>> li = [“abc”, 34, 4.34, 23]!

•  Define strings using quotes (“, ‘, or “””).
>>> st = “Hello World”!
>>> st = ‘Hello World’!
>>> st = “””This is a multi-line!
string that uses triple quotes.”””!

Sequence Types 2
•  Access individual members of a tuple, list, or

string using square bracket “array” notation
•  Note that all are 0 based…

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)!
>>> tu[1] # Second item in the tuple.!
 ‘abc’!
!

>>> li = [“abc”, 34, 4.34, 23] !
>>> li[1] # Second item in the list.!
 34!
!

>>> st = “Hello World”!
>>> st[1] # Second character in string.!
 ‘e’!

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0
 >>> t[1]
‘abc’

Negative index: count from right, starting with –1
>>> t[-3]

4.56

Slicing: Return Copy of a Subset

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Returns copy of container with subset of original
members. Start copying at first index, and stop
copying before the second index
>>> t[1:4]

(‘abc’, 4.56, (2,3))

 You can also use negative indices
>>> t[1:-1]

(‘abc’, 4.56, (2,3))

Slicing: Return Copy of a Subset

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Omit first index to make a copy starting from the
beginning of container

 >>> t[:2]

 (23, ‘abc’)

Omit second index to make a copy starting at
1st index and going to end of the container

 >>> t[2:]

 (4.56, (2,3), ‘def’)

Copying the Whole Sequence

•  [:] makes a copy of an entire sequence
 >>> t[:] !
!(23, ‘abc’, 4.56, (2,3), ‘def’)!
•  Note the difference between these two lines

for mutable sequences
>>> l2 = l1 # Both refer to same ref,
 # changing one affects both

>>> l2 = l1[:] # Independent copies, two
refs

Copying a Sequence
>>> l1 = l2 = ['a','b','c']
>>> l1
['a', 'b', 'c']
>>> l2
['a', 'b', 'c']
>>> l1[1] = 'x'
>>> l1
['a', 'x', 'c']
>>> l2
['a', 'x', 'c']
>>>

>>> l1 = ['a','b','c']
>>> l2 = l1[:]
>>> l1
['a', 'b', 'c']
>>> l2
['a', 'b', 'c']
>>> l1[1] = 'x'
>>> l1
['a', 'x', 'c']
>>> l2
['a', 'b', 'c']
>>>

The ‘in’ Operator
•  Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

•  For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

•  Careful: the in keyword is also used in the syntax of
for loops and list comprehensions

+ Operator is Concatenation
•  The + operator produces a new tuple, list, or

string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 6)!
 (1, 2, 3, 4, 5, 6)!
!
>>> [1, 2, 3] + [4, 5, 6]!
 [1, 2, 3, 4, 5, 6]!
!
>>> “Hello” + “ “ + “World”!
 ‘Hello World’!

The * Operator
•  The * operator produces a new tuple, list, or

string that “repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

Mutability:
Tuples vs. Lists

Lists are mutable

>>> li = [‘abc’, 23, 4.34, 23]!
>>> li[1] = 45 !
>>> li  
[‘abc’, 45, 4.34, 23]!

•  We can change lists in place.
•  Name li still points to the same

memory reference when we’re done.

Tuples are immutable
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)!
>>> t[2] = 3.14!

Traceback (most recent call last):

 File "<pyshell#75>", line 1, in -toplevel-

 tu[2] = 3.14
TypeError: object doesn't support item assignment

• You can’t change a tuple.
• You can make a fresh tuple and assign its
reference to a previously used name.
 >>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

• The immutability of tuples means they’re faster
than lists

Operations on Lists Only

>>> li = [1, 11, 3, 4, 5]!
!
>>> li.append(‘a’) !# Note the method syntax!
>>> li!
[1, 11, 3, 4, 5, ‘a’]!
!
>>> li.insert(2, ‘i’)!
>>>li!
[1, 11, ‘i’, 3, 4, 5, ‘a’]!

The extend method vs +
• + creates a fresh list with a new memory ref
• extend operates on list li in place.

>>> li.extend([9, 8, 7])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

• Potentially confusing:
•  extend takes a list as an argument.
•  append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10,

11, 12]]

Operations on Lists Only
Lists have many methods, including index, count,
remove, reverse, sort
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]!
>>> li.index(‘b’) # index of 1st occurrence!

1!
>>> li.count(‘b’) # number of occurrences!
2!
>>> li.remove(‘b’) # remove 1st occurrence!
>>> li!
 [‘a’, ‘c’, ‘b’]!

Operations on Lists Only
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li
 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(some_function)
 # sort in place using user-defined comparison

Tuple details
• The comma is the tuple creation operator, not parens

>>> 1,
(1,)

• Python shows parens for clarity (best practice)
>>> (1,)
(1,)

• Don't forget the comma!
>>> (1)
1

• Trailing comma only required for singletons others
• Empty tuples have a special syntactic form

>>> ()
()
>>> tuple()
()

Summary: Tuples vs. Lists
•  Lists slower but more powerful than tuples

•  Lists can be modified, and they have lots of
handy operations and mehtods

•  Tuples are immutable and have fewer
features

•  To convert between tuples and lists use the
list() and tuple() functions:
li = list(tu)

tu = tuple(li)

