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Today’s class 

• What is planning? 
• Approaches to planning 

– GPS / STRIPS 
– Situation calculus formalism [revisited] 
– Partial-order planning 
– Graph-based planning 
– Satisfiability planning 
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Planning problem 
•  Find a sequence of actions that achieves a given goal when 

executed from a given initial world state.  That is, given  
–  a set of operator descriptions (defining the possible primitive actions 

by the agent),  
–  an initial state description, and  
–  a goal state description or predicate,  

 compute a plan, which is  
–  a sequence of operator instances, such that executing them in the 

initial state will change the world to a state satisfying the goal-state 
description.  

•  Goals are usually specified as a conjunction of goals to be 
achieved 
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Planning vs. problem solving 

•  Planning and problem solving methods can often solve the 
same sorts of problems 

•  Planning is more powerful because of the representations 
and methods used 

•  States, goals, and actions are decomposed into sets of 
sentences (usually in first-order logic) 

•  Search often proceeds through plan space rather than state 
space (though there are also state-space planners) 

•  Subgoals can be planned independently, reducing the 
complexity of the planning problem 
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Typical assumptions 
•  Atomic time: Each action is indivisible  
•  No concurrent actions are allowed  (though actions do not 

need to be ordered with respect to each other in the plan) 
•  Deterministic actions: The result of actions are completely 

determined—there is no uncertainty in their effects  
•  Agent is the sole cause of change in the world  
•  Agent is omniscient: Has complete knowledge of the state 

of the world  
•  Closed world assumption: everything known to be true in 

the world is included in the state description. Anything not 
listed is false.  
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Blocks world 
The blocks world is a micro-world that 

consists of a table, a set of blocks and a 
robot hand. 

Some domain constraints: 
–  Only one block can be on another block 
–  Any number of blocks can be on the table 
–  The hand can only hold one block 

Typical representation: 
ontable(a) 
ontable(c) 
on(b,a) 
handempty 
clear(b) 
clear(c) 
 

 
 

A 
B 

C 
TABLE 
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Major approaches 

• GPS / STRIPS 
• Situation calculus 
• Partial-order planning 
• Planning with constraints (SATplan, Graphplan) 

• Hierarchical decomposition (HTN planning) 
• Reactive planning 
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General Problem Solver 
•  The General Problem Solver (GPS) system was an early 

planner (Newell, Shaw, and Simon)  
•  GPS generated actions that reduced the difference between 

some state and a goal state 
•  GPS used Means-Ends Analysis 

–  Compare what is given or known with what is desired and select a 
reasonable thing to do next 

–  Use a table of differences to identify procedures to reduce types of 
differences 

•  GPS was a state space planner: it operated in the domain of 
state space problems specified by an initial state, some goal 
states, and a set of operations 
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Situation calculus planning 

•  Intuition:  Represent the planning problem using 
first-order logic 
– Situation calculus lets us reason about changes in 

the world 
– Use theorem proving to “prove” that a particular 

sequence of actions, when applied to the 
situation characterizing the world state, will lead 
to a desired result 
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Situation calculus 
•  Initial state: a logical sentence about (situation) S0 

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0) 

•  Goal state:  
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s) 

•  Operators are descriptions of how the world changes as a 
result of the agent’s actions:  
∀(a,s) Have(Milk,Result(a,s)) ⇔  

  ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk))) 

•  Result(a,s) names the situation resulting from executing 
action a in situation s.  

•  Action sequences are also useful: Result'(l,s) is the result of 
executing the list of actions (l) starting in s: 
(∀s) Result'([],s) = s 
(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s)) 
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Situation calculus II 

•  A solution is a plan that when applied to the initial state 
yields a situation satisfying the goal query:  
At(Home, Result'(p,S0))  
    ∧ Have(Milk, Result'(p,S0)) 
    ∧ Have(Bananas, Result'(p,S0)) 
    ∧ Have(Drill, Result'(p,S0)) 

•  Thus we would expect a plan (i.e., variable assignment 
through unification) such as:  
p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore),      

    Buy(Drill), Go(Home)] 
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Situation calculus: Blocks world 
•  Here’s an example of a situation calculus rule for the blocks 

world: 
–  Clear (X, Result(A,S)) ↔  

    [Clear (X, S) ∧  
        (¬(A=Stack(Y,X) ∨ A=Pickup(X)) 
        ∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S)) 
        ∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))] 
    ∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)] 
    ∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)] 
    ∨ [A=Putdown(X) ∧ holding(X,S)] 

•  English translation: A block is clear if (a) in the previous state it 
was clear and we didn’t pick it up or stack something on it 
successfully, or (b) we stacked it on something else successfully, 
or (c) something was on it that we unstacked successfully, or (d) 
we were holding it and we put it down. 

•  Whew!!! There’s gotta be a better way! 
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Situation calculus planning: Analysis 

•  This is fine in theory, but remember that problem solving 
(search) is exponential in the worst case 

•  Also, resolution theorem proving only finds a proof (plan), 
not necessarily a good plan 

•  So we restrict the language and use a special-purpose 
algorithm (a planner) rather than general theorem prover 
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Basic representations for planning 
•  Classic approach first used in the STRIPS planner circa 1970 
•  States represented as a conjunction of ground literals 

–  at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ... 

•   Goals are conjunctions of literals, but may have variables 
which are assumed to be existentially quantified 
–  at(?x) ∧ have(Milk) ∧ have(bananas) ... 

•  Do not need to fully specify state  
–  Non-specified either don’t-care or assumed false  
–  Represent many cases in small storage  
–  Often only represent changes in state rather than entire situation   

•  Unlike theorem prover, not seeking whether the goal is true, 
but is there a sequence of actions to attain it  
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Operator/action representation 
•  Operators contain three components: 

–  Action description  
–  Precondition - conjunction of positive literals  
–  Effect - conjunction of positive or negative literals 

which describe how situation changes when operator 
is applied  

•  Example: 
Op[Action:  Go(there),  
      Precond:  At(here) ∧ Path(here,there),  
      Effect:  At(there) ∧ ¬At(here)] 

•  All variables are universally quantified  
•  Situation variables are implicit 

–  Preconditions must be true in the state immediately 
before an operator is applied; effects are true 
immediately after 

Go(there) 

At(here) ,Path(here,there) 

At(there) , ¬At(here) 
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Blocks world operators 
•  Here are the classic basic operations for the blocks world: 

–  stack(X,Y): put block X on block Y 
–  unstack(X,Y): remove block X from block Y 
–  pickup(X): pickup block X 
–  putdown(X): put block X on the table 

•  Each action will be represented by:  
–  a list of preconditions 
–  a list of new facts to be added (add-effects) 
–  a list of facts to be removed (delete-effects) 
–  optionally, a set of (simple) variable constraints 

•  For example: 
preconditions(stack(X,Y), [holding(X), clear(Y)]) 
deletes(stack(X,Y), [holding(X), clear(Y)]). 
adds(stack(X,Y), [handempty, on(X,Y), clear(X)]) 
constraints(stack(X,Y), [X≠Y, Y≠table, X≠table]) 
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Blocks world operators II 

operator(stack(X,Y),  
         Precond [holding(X), clear(Y)], 
         Add [handempty, on(X,Y), clear(X)], 
         Delete [holding(X), clear(Y)], 

      Constr [X≠Y, Y≠table, X≠table]). 
 
 
operator(pickup(X), 
         [ontable(X), clear(X), handempty], 
         [holding(X)], 
         [ontable(X), clear(X), handempty], 
         [X≠table]). 

operator(unstack(X,Y),  
        [on(X,Y), clear(X), handempty], 
        [holding(X), clear(Y)], 
        [handempty, clear(X), on(X,Y)], 
        [X≠Y, Y≠table, X≠table]). 
 
 
operator(putdown(X),  
         [holding(X)], 
         [ontable(X), handempty, clear(X)], 
         [holding(X)], 
         [X≠table]). 
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STRIPS planning 

•  STRIPS maintains two additional data structures: 
–  State List - all currently true predicates. 
–  Goal Stack - a push-down stack of goals to be solved, with current 

goal on top of stack. 

•  If current goal is not satisfied by present state, examine add 
lists of operators, and push operator and preconditions list 
on stack.  (Subgoals) 

•  When a current goal is satisfied, POP it from stack. 
•  When an operator is on top of the stack, record the 

application of that operator in the plan sequence and use the 
operator’s add and delete lists to update the current state. 
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Typical BW planning problem 
Initial state: 

clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(b,c) 
on(a,b) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 
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Another BW planning problem 
Initial state: 

clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(a,b) 
on(b,c) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
 pickup(a) 

       stack(a,b) 
       unstack(a,b) 
       putdown(a) 
       pickup(b) 
       stack(b,c) 
       pickup(a) 
       stack(a,b) 
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Goal interaction 
•  Simple planning algorithms assume that the goals to be achieved are 

independent 
–  Each can be solved separately and then the solutions concatenated 

•  This planning problem, called the “Sussman Anomaly,” is the classic 
example of the goal interaction problem:  
–  Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when 

solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).   
–  Solving on(B,C) first will be undone when solving on(A,B) 

•  Classic STRIPS could not handle this, although minor modifications can 
get it to do simple cases 

A B 
C 

Initial state 

A 
B 
C 

Goal state 
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Sussman Anomaly 

A B 
C Initial state 

Goal state 

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)] 
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] 
||Achieve clear(a) via unstack(_1584,a) with preconds: 
[on(_1584,a),clear(_1584),handempty] 
||Applying unstack(c,a)  
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)] 
||Applying putdown(c)  
|Applying pickup(a)  
Applying stack(a,b)  
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)] 
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty] 
||Achieve clear(b) via unstack(_5625,b) with preconds: 
[on(_5625,b),clear(_5625),handempty] 
||Applying unstack(a,b)  
||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)] 
||Applying putdown(a)  
|Applying pickup(b)  
Applying stack(b,c)  
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)] 
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] 
|Applying pickup(a)  
Applying stack(a,b)  

From 
[clear(b),clear(c),ontable(a),ontable(b),on(
c,a),handempty] 
  To [on(a,b),on(b,c),ontable(c)] 
  Do: 
       unstack(c,a) 
       putdown(c) 
       pickup(a) 
       stack(a,b) 
       unstack(a,b) 
       putdown(a) 
       pickup(b) 
       stack(b,c) 
       pickup(a) 
       stack(a,b) 
 

A 
B 
C 
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State-space planning 

•  We initially have a space of situations (where you are, what 
you have, etc.) 

•  The plan is a solution found by “searching” through the 
situations to get to the goal 

•  A progression planner searches forward from initial state 
to goal state 

•  A regression planner searches backward from the goal 
–  This works if operators have enough information to go both ways 
–  Ideally this leads to reduced branching: the planner is only 

considering things that are relevant to the goal 



Planning heuristics 

•  Just as with search, we need an admissible heuristic that we 
can apply to planning states 
–  Estimate of the distance (number of actions) to the goal 

•  Planning typically uses relaxation to create heuristics 
–  Ignore all or selected preconditions  
–  Ignore delete lists (movement towards goal is never undone) 
–  Use state abstraction (group together “similar” states and treat them 

as though they are identical) – e.g., ignore fluents 
–  Assume subgoal independence (use max cost; or if subgoals actually 

are independent, can sum the costs) 
–  Use pattern databases to store exact solution costs of recurring 

subproblems 

25 
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Plan-space planning 
•  An alternative is to search through the space of plans, 

rather than situations. 
•  Start from a partial plan which is expanded and refined 

until a complete plan that solves the problem is generated.  
•  Refinement operators add constraints to the partial plan 

and modification operators for other changes.  
•  We can still use STRIPS-style operators:  

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 
Op(ACTION: RightSock, EFFECT: RightSockOn) 
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 
Op(ACTION: LeftSock, EFFECT: leftSockOn) 

could result in a partial plan of  
[RightShoe, LeftShoe]  
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Partial-order planning 
•  A linear planner builds a plan as a totally ordered sequence 

of plan steps 
•  A non-linear planner (aka partial-order planner) builds up 

a plan as a set of steps with some temporal constraints  
–  constraints of the form S1<S2 if step S1 must comes before S2.  

•  One refines a partially ordered plan (POP) by either: 
–  adding a new plan step, or 
–  adding a new constraint to the steps already in the plan. 

•  A POP can be linearized (converted to a totally ordered plan) 
by topological sorting 
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Least commitment 

•  Non-linear planners embody the principle of least 
commitment  
–  only choose actions, orderings, and variable bindings that are 

absolutely necessary, leaving other decisions till later 
–  avoids early commitment to decisions that don’t really matter 

•  A linear planner always chooses to add a plan step in a 
particular place in the sequence  

•  A non-linear planner chooses to add a step and possibly 
some temporal constraints 
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Non-linear plan 
•  A non-linear plan consists of 

(1) A set of steps {S1, S2, S3, S4…}  
Each step has an operator description, preconditions and post-conditions 

(2) A set of causal links { … (Si,C,Sj) …} 
Meaning a purpose of step Si is to achieve precondition C of step Sj 

(3) A set of ordering constraints { … Si<Sj … } 
if step Si must come before step Sj 

•  A non-linear plan is complete iff 
–  Every step mentioned in (2) and (3) is in (1) 
–  If Sj has prerequisite C, then there exists a causal link in (2) of the 

form (Si,C,Sj) for some Si 
–  If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens (Si,C,Sj) 

(makes C false), then (3) contains either Sk<Si or Sj<Sk 
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The initial plan 

Every plan starts the same way 

S1:Start 

S2:Finish 

Initial   State 

Goal   State 
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Trivial example 
Operators: 

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 
Op(ACTION: RightSock, EFFECT: RightSockOn) 
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 
Op(ACTION: LeftSock, EFFECT: leftSockOn) 

S1:Start 

S2:Finish 

RightShoeOn  ^ LeftShoeOn 

Steps: {S1:[Op(Action:Start)], 

             S2:[Op(Action:Finish, 

    Pre: RightShoeOn^LeftShoeOn)]} 

 Links: {} 

Orderings: {S1<S2} 
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Solution 

Start 

Left 
Sock 

Right 
Sock 

Right 
Shoe 

Left 
Shoe 

Finish 
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POP constraints and search heuristics 

•  Only add steps that achieve a currently unachieved 
precondition 

•  Use a least-commitment approach:  
–  Don’t order steps unless they need to be ordered 

•  Honor causal links S1 → S2 that protect a condition c:  
–  Never add an intervening step S3 that violates c 
–  If a parallel action threatens c (i.e., has the effect of negating or 

clobbering c), resolve that threat by adding ordering links: 
•  Order S3 before S1 (demotion) 
•  Order S3 after S2 (promotion) 

c 
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Partial-order planning algorithm 
•  Create a START node with the initial state as its effects 
•  Create a GOAL node with the goal as its preconditions 
•  Create an ordering link from START to GOAL 
•  While there are unsatisfied preconditions: 

–  Choose a precondition to satisfy 
–  Choose an existing action or insert a new action whose effect 

satisfies the precondition 
•  (If no such action, backtrack!) 

–  Insert a causal link from the chosen action’s effect to the 
precondition 

–  Resolve any new threats 
•  (If not possible, backtrack!) 
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Partial-order planning example 

•  Goal: Have milk, bananas, and a drill 
Have(Milk) ∧	
 Have(Bananas) ∧	
 Have(Drill) 

•  Operators: 
Op(ACTION: Buy(Item), PRECOND: At(Store) ∧ Sells(Store,Item),  

EFFECT: Have(Item)) 
Op(ACTION: Go(Dest), PRECOND: At(Source), 

EFFECT: At(Dest) ∧ ~At(Source) 

•  Initial state: 
At(Home) ∧ Sells(SM, Milk) ∧	
 Sells(SM, Bananas) ∧	
 Sells(HW, Drill) 
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Threat Demotion Promotion 

Resolving threats 
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GraphPlan 



GraphPlan: Basic idea 

•  Construct a graph that encodes constraints on possible plans 
•  Use this “planning graph” to constrain search for a valid 

plan 
•  Planning graph can be built for each problem in a relatively 

short time 



Planning graph 
• Directed, leveled graph with alternating layers of nodes 
• Odd layers (“state levels”) represent candidate 

propositions that could possibly hold at step i 
• Even layers (“action levels”) represent candidate 

actions that could possibly be executed at step i, 
including maintenance actions [do nothing] 

• Arcs represent preconditions, adds and deletes 
• We can only execute one real action at any step, but the 

data structure keeps track of all actions and states that 
are possible 



GraphPlan properties 
• STRIPS operators: conjunctive preconditions, no 

conditional or universal effects, no negations 
– Planning problem must be convertible to propositional 

representation 
– Can’t handle continuous variables, temporal constraints, … 
– Problem size grows exponentially 

• Finds “shortest” plans (by some definition) 
• Sound, complete, and will terminate with failure if 

there is no plan 



What actions and what literals? 

• Add an action in level Ai if all of its preconditions 
are present in level Si 

• Add a literal in level Si if it is the effect of some 
action in level Ai-1 (including no-ops) 

• Level S0 has all of the literals from the initial state 



Simple domain 

•  Literals: 
–  at X Y   X is at location Y 
–  fuel R   rocket R has fuel 
–  in X R   X is in rocket R 

•  Actions: 
–  load X L   load X (onto R) at location L 

   (X and R must be at L) 
–  unload X L   unload X (from R) at location L 

   (R must be at L) 
–  move X Y   move rocket R from X to Y 

   (R must be at X and have fuel) 
•  Graph representation: 

–  Solid black lines: preconditions/effects 
–  Dotted red lines: negated preconditions/effects 



Example planning graph 

States"
S0"

Actions"
A0"

States"
S1"

Actions"
A1"

States"
S2"

Actions"
A2"

States"
S3"
(Goals!)"

at A L"

at B L"

at R L"

fuel R"

load A L"

load B L"

move L P"

in A R"

in B R"

fuel R"

at A L"

at B L"

at R L"

at R P"

load A L"

load B L"

move L P"

move P L"

at A L"

at B L"

at R L"

fuel R"

in A R"

in B R"

at R P"

unload A P"

unload B P"

at A P"

at B P"



Valid plans 

• A valid plan is a planning graph in which: 
– Actions at the same level don’t interfere (delete each 

other’s preconditions or add effects) 
– Each action’s preconditions are true at that point in the 

plan 
– Goals are satisfied at the end of the plan 



Exclusion relations (mutexes) 

• Two actions (or literals) are mutually exclusive 
(“mutex”) at step i if no valid plan could contain 
both actions at that step 

• Can quickly find and mark some mutexes: 
– Inconsistent effects: Two actions whose effects are 

mutex with each other 
– Interference: Two actions that interfere (the effect of 

one negates the precondition of another) are mutex 
– Competing needs: Two actions are mutex if any of their 

preconditions are mutex with each other 
– Inconsistent support: Two literals are mutex if all ways 

of creating them both are mutex 



move P L"

move L P"

Example: Mutex constraints 
at A L"

at B L"

at R L"

fuel R"

load A L"

load B L"

move L P"

in A R"

in B R"

fuel R"

at A L"

at B L"

at R L"

at R P"

load A L"

load B L"

at A L"

at B L"

at R L"

fuel R"

in A R"

in B R"

at R P"

unload A P"

unload B P"

at A P"

at B P"

nop"

nop"

nop"

nop"

nop"
nop"

nop"

nop"

nop"

nop"

nop"

Inconsistent effects 

States"
S0"

Actions"
A0"

States"
S1"

Actions"
A1"

States"
S2"

Actions"
A2"

States"
S3"
(Goals!)"



move P L"

move L P"

Example: Mutex constraints 
at A L"

at B L"

at R L"

fuel R"

load A L"

load B L"

move L P"

in A R"

in B R"

fuel R"

at A L"

at B L"

at R L"

at R P"

load A L"

load B L"

at A L"

at B L"

at R L"

fuel R"

in A R"

in B R"

at R P"

unload A P"

unload B P"

at A P"

at B P"

nop"

nop"

nop"

nop"

nop"
nop"

nop"

nop"

nop"

nop"

nop"

Interference 

States"
S0"

Actions"
A0"

States"
S1"

Actions"
A1"

States"
S2"

Actions"
A2"

States"
S3"
(Goals!)"



move P L"

move L P"

Example: Mutex constraints 
at A L"

at B L"

at R L"

fuel R"

load A L"

load B L"

move L P"

in A R"

in B R"

fuel R"

at A L"

at B L"

at R L"

at R P"

load A L"

load B L"

at A L"

at B L"

at R L"

fuel R"

in A R"

in B R"

at R P"

unload A P"

unload B P"

at A P"

at B P"

nop"

nop"

nop"

nop"

nop"
nop"

nop"

nop"

nop"

nop"

nop"

Inconsistent support 

States"
S0"

Actions"
A0"

States"
S1"

Actions"
A1"

States"
S2"

Actions"
A2"

States"
S3"
(Goals!)"



move P L"

move L P"

Example: Mutex constraints 
at A L"

at B L"

at R L"

fuel R"

load A L"

load B L"

move L P"

in A R"

in B R"

fuel R"

at A L"

at B L"

at R L"

at R P"

load A L"

load B L"

at A L"

at B L"

at R L"

fuel R"

in A R"

in B R"

at R P"

unload A P"

unload B P"

at A P"

at B P"

nop"

nop"

nop"

nop"

nop"
nop"

nop"

nop"

nop"

nop"

nop"

Competing needs 

States"
S0"

Actions"
A0"

States"
S1"

Actions"
A1"

States"
S2"

Actions"
A2"

States"
S3"
(Goals!)"



Extending the planning graph 

•  Action level Ai:  
–  Include all instantiations of all actions (including maintains (no-

ops)) that have all of their preconditions satisfied at level Si, with 
no two being mutex 

–  Mark as mutex all action-maintain (nop) pairs that are 
incompatible 

–  Mark as mutex all action-action pairs that have competing needs 
•  State level Si+1:  

–  Generate all propositions that are the effect of some action at level 
Ai 

–  Mark as mutex all pairs of propositions that can only be generated 
by mutex action pairs 



Basic GraphPlan algorithm 

• Grow the planning graph (PG) until all goals are 
reachable and none are pairwise mutex. (If PG 
levels off [reaches a steady state] first, fail) 

• Search the PG for a valid plan 
•  If none found, add a level to the PG and try again 



Creating the planning graph is 
usually fast 

• Theorem: 
 The size of the t-level planning graph and the time 
to create it are polynomial in: 
–  t (number of levels), 
– n (number of objects), 
– m (number of operators), and  
– p (number of propositions in the initial state) 



Searching for a plan 

•  Backward chain on the planning graph 
•  Complete all goals at one level before going back 
•  At level i, pick a non-mutex subset of actions that achieve 

the goals at level i+1. The preconditions of these actions 
become the goals at level i 
–  Various heuristics can be used for choosing which actions to select 

•  Build the action subset by iterating over goals, choosing an 
action that has the goal as an effect. Use an action that was 
already selected if possible. Do forward checking on 
remaining goals. 



SATPlan 
(chapter 7.7.4) 



SATPlan 

• Formulate the planning problem as a CSP 
• Assume that the plan has k actions 
• Create a binary variable for each possible action a: 

– Action(a,i) (TRUE if action a is used at step i) 
• Create variables for each proposition that can hold 

at different points in time: 
– Proposition(p,i) (TRUE if proposition p holds at step i) 



Constraints   

• Only one action can be executed at each time step 
(XOR constraints) 

• Constraints describing effects of actions 
• Persistence: if an action does not change a 

proposition p, then p’s value remains unchanged 
• A proposition is true at step i only if some action 

(possibly a maintain action) made it true 
• Constraints for initial state and goal state 





Still more variations… 
•  FF (Fast-Forward): 

–  Forward-chaining state space planning using relaxation-based 
heuristic and many other heuristics and “tweaks” 

•  Blackbox: 
STRIPS-based plan representation 

Planning graph 

CNF representation 

CSP/SAT solver 

CSP solution 

Plan 


