Reasoning with Bayesian Belief Networks

source

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Links represent direct influence of one variable on another

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
 - -Diagnosis
 - -Expert systems
 - -Planning
 - -Learning

Recall Bayes Rule

$$P(H, E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Note the symmetry: we can compute the probability of a hypothesis given its evidence and vice versa.

More Complex Bayesian Network

More Complex Bayesian Network

Independence

Age and Gender are independent.

P(A,G) = P(G) P(A)

 $P(A \mid G) = P(A)$

P(G|A) = P(G)

P(A,G) = P(G|A) P(A) = P(G)P(A)

P(A,G) = P(A|G) P(G) = P(A)P(G)

Conditional Independence

Conditional Independence: Naïve Bayes

Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

 $P(L \mid SC, C) = P(L \mid C)$ $P(SC \mid L, C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) is independent given the disease. This make it easy to combine evidence

Explaining Away

Exposure to Toxics and Smoking are independent

Exposure to Toxics is **dependent** on Smoking, given Cancer

P(E=heavy|C=malignant) > P(E=heavy|C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause of an event reduces need to invoke alternatives
- Essence of Occam's Razor

Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents

Another non-descendant

A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of Diet given Exposure to Toxics and Smoking

BBN Construction

The knowledge acquisition process for a BBN involves three steps

- Choosing appropriate variables
- Deciding on the network structure
- Obtaining data for the conditional probability tables

KA1: Choosing variables

Variables should be collectively exhaustive, mutually exclusive values

$$x_1 \lor x_2 \lor x_3 \lor x_4$$

 $\neg (x_i \land x_j) \quad i \neq j$

They should be values, not probabilities

Smoking

Heuristic: Knowable in Principle

Example of good variables

- Weather {Sunny, Cloudy, Rain, Snow}
- Gasoline: Cents per gallon
- Temperature $\{ \ge 100F, < 100F \}$
- User needs help on Excel Charting {Yes, No}
- User's personality {dominant, submissive}

Network structure corresponding to "causality" is usually good. | Cancer |

KA3: The numbers

- Second decimal usually doesn't matter
- Relative probabilities are important

- Zeros and ones are often enough
- Order of magnitude is typical: 10⁻⁹ vs 10⁻⁶
- Sensitivity analysis can be used to decide accuracy needed

Predictive Inference How likely are elderly males to get malignant cancer? Cancer P(C=malignant | Age>60, Gender=male) Serum Lung Tumor

Three kinds of reasoning

BBNs support three main kinds of reasoning:

- **Predicting** conditions given predispositions
- **Diagnosing** conditions given symptoms (and predisposing)
- **Explaining** a condition in by one or more predispositions

To which we can add a fourth:

• **Deciding** on an action based on the probabilities of the conditions

Predictive and diagnostic combined How likely is an elderly male patient with high Serum Calcium to have malignant cancer? P(C=malignant | Age>60, Gender= male, Serum Calcium = high) Serum Calcium Tumor

Explaining away

- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up.
- If we then observe heavy smoking, the probability of exposure to toxics goes back down.

Decision making

- Decision an irrevocable allocation of domain resources
- Decision should be made so as to maximize expected utility.
- View decision making in terms of
 - -Beliefs/Uncertainties
 - -Alternatives/Decisions
 - -Objectives/Utilities

A Decision Problem

Should I have my party inside or outside?

Value Function

A numerical score over all possible states of the world allows BBN to be used to make decisions

Location?	Weather?	Value
in	dry	\$50
in	wet	\$60
out	dry	\$100
out	wet	\$0

Two software tools

- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - -A commercial product but free for small networks
 - -Includes a graphical editor, compiler, inference engine, etc.
- <u>Samiam</u>: Java system for modeling and reasoning with Bayesian networks
 - -Includes a GUI and reasoning engine

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast
 - The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - -Assign a utility to each of four situations: (rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend the BBN framework to include two new kinds of nodes: Decision and Utility
- A **Decision** node computes the expected utility of a decision given its parent(s), e.g., forecast, an a valuation
- A **Utility** node computes a utility value given its parents, e.g. a decision and weather
 - We can assign a utility to each of four situations: (rain|no rain) x (umbrella, no umbrella)
 - The value assigned to each is probably subjective

