Pyth

Some material adapted
from Upenn cmpe391
slides and other sources

Overview

* Names & Assignment
e Data types

e Sequences types: Lists, Tuples, and
Strings
* Mutability

* Understanding Reference Semantics in
Python

A Code Sample (in IDLE)

X = 34 - 23 # A comment.
y = “Hello” # Another one.
z = 3.45
1t z == 3.45 or y == "Hello":
X =X + 1
y =y + World” # String concat.
print

< X |

print

Enough to Understand the Code

Indentation matters to meaning the code
* Block structure indicated by indentation

The first assignment to a variable creates it

« Dynamic typing: no declarations, names don’ t have
types, objects do

Assignment uses = and comparison uses ==
For numbers + - */ % are as expected.

» Use of + for string concatenation.

 Use of % for string formatting (like printf in C)

Logical operators are words (and, or,not)
not symbols

The basic printing command is print

Basic Datatypes

* Integers (default for numbers)

z=5/2 # Answer 2, 1nteger division
* Floats

X = 3.4560
e Strings

« Canuse "..."or " ...” to specify, "foo" == 'foo’

* Unmatched can occur within the string
“John’s” or “‘John said “foo!”.’

» Use triple double-quotes for multi-line strings or
strings than contain both ‘ and “ inside of them:

6 66 46 ‘b“ 277

Whitespace

Whitespace is meaningful in Python, especially
indentation and placement of newlines

*Use a newline to end a line of code
Use \ when must go to next line prematurely

*No braces {} to mark blocks of code, use
consistent indentation instead

* First line with /ess indentation is outside of the block
* First line with more indentation starts a nested block

*Colons start of a new block in many constructs,
e.g. function definitions, then clauses

Comments

e Start comments with #, rest of line is ignored

* Can include a “documentation string” as the
first line of a new function or class you define

* Development environments, debugger, and
other tools use it: it' s good style to include one

def fact (n):

111

fact (n) assumes n 1s a positive
integer and returns facorial of n.
assert (n>0)

”7”7”

return 1 1f n==1 else n*fact(n-1)

Assignment

Binding a variable in Python means setting a
name to hold a reference to some object

« Assignment creates references, not copies

Names in Python don’t have an intrinsic type,
objects have types

Python determines type of the reference auto-
matically based on what data is assigned to it

You create a name the first time it appears on the
left side of an assignment expression:
X = 3

A reference is deleted via garbage collection after
any names bound to it have passed out of scope

Python uses reference semantics (more later)

Naming Rules

e Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.

bob Bob bob 2 bob bob 2 BoB

e There are some reserved words:

and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, 1if,
import, in, 1s, lambda, not, or,
pass, print, raise, return, try,
while

Naming conventions

The Python community has these
recommended naming conventions

* joined_lower for functions, methods and,
attributes

* joined_lower or ALL_CAPS for constants
* StudlyCaps for classes

 camelCase only to conform to pre-existing
conventions

e Attributes: interface, internal, private

Python PEPs

Where do such conventions come from?

 The community of users
» Codified in PEPs

Python's development is done via the Python
Enhancement Proposal (PEP) process

PEP: a standardized design document, e.g.
proposals, descriptions, design rationales,
and explanations for language features

« Similarto IETF RFCs

« See the PEP index

PEP 8: Style Guide for Python Code

Assignhment

* You can assign to multiple names at the
same time
>>> x, y = 2, 3
>>> X
2
>>> vy
3

* This makes it easy to swap values
>>> X, y =Yy, X

* Assignments can be chained
>>> a = b = x = 2

Accessing Non-Existent Name

Accessing a name before it's been properly
created (by placing it on the left side of an
assignment), raises an error

>>> y

Traceback (most recent call last):
File "<pyshell#1l6>", line 1, in -toplevel-
Y
NameError: name 'y' is not defined
>>> y = 3
>>> vy
3

Python' s data types

(7.

Everything is an object

* Python data is represented by objects or by
relations between objects

* Every object has an identity, a type and a value

* [dentity never changes once created Location
or address in memory

* Type (e.g., integer, list) is unchangeable and
determines the possible values it could have and
operations that can be applied

* Value of some objects is fixed (e.g., an integer)
and can change for others (e.g., list)

Python’ s built-in type hierarchy

(=) [
Complex

lntm’ [Immutable) [Mutable] o‘(ﬁww
Long ‘ ‘
S("ing List
Boolean
Unicode
Tuple
' Other ' Internals
Functions Module Type
Class Instance Code

Bound
Method |< File Frame
Unbound

None Traceback

Sequence types:
Tuples, Lists, and
Strings

A 3

Sequence Types

* Sequences are containers that hold objects
* Finite, ordered, indexed by integers
* Tuple: (1, “a”, [100], “foo")
 An immutable ordered sequence of items
* ltems can be of mixed types, including collection types

e Strings: “foo bar”
 An immutable ordered sequence of chars
« Conceptually very much like a tuple
eList: [“one”, *“two”, 3]
* A Mutable ordered sequence of items of mixed types

Similar Syntax

* All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

e Key difference:
* Tuples and strings are immutable
 Lists are mutable

* The operations shown in this section
can be applied to all sequence types

* most examples will just show the
operation performed on one

Sequence Types 1

* Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

* Define lists are using square brackets and
commas

>>> 1i = [“abc”, 34, 4.34, 23]
e Define strings using quotes (“, *, or “").

>>> gt = “Hello World”
>>> gt = ‘Hello World’
>>> gt = “""This 1s a multi-line

string that uses triple quotes.”””

Sequence Types 2

e Access individual members of a tuple, list, or
string using square bracket “array” notation

e Note that all are 0 based...

>>> tu = (23, '‘abc’, 4.56, (2,3), 'def’)

>>> tu[l] # Second item in the tuple.
‘abc’

>>> 11 = [“abc”, 34, 4.34, 23]

>>> 1i[1] # Second item in the list.
34

>>> st = “Hello World’

>>> st[1] # Second character in string.
lel

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with O
>>> t[1]
‘abc’

Negative index: count from right, starting with —1
>>> t[-3]

4.50

Slicing: Return Copy of a Subset

>>> t = (23, ‘abce’, 4.56, (2,3), ‘def’)

Returns copy of container with subset of original
members. Start copying at first index, and stop
copying before the second index

>>> t[1:4]
(‘abc’, 4.56, (2,3))
You can also use negative indices
>>> t[1l:-1]
(‘abc’, 4.56, (2,3))

Slicing: Return Copy of a Subset

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
Omit first index to make a copy starting from the
beginning of container

>>> t[:2]
(23, ‘abc’)

Omit second index to make a copy starting at
1st index and going to end of the container

>>> t[2:]
(4.56, (2,3), ‘def)

Copying the Whole Sequence

e [:] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.56, (2,3), '‘def’)

* Note the difference between these two lines
for mutable sequences

>>> 12 = 11 # Both refer to same ref,
changing one affects both

>>> 12 = 11[:] # Independent copies, two
refs

Copying a Sequence

>>> 1 =2 =[4a,'b",'c]
>>> |1

['a', 'b', 'c']

>>> |2

['a', 'b', 'c']

>>> [1[1] = X

>>> |1

[a, X, c]

>>> |2

[a, X, 'c]

>>>

>SS |1 — [Ial,lbl,lcl]

>>> |2 = [1[]
>>> |1

['a’, 'b", 'c']
>>> |2

[lal, Ibl, ICI]
>>> [1[1] = X'
>>> |1

[a, X, 'c]

>>> |2
[lal, Ibl, ICI]
>>>

The ‘in’ Operator

e Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 1n t
False
>>> 4 in t
True
>>> 4 not 1n t
False

e For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' 1in a
True
>>> 'cd' 1in a
True

>>> 'ac' 1in a
False
e Careful: the in keyword is also used in the syntax of
for loops and list comprehensions

+ Operator is Concatenation

* The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2
(1, 2, 3

3) + (4, 5, 6)
4, 5, 6)

-

b |

>>> [1, 2
(1, 2, 3

3] + [4, 5, 6]
4, 5, 6]

-

]

>S> uHellOn + " " + uworld"
‘Hello World’

The * Operator

* The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(1I 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3)

’

>>> “Hello” * 3
‘HelloHelloHello’

Mutability:
Tuples vs. Lists

(i
&

Lists are mutable

>>> 11 = [‘abc’, 23, 4.34, 23]
>>> 11[1] = 45
>>> 11

[‘abc’, 45, 4.34, 23]

* We can change lists in place.

* Name 1i still points to the same
memory reference when we're done.

Tuples are immutable

>>> t = (23, ‘'abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-
tul2] = 3.14

TypeError: object doesn't support item assignment

*You can’ t change a tuple.

*You can make a fresh tuple and assign its
reference to a previously used name.
>>> t = (23, ‘abce’, 3.14, (2,3), ‘def’)

* The immutability of tuples means they 're faster
than lists

Operations on Lists Only

>>> 11 = [1, 11, 3, 4, 5]

>>> li.append('a) # Note the method syntax
>>> 13

(1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i)

>>>11

1 ’

(1, 11, i, 3, 4, 5, a]

The extend method vs +

* + creates a fresh list with a new memory ref
* extend operates on list 1i Iin place.

>>> 1i.extend ([9, 8, 7])
>>> 13

[11 2/ 1 4 3/ 4/ 5/ a 14 9/ 8/ 7]

* Potentially confusing:
» extend takes a list as an argument.
« append takes a singleton as an argument.
>>> 11.append([10, 11, 12])
>>> 11

(1, 2, ‘i’, 3, 4, 5, a, 9, 8, 7, [10,
11, 127]]

Operations on Lists Only

Lists have many methods, including index, count,
remove, reverse, sort

>>> 11 = ['a’, ‘b’, ‘c’', 'b']

>>> li.index(‘'b’) # index of 1%* occurrence
1

>>> li.count(‘b’) # number of occurrences
2

>>> li.remove(‘b’) # remove 1%t occurrence
>>> 11

[laI, ICI, lbl]

Operations on Lists Only

>>> 11 = [5, 2, 6, 8]
>>> li.reverse () # reverse the list *in place*
>>> 11

[87 6/ 2/ 5]
>>> 1i.sort () # sort the list *in place*
>>> 11

(2, 5, 6, 8]

>>> li.sort (some function)
sort in place using user-defined comparison

Tuple details

* The comma is the tuple creation operator, not parens

>>> 1,
(1,)
* Python shows parens for clarity (best practice)

>>> (1))

(1,)
* Don't forget the comma!

>>>(1)
1

* Trailing comma only required for singletons others
 Empty tuples have a special syntactic form

>>>()

()

>>> tuple()

()

Summary: Tuples vs. Lists

* Lists slower but more powerful than tuples

* Lists can be modified, and they have lots of
handy operations and mehtods

e Tuples are immutable and have fewer
features

 To convert between tuples and lists use the
list() and tuple() functions:

11 = list (tu)
tu = tuple(l1)

