Bayesian Reasoning Chapter 13

Thomas Bayes, 1701-1761

1

Today's topics

- Review probability theory
- Bayesian inference
 - -From the joint distribution
 - -Using independence/factoring
 - -From sources of evidence

Sources of Uncertainty

- Uncertain **inputs** -- missing and/or noisy data
- Uncertain knowledge
 - -Multiple causes lead to multiple effects
 - -Incomplete enumeration of conditions or effects
 - –Incomplete knowledge of causality in the domain
 - -Probabilistic/stochastic effects
- Uncertain outputs
 - -Abduction and induction are inherently uncertain
 - -Default reasoning, even deductive, is uncertain
 - -Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision making with uncertainty

Rational behavior:

- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Why probabilities anyway?

Kolmogorov showed that three simple axioms lead to the rules of probability theory

- 1. All probabilities are between 0 and 1: $0 \le P(a) \le 1$
- 2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:
 P(true) = 1 ; P(false) = 0
- The probability of a disjunction is given by:

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

a

a۸

Probability theory 101

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 Boolean (like these), discrete, continuous
- Alarm=T^Burglary=T^Earthquake=F alarm ^ burglary ^ ¬earthquake
- P(Burglary) = 0.1 P(Alarm) = 0.1P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory 101

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

- **Conditional probability**: prob. P(burglary | alarm) = .47 of effect given causes
- **Computing conditional probs**: P(burglary | alarm) =
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): **normalizing** constant
- Product rule:
 - $P(a \land b) = P(a \mid b) * P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B \mid a) P(a)$ (conditioning)

- P(alarm | burglary) = .9
- $P(burglary \land alarm) / P(alarm)$ = .09/.19 = .47
- P(burglary \land alarm) = P(burglary | alarm) * P(alarm) = .47 * .19 = .09
- P(alarm) = $P(alarm \land burglary) +$ P(alarm $\land \neg$ burglary) = .09 + .1 = .19

Example: Inference from the joint

	ala	alarm ¬alarm		arm
	earthquake ¬earthquake		earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm) = α P(burglary, alarm)

= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) = α [(.01, .01) + (.08, .09)] = α [(.09, .1)]

Since P(burglary | alarm) + P(\neg burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 -$ **quizlet**: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

 $P(\neg burglary | alarm) = .1 * 5.26 = .526$

p(smart ∧	smart		¬ smart	
study ^ prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(smart ∧	smart		¬smart	
study ^ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?
- p(smart) = .432 + .16 + .048 + .16 = 0.8

p(smart ∧	S	smart		mart
study ∧ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
- prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?
- p(study) = .432 + .048 + .084 + .036 = 0.6

p(smart ∧	SI	smart		nart
study ^ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
- prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?
- p(prepared | smart, study) = p(prepared, smart, study) / p(smart, study) = .432 / (.432 + .048) = 0.9

Independence

- When variables don't affect each others' probabilities, we call them independent, and can easily compute their joint and conditional probability:
 Independent(A, B) → P(A∧B) = P(A) * P(B), P(A | B) = P(A)
- {moonPhase, lightLevel} *might* be independent of {burglary, alarm, earthquake}
 - Maybe not: burglars may be more active during a new moon because darkness hides their activity
 - But if we know the light level, the moon phase doesn't affect whether we are burglarized
 - If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart ∧	smart		¬ smart	
study ∧ prep)	study	¬study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Queries:

- -Q1: Is *smart* independent of *study*?
- -Q2: Is *prepared* independent of *study*? How can we tell?

p(smart ∧	smart		¬ smart	
study A prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
- prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience)
- You can check the data

p(smart ∧	smart		¬ smart	
study ∧ prep)	study	¬study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart | study) == p(smart) p(smart | study) = p(smart, study) / p(study) = (.432 + .048) / .6 = 0.8
0.8 == 0.8, so smart is independent of study

p(smart ∧	smart		¬ smart	
study ^ prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
- prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- •Q2 true iff

p(smart ∧	smart		¬ smart	
study ^ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
- prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- Q2 true iff p(prepared | study) == p(prepared) p(prepared | study) = p(prepared, study) / p(study) = (.432 + .084) / .6 = .86
 - 0.86 = 0.8, so prepared not independent of study

Conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) * P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are conditionally independent given C if $-P(A \land B | C) = P(A | C) * P(B | C)$
- This lets us decompose the joint distribution: $-P(A \land B \land C) = P(A | C) * P(B | C) * P(C)$
- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing the full joint probability distribution

Conditional independence

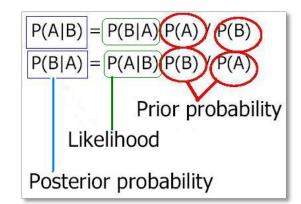
- An intuitive understanding is that conditional independence often arises due to causal relations
 - -Phase of moon causally effects the level of light at night
 - -Other things do too, e.g., presence of street lights
- With respect to our burglary scenario, moon's phase doesn't directly effect anything else
- So knowing the lighting level means we can ignore the moon phase in predicting wheter or not an alarm means we had a burglary

Bayes' rule

- Derived from the product rule:
 - -P(C, E) = P(C | E) * P(E)-P(E, C)) = P(E | C) * P(C)-P(C, E) = P(E, C)

So...

 $-P(C \mid E) = P(E \mid C) * P(C) / P(E)$



Bayes' rule

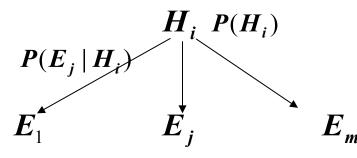
- P(A|B) = P(B|A)(P(A)) P(B) P(B|A) = P(A|B)(P(B))(P(A)) Prior probability Likelihood Posterior probability
- Derived from the product rule: -P(C | E) = P(E | C) * P(C) / P(E)
- Often useful for diagnosis:
 - If E are (observed) effects and C are (hidden) causes,
 - We often have a model for how causes lead to effects $P(E \mid C)$
 - We may also have prior beliefs (based on experience) about the frequency of occurrence of causes (P(C))
 - Which allows us to reason abductively from effects to causes (P(C | E))

Ex: meningitis and stiff neck

- Meningitis (M) can cause a a stiff neck (S), though here are many other causes for S, too
- \bullet We'd like to use S as a diagnostic symptom and estimate p(M|S)
- Studies can easily estimate p(M), p(S) and p(S|M) p(M)=0.7, p(S)=0.01, p(M)=0.00002
- Applying Bayes' Rule: p(M|S) = p(S|M) * p(M) / p(S) = 0.0014
- We can also do this w/o p(S) if we know p(S|~M) $\alpha < p(S|M)*P(m), p(S|~M)*p(~M) >$

Bayesian inference

• In the setting of diagnostic/evidential reasoning



hypotheses

evidence/manifestations

 Know prior probability of hypothesis conditional probability $P(H_i)$ $P(E_j | H_i)$ $P(H_i | E_j)$

- Want to compute the *posterior probability*
- Bayes' s theorem (formula 1):

 $P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$

Simple Bayesian diagnostic reasoning

- Also known as: <u>Naive Bayes classifier</u>
- Knowledge base:
 - Evidence / manifestations: $E_1, \ldots E_m$
 - Hypotheses / disorders: $H_1, \ldots H_n$

Note: E_j and H_i are **binary**; hypotheses are **mutually** exclusive (non-overlapping) and exhaustive (cover all possible cases)

- Conditional probabilities: $P(E_j | H_i)$, i = 1, ..., n; j = 1, ..., m
- Cases (evidence for a particular instance): $E_1, ..., E_l$
- Goal: Find the hypothesis H_i with the highest posterior - Max_i P(H_i | E₁, ..., E₁)

Simple Bayesian diagnostic reasoning

• Bayes' rule says that

 $P(H_i | E_1...E_m) = P(E_1...E_m | H_i) P(H_i) / P(E_1...E_m)$

- Assume each evidence E_i is conditionally independent of the others, *given* a hypothesis H_i , then: $P(E_1...E_m | H_i) = \prod_{j=1}^m P(E_j | H_i)$
- If we only care about relative probabilities for the H_i, then we have:

 $P(H_i | E_1...E_m) = \alpha P(H_i) \prod_{j=1}^m P(E_j | H_i)$

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
 - –Disease D causes syndrome S, which causes correlated manifestations M_1 and M_2
- Consider composite hypothesis $H_1 \wedge H_2$, where $H_1 \& H_2$ independent. What's relative posterior?

 $P(H_1 \land H_2 | E_1, ..., E_l) = \alpha P(E_1, ..., E_l | H_1 \land H_2) P(H_1 \land H_2)$ $\land H_2)$

= $\alpha P(E_1, ..., E_1 | H_1 \wedge H_2) P(H_1) P(H_2)$ = $\alpha \prod_{j=1}^{l} P(E_j | H_1 \wedge H_2) P(H_1) P(H_2)$

• How do we compute $P(E_j | H_1 \land H_2)$?

Limitations

- Assume H1 and H2 are independent, given E1, ..., El? $- P(H_1 \land H_2 | E_1, ..., E_l) = P(H_1 | E_1, ..., E_l) P(H_2 | E_1, ..., E_l)$
- This is a very unreasonable assumption
 - Earthquake and Burglar are independent, but *not* given Alarm:
 - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Another limitation is that simple application of Bayes' s rule doesn't allow us to handle causal chaining:
 - A: this year's weather; B: cotton production; C: next year's cotton price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - $P(C \mid B, A) = P(C \mid B)$
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next: conditional independence and Bayesian networks!

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Can answer queries by summing over atomic events
- But we must find a way to reduce the joint size for non-trivial domains
- Bayes' rule lets unknown probabilities be computed from known conditional probabilities, usually in the causal direction
- Independence and conditional independence provide tools

Postscript: Frequentists vs. Bayesians

- <u>Frequentist inference</u> draws conclusions from sample data based on the frequency or proportion of the data
- <u>Bayesian inference</u> uses Bayes' rule to update probability estimates for a hypothesis as additional evidence is learned
- The differences are often subtle, but can be consequential

Frequentists vs. Bayesians http://xkcd.com/1132/

