Machine Learning:
Decision Trees

Chapter 18.1-18.3

Some material adopted from notes
by Chuck Dyer

What is learning?

» “Learning denotes changes in a system that ...
enable a system to do the same task more
efficiently the next time” — Herbert Simon

» “Learning is constructing or modifying
representations of what 1s being experienced
— Ryszard Michalski

» “Learning is making useful changes in our
minds~ — Marvin Minsky

7

Why study learning?

* Understand and improve efficiency of human learning

— Use to improve methods for teaching and tutoring people
(e.g., better computer-aided instruction)

 Discover new things or structure previously unknown
— Examples: data mining, scientific discovery
* Fill in skeletal or incomplete specifications in a domain

— Large, complex systems can’t be completely built by hand &
require dynamic updating to incorporate new information

— Learning new characteristics expands the domain or
expertise and lessens the “brittleness” of the system

» Build agents that can adapt to users, other agents, and
their environment

Al & Learning Today

* Neural network learning was popular 1n the 60s

* In the 70s and 80s 1t was replaced with a paradigm
based on manually encoding and using knowledge

 In the 90s, more data and the Web drove interest 1n
new statistical machine learning (ML) techniques
and new data mining applications

* Today, ML techniques and big data are behind
almost all successful intelligent systems

B artificial neural network B machine learning (data mining + datamining)

http://bit.ly/U27ZAC8

Machine Leaning Successes

* Sentiment analysis

e Spam detection

e Machine translation

* Spoken language understanding

« Named entity detection

* Self driving cars

* Motion recognition (Microsoft X-Box)

* Identifying paces in digital images

* Recommender systems (Netflix, Amazon)

e Credit card fraud detection

A general model of learning agents

Performance standard

Learning Performance
element |g element

Problem
generator

Major paradigms of machine learning

* Rote learning — One-to-one mapping from inputs to stored
representation. * Learning by memorization.” Association-based
storage and retrieval.

* Induction — Use specific examples to reach general conclusions
e Clustering — Unsupervised identification of natural groups in data

« Analogy — Determine correspondence between two different
representations

* Discovery — Unsupervised, specific goal not given

 Genetic algorithms — “Evolutionary” search techniques, based
on an analogy to “survival of the fittest”

* Reinforcement — Feedback (positive or negative reward) given at
the end of a sequence of steps

The Classification Problem

N Extrapolate from set of examples to make
accurate predictions about future ones

+ 7 » Supervised versus unsupervised learning

— Learn unknown function {(X)=Y, where X 1s
an input example and Y 1s desired output
_‘ —Supervised learning implies we’re given a
% - training set of (X, Y) pairs by a “teacher”
) — Unsupervised learning means we are only
given the Xs and some (ultimate) feedback
- function on our performance.

attribute 1

N
7

attribute 2

» Concept learning or classification (aka “induction”)
— Given a set of examples of some concept/class/category, determine 1f a given
example is an instance of the concept or not

— If 1t 1s an instance, we call it a positive example
— If 1t 1s not, it 1s called a negative example
— Or we can make a probabilistic prediction (e.g., using a Bayes net)

Supervised Concept Learning

N
+
+
4
+ +
o+ o+
é o
£)

WV

attribute 2

* Given a training set of positive
and negative examples of a
concept

 Construct a description that will
accurately classify whether future
examples are positive or negative

 That is, learn some good estimate
of function f given a training set
X Y1)s (X2, ¥2)s s (X Vo) »
where each y, 1s either + (positive)
or - (negative), or a probability
distribution over +/-

attribute 1

Inductive Learning Framework

WV

attribute 2

Raw input data from sensors are typically
preprocessed to obtain a feature vector, X,
that adequately describes all of the relevant
features for classifying examples

Each x is a list of (attribute, value) pairs. For
example,
X = [Person:Sue, EyeColor:Brown, Age:Young,
Sex:Female]
The number of attributes (a.k.a. features) is
fixed (positive, finite)

Each attribute has a fixed, finite number of
possible values (or could be continuous)

e Each example can be interpreted as a point in an
n-dimensional feature space, where n is the number of attributes

10

Measuring Model Quality

* How good 1s a model?
— Predictive accuracy

— False positives / false negatives for a given cutoff threshold

» Loss function (accounts for cost of different types of errors)
— Area under the (ROC) curve
— Minimizing loss can lead to problems with overfitting
* Training error
— Train on all data; measure error on all data
— Subject to overfitting (of course we’ 11 make good predictions on the
data on which we trained!)
» Regularization
— Attempt to avoid overfitting

— Explicitly minimize the complexity of the function while minimizing
loss. Tradeoff is modeled with a regularization parameter

11

Cross-Validation

* Holdout cross-validation:
— Divide data into training set and test set
— Train on training set; measure error on test set

— Better than training error, since we are measuring generalization to
new data

— To get a good estimate, we need a reasonably large test set

— But this gives less data to train on, reducing our model quality!

12

Cross-Validation, cont.

 k-fold cross-validation:
— Divide data into & folds
— Train on k-1 folds, use the kth fold to measure error
— Repeat k times; use average error to measure generalization accuracy

— Statistically valid and gives good accuracy estimates

« Leave-one-out cross-validation (LOOCYV)
— k-fold cross validation where k=N (test data = 1 instance!)

— Quite accurate, but also quite expensive, since it requires building N
models

13

Inductive learning as search

* Instance space I defines the language for the training and
test instances

— Typically, but not always, each instance 1€1 is a feature vector
— Features are sometimes called attributes or variables
— LV, xV,x...xV,1=(V{, Vs, ..., V})
 Class variable C gives an instance’s class (to be predicted)

* Model space M defines the possible classifiers
— M:1—-C,M={ml, ... mn} (possibly infinite)
— Model space 1s sometimes, but not always, defined in terms of the
same features as the instance space
 Training data can be used to direct the search for a good
(consistent, complete, simple) hypothesis in the model
space

Model spaces

 Decision trees

— Partition the instance space into axis-parallel regions, labeled with
class value

* Version spaces

— Search for necessary (lower-bound) and sufficient (upper-bound)
partial instance descriptions for an instance to be in the class

» Nearest-neighbor classifiers

— Partition the instance space into regions defined by the centroid
instances (or cluster of k instances)

 Associative rules (feature values — class)
 First-order logical rules

» Bayesian networks (probabilistic dependencies of class on
attributes)

* Neural networks

Model spaces

Nearest
Decision neighbor

tree

Version space

Learning decision trees

e Goal: Build a decision tree to classify examples as
positive or negative instances of a concept using
supervised learning from a training set

* A decision tree is a tree where

— each non-leaf node has associated
with it an attribute (feature)

—each leaf node has associated
with 1t a classification (+ or -)

—each arc has associated with it one
of the possible values of the attribute
at the node from which the arc is directed

» Generalization: allow for >2 classes
—e.g., for stocks, classify into {sell, hold, buy}

Decision tree-induced partition — example

| Color
green red blue
|
+
Size Shape
big small square round
/ \ N
- + +
T — T — T —
Size
i small
big \

Expressiveness

* Decision trees can express any function of the mput attributes
* E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB -
F F F
F
F
F

« Trivially, there’s a consistent decision tree for any training
set with one path to leaf for each example (unless f
nondeterministic in x), but it probably won't generalize to
new examples

* We prefer to find more compact decision trees

Inductive learning and bias

O
(¢

(a)

l

o

e

(d)

e Suppose that we want to learn a function f(x) =y and we

are given some sample (X,y) pairs, as in figure (a)

» There are several hypotheses we could make about this

function, e.g.: (b), (c¢) and (d)

A preference for one over the others reveals the bias of our

learning technique, e.g.:
— prefer piece-wise functions
— prefer a smooth function

— prefer a simple function and treat outliers as noise

Preference bias: Ockham’s Razor

 AKA Occam’s Razor, Law of Economy, or Law of
Parsimony

 Principle stated by William of Ockham (1285-1347)

V4

— “non sunt multiplicanda entia praeter necessitatem
— entities are not to be multiplied beyond necessity

* The simplest consistent explanation is the best

* Therefore, the smallest decision tree that correctly
classifies all of the training examples 1s best

 Finding the provably smallest decision tree 1s NP-
hard, so instead of constructing the absolute smallest
tree consistent with the training examples, construct
one that 1s pretty small

Hypothesis spaces

« How many distinct decision trees with » Boolean
attributes?

— = number of Boolean functions
— = number of distinct truth tables with 2" rows = 22"
— e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees

* How many conjunctive hypotheses (e.g., Hungry A = Rain)?
— Each attribute can be in (positive), in (negative), or out
=>3" distinct conjunctive hypotheses
— e.g., with 6 Boolean attributes, 729 trees

* A more expressive hypothesis space
— 1ncreases chance that target function can be expressed

— increases number of hypotheses consistent with training set
= may get worse predictions in practice

R&N’s restaurant domain

* Develop a decision tree to model decision a patron
makes when deciding whether or not to wait for a
table at a restaurant

* Two classes: wait, leave

 Ten attributes: Alternative available? Bar in
restaurant? Is 1t Friday? Are we hungry? How full
1s the restaurant? How expensive? Is it raining? Do
we have a reservation? What type of restaurant 1s
it? What' s the purported waiting time?

* Training set of 12 examples

« ~ 7000 possible cases

Patrons?

A decision tree

None ~” $ome~_ Full from introspection

WaitEstimate?

>60__—"30 10-3~—_"— 0-10

Alternate?

Ws

Hungry?

Reservation? Fri'Sat?

No Yes No Yes
Bar?

Yes

No

No Yes

Alternate?
Yes

Raining?

Attribute-based representations

Example Attributes Target

Alt| Bar | Fri| Hun| Pat | Price | Rain | Res| Type | Est | Wait
X T| F | F | T |Some| $%$ F T |French| 0-10 T
Xo T | F F T | Full $ F F | Thai [30-60 F
X3 F| T F F |Some| $ F F | Burger| 0-10 T
X4 T| F | T T | Full $ F F | Thai [10-30|| T
X; T| F | T F Full | $9% F T |French| >60 F
Xg F| T | F | T |Some| $¢ | T | T (ltalian[0-10 | T
X7 F| T F F | None| $ T F | Burger| 0-10 F
Xs F| F | F | T |Some|l $$ T T | Thai | 0-10 T
X, F| T | T F | Full $ T F | Burger| >60 F
X0 T| T | T T | Full | $%% F T | Italian | 10-30 F
X1 F | F F F | None| §$ F F | Thai | 0-10 F
X0 T| T | T T | Full $ F F [Burger[30-60| T

*Examples described by attribute values (Boolean, discrete, continuous),
e.g., situations where I will/won't wait for a table

*Classification of examples is positive (T) or negative (F)

eServes as a training set

ID3/C4.5 Algorithm

» A greedy algorithm for decision tree construction
developed by Ross Quinlan circa 1987

» Top-down construction of decision tree by recursively
selecting “best attribute” to use at the current node in tree

— Once attribute 1s selected for current node, generate
child nodes, one for each possible value of selected
attribute

— Partition examples using the possible values of this
attribute, and assign these subsets of the examples to the
appropriate child node

— Repeat for each child node until all examples associated
with a node are either all positive or all negative

Choosing the best attribute

« Key problem: choosing which attribute to split a
given set of examples

e Some possibilities are:
— Random: Seclect any attribute at random

— Least-Values: Choose the attribute with the smallest
number of possible values

— Most-Values: Choose the attribute with the largest
number of possible values

— Max-Gain: Choose the attribute that has the largest
expected information gain—i.e., attribute that results 1n
smallest expected size of subtrees rooted at 1ts children

* The ID3 algorithm uses the Max-Gain method of
selecting the best attribute

Choosing an attribute

Idea: a good attribute splits the examples nto
subsets that are (ideally) “all positive” or “all

. 77
negative
000000 000000
000000 000000
Patrons? Type?
None Some Full French Italian Thai Burger
0000 00 o © 00 00
o0 000 o ® 00 0

Which is better: Patrons? or Type?

Restaurant example

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: 777

French Y N
O : Y N
= Italian
=
o
<
>
2 Thai | N Y NY
>
-

Burger N Y NY

Empty Some Full

Patrons variable

Splitting

examples
by testing
attributes

(a)

+: X1.X3X4 X6 X8X12

- X2 X5X7.X9.X10.x11

Patrons?

Mo n%l\ Full

+:
— X7 Xl

+: X1 X3 X6 X8

+: X4 X12
- X2 X7 X9.X10

(b)

+: X1.X3 X4 X6 X8 X112

- X2X3 X7 X9X10.X11

Type?

French Italian \T\Burger

+x.'

+: X6
- X0

+: X4 X8

+: X3.X12

- X2 X1 - X7.X9

+: X1 X3 XL X6 X8.X12
— X2 X5 X7 X0X10X11

Patrons?

NonoA|\ Full

+:
- X7Xx11

Yes

+: X1.X3.X6.X8

No

+: X4.X12
—: X2 X3.X9X10

Hungry?

+: X4 X112 +:
- X2 X140 - X5.X90

ID3-induced
decision tree

Patrons?

None sSom Full

French Burger

Compare the two Decision Trees

None bom Full

| WaitEstimate? |

| Reservation? || FriSat? |

Nol/\ Yes

Information theory 101

* Information theory sprang almost fully formed from the
seminal work of Claude E. Shannon at Bell Labs

A Mathematical Theory of Communication, Bell System
Technical Journal, 1948.

e Intuitions

— Common words (a, the, dog) shorter than less common ones
(parlimentarian, foreshadowing)

— Morse code: common (probable) letters have shorter encodings

e Information 1s measured in minimum number of bits
needed to store or send some information

* Wikipedia: The measure of data, known as information
entropy, 1s usually expressed by the average number of
bits needed for storage or communication.

Information theory 101

 Information 1s measured in bits

 Information conveyed by message depends on its probability
 For n equally probable possible messages, each has prob. I/n
 Information conveyed by message 1s -log(p) = log(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to
1dentify/send each message

 Given probability distribution for n messages P = (p,,p,...p,),
the information conveyed by distribution (aka entropy of P) is:

I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))

probability of msg 2 info in msg 2

Information theory 11

 Information conveyed by distribution (aka entropy of P):
I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))
e Examples:
_IfPis (0.5, 0.5) then I(P) = .5%1 + 0.5%1 = 1
—If P 1s (0.67, 0.33) then I(P) = -(2/3*log(2/3) +
1/3*log(1/3)) =0.92
—IfP1s (1, 0) then I(P) = 1*1 + 0*log(0) =0
* The more uniform the probability distribution, the greater

its information: more information 1s conveyed by a
message telling you which event actually occurred

* Entropy 1s the average number of bits/message needed to
represent a stream of messages

Example: Huffman code

e In 1952 MIT student David Huffman devised, in the course
of doing a homework assignment, an elegant coding scheme
which is optimal in the case where all symbols’ probabilities
are integral powers of 1/2.

* A Huffman code can be built in the following manner:
— Rank all symbols 1n order of probability of occurrence

— Successively combine the two symbols of the lowest
probability to form a new composite symbol; eventually we
will build a binary tree where each node 1s the probability
of all nodes beneath it

— Trace a path to each leaf, noticing direction at each node

Huffman code example

M codelength prob
M P A 000 3 0.125 0.375

B 001 3 0.125 0.375

A 125

=
2 avrarama macaaca lanath 1 750
D .5

If we use this code to many
messages (A,B,C or D) with this
probability distribution, then, over
time, the average bits/message
should approach 1.75

Information for classification

If a set T of records 1s partitioned into disjoint exhaustive
classes (C,,C,,..,C,) on the basis of the value of the class
attribute, then information needed to 1dentify class of an
clement of T 1is:

Info(T) = I(P)
where P is the probability distribution of partition (C,,C,...,C,):
P = (ICV|T), IC, /T, ..., IC /T

Low information
High information

Information for classification II

If we partition T w.r.t attribute X 1nto sets {T,,T,, ..,T } then
the information needed to i1dentify the class of an element of
T becomes the weighted average of the information needed to
identify the class of an element of T, 1.e. the weighted
average of Info(T)):

Info(X,T) = 2|Ti|/|T| * Info(T))

High information Low information

Information gain

 Consider the quantity Gain(X,T) defined as
Gain(X,T) = Info(T) - Info(X,T)

 This represents the difference between
— 1nfo needed to 1dentify element of T and
— info needed to identify element of T after value of attribute X known

 This is the gain in information due to attribute X

 Use to rank attributes and build DT where each node uses
attribute with greatest gain of those not yet considered (in
path from root)

e The intent of this ordering is to:
— Create small DTs so records can be identified with few questions

— Match a hoped-for minimality of the process represented by the
records being considered (Occam’s Razor)

Computing Information Gain

French Y N
I(T) =2
[(Pat, T) = ? . Y N
Italian
[(Type, T) =7
Thai [N Y NY
Burger N Y DY
Empty Some Full

Gain (Pat, T) =?
Gain (Type, T) =?

41

Computing information gain

I(T) _ French Y N
-(.5log .5+ .510g.5)
=5+.5=1 Italian Y N
I (Pat, T) =
2/12 (0) +4/12 (0) + Thai IN Y NY
6/12 (- (4/6 log 4/6 +
2/6 log 2/6)) N N
=1/2 (2/3*.6 + purger bt
1/3%1.6) Fmpty Some Full
= 47
I (Type, T) = Gain (Pat, T)=1- .47 =.53
2/12 (1) +2/12 (1) + Gain (Type, T)=1-1=0

4/12 (1) + 4/12 (1) = 1

The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..,
Cn, the class attribute C, and a training set T of records

function ID3 (R:input attributes, C:class attribute,
S:training set) returns decision tree;

If S is empty, return single node with value Failure;

If every example 1n S has same value for C, return
single node with that wvalue;

If R is empty, then return a single node with most
frequent of the values of C found in examples S;
causes errors —-- improperly classified record

Let D be attribute with largest Gain (D,S) among R;
Let {dj| 3=1,2, .., m} be values of attribute Dj;

Let {S3| 3=1,2, .., m} be subsets of S consisting of
records with value dj for attribute D;
Return tree with root labeled D and arcs labeled

dl..dm going to the trees ID3(R-{D},C,S1).
ID3(R-{D},C,Sm);

How well does it work?

Many case studies have shown that decision trees are
at least as accurate as human experts.

— A study for diagnosing breast cancer had humans
correctly classifying the examples 65% of the
time; the decision tree classified 72% correct

—British Petroleum designed a decision tree for gas-
oil separation for offshore o1l platforms that
replaced an earlier rule-based expert system

—Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Extensions of ID3

» Using gain ratios

* Real-valued data

* Noisy data and overfitting
* Generation of rules

* Setting parameters

 Cross-validation for experimental validation of
performance

* C4.5 1s an extension of ID3 that accounts for
unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation,
and so on

Using gain ratios

* The information gain criterion favors attributes that have a large
number of values

— If we have an attribute D that has a distinct value for each
record, then Info(D,T) 1s 0, thus Gain(D,T) 1s maximal

* To compensate for this Quinlan suggests using the following
ratio instead of Gain:

GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)
 SplitInfo(D,T) 1s the information due to the split of T on the
basis of value of categorical attribute D
Splitinfo(D,T) = I(|T1|/|T|, |T2|/|T|, .., |[Tm|/|T|)
where {T1, T2, .. Tm} 1s the partition of T induced by value of D

Computing gain ratio

French Y N
I(T)=1
. Y N
oI (Pat, T) — 47 Italian
[(Type, T) = 1 Thai |N y NY
Gain (Pat, T) =.53 . N . N-Y
. _ urger o
Galn (Type, T) O Empty Some Full

SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1
=1.47

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
= 1/6%2.6 + 1/6%2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36
GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T)=0/1.93=0

Real-valued data

* Select a set of thresholds defining intervals
* Each interval becomes a discrete value of the attribute
* Use some simple heuristics...

— always divide into quartiles
» Use domain knowledge...

— divide age into infant (0-2), toddler (3 - 5), school-aged (5-8)
 Or treat this as another learning problem

— Try a range of ways to discretize the continuous variable and
see which yield “better results” w.r.t. some metric

— E.g., try midpoint between every pair of values

Noisy data

« Many kinds of “noise” can occur in the examples:

* Two examples have same attribute/value pairs, but
different classifications

« Some values of attributes are incorrect because of
errors 1n the data acquisition process or the
preprocessing phase

 The classification is wrong (e.g., + instead of -) because
of some error

* Some attributes are irrelevant to the decision-making
process, €.g., color of a die 1s 1rrelevant to its outcome

Overtfitting

e Irrelevant attributes, can result in overfitting the
training example data

o If hypothesis space has many dimensions (large
number of attributes), we may find meaningless
regularity in the data that 1s irrelevant to the
true, important, distinguishing features

* [f we have too little training data, even a
reasonable hypothesis space will “overfit’

Overtfitting

 Fix by by removing irrelevant features

— E.g., remove ‘year observed , ‘month
observed’, ‘day observed’, ‘observer name
from feature vector

’

 F1x by getting more training data
* Fix by pruning lower nodes 1n the decision tree

— E.g., 1f gain of the best attribute at a node 1s
below a threshold, stop and make this node a
leaf rather than generating children nodes

Pruning decision trees

* Pruning of the decision tree 1s done by replacing a whole
subtree by a leaf node

» The replacement takes place if a decision rule establishes
that the expected error rate in the subtree 1s greater than in
the single leaf. E.g.,

— Training: one training red success and two training blue failures
— Test: three red failures and one blue success

— Consider replacing this subtree by a single Failure node.

 After replacement we will have only two errors instead of

five:
o Test Pruned
Training FAILURE
red blue red blue 2 Succecess
1 success 0 success 1 success I success 4 failure

0 failure 2 failures 3 failure 1 failure

Converting decision trees to rules

e It is easy to derive rules from a decision tree: write a
rule for each path from the root to a leaf

 In that rule the left-hand side is built from the label
of the nodes and the labels of the arcs

* The resulting rules set can be simplified:
— Let LHS be the left hand side of a rule

—LHS’ obtained from LHS by eliminating some conditions

— Replace LHS by LHS' in this rule if the subsets of the
training set satisfying LHS and LHS' are equal

— A rule may be eliminated by using meta-conditions such as
“if no other rule applies”

- - A
® 00 [uCI Machine Learning Repo:

€285 o ity http://archive.ies.uci.edu/ml » ¢ #

UG

Custom Search

Machine Learning Repository View ALL Data Sets

Center for Machine Leaming and Intelligent Systems

Welcome to the UC Irvine Machine Learning Repository!

We currently maintain 233 data sets as a service to the machine learning community. You may view all data sets through our searchable interface. Our old web site is still available, for those who prefer the old
format. For a general overview of the Repository, please visit our About page. For information about citing data sets in publications, please read our citation policy. If you wish to donate a data set, please consult
our donation policy. For any other questions, feel free to contact the Repository librarians. We have also set up a mirror site for the Repository.

Mt g

¢ :::‘: In Collaboration With: 233 data SetS

f
Supported By: b:&
Y

o

Uapae®

Latest News: Newest Data Sets: Most Popular Data Sets (hits since 2007):
2010-03-01: Note from donor regarding Netflix data Y {
2009-10-16: Two new data sets have been added. 2012-10-21: ‘::U‘“c‘; || QtyT40110D100K 386214: ["“‘ Iris
2009-09-14: Several data sets have been added.
2008-07-23: Repository mimor has been set up. 2012-10-19: Legal Case Reports 272233: Adult
2008-03-24: New data sets have been added!
2007-06-25: Two new data sets have been added: UJI Pen =T

Characters, MAGIC Gamma Telescope 2012-09-29: ||U/\,|| seeds 237503: Wine

2007-04-13: Research papers that cite the repository have been
associated to specific data sets.

2012-08-30: Individual household electric power 195947: Breast Cancer Wisconsin (Diagnostic)
consumption
Featured Data Set: Yeast 'y .
182423: ':;.:«- Car Evaluation
Task: Classification 2012-08-15: Northix
Data Type: Multivariate
Attributes: 8 S 151635 - Abalone
Instances: 1484 2012-08-06: \;:,J‘,\;j_ PAMAP2 Physical Activity Monitoring
135419: '§ Poker Hand
2012-08-04: Restaurant & consumer data
=33
Predicting the Cellular Localization Sites of Proteins 113024: g:/ Forest Fires

2012-08-03: CNAE-9

®00 UCI Machine Learning Repository: Zoo Data Set

[4| »] [A A] [+ |63 http://archive.ics.uci.edu/ml/datasets /Zoo C] (Q'l

About Citation Policy Donate a Data Set
Contact

O Repository @ Web Caooule™

Machine Learning Repository

Center for Machine Learning and Intelligent Systems View ALL Data Sets

Zoo Data Set

Download: Data Folder, Data Set Description

s - | i)
Abstract: Artificial, 7 classes of animals Sty .'a S

http://archive.ics.uci.edu/ml/datasets/Zoo

DY

Data Set o Number of . :
Characteristics: Multivariate Instances: 101 /SR Life
Attribute Categorical, Number of 1990-05-
Characteristics: Integer Attributes: 17 || Date Donated 15
Associated Tasks: Classification Missing Values? No :;?ber of Web 18038

animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean

legs: {0,2,4,5,6,8}
tail: Boolean
domestic: Boolean
catsize: Boolean

type: {mammal, fish,
bird, shellfish, insect,
reptile, amphibian}

/.00 data

101 examples
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1, mammal
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0.fish
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1, mammal
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1, mammal
buftalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1, mammal
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

Z.00 example

aima-python> python

>>> from learning import *

>>> 700

<DataSet(zoo): 101 examples, 18 attributes>

>>> dt = DecisionTreeLearner()

>>> dt.train(zoo)

>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])
'fish'

>>> dt.predict(['shark’',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])

' 14
mammal

Z.00 example

>> dt.dt

DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:
DecisionTree(8, 'toothed', {0: 'shellfish’, 1: 'reptile'}), 1:
DecisionTree(3, 'eggs', {0: 'mammal’, 1: 'fish'})}), 2:
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {O0:
'reptile’, 1: DecisionTree(8, 'toothed', {0: 'shellfish’, 1:
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish’, 6:
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:
'shellfish'})

>>> dt.dt.display()

Testlgs Z.00 example

legs = 0 ==> Test fins
fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile
fins = 1 ==> Test eggs
eggs = 0 ==> RESULT = mammal
eggs = 1 ==> RESULT = fish
legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal
legs =4 ==> Test hair
hair = 0 ==> Test aquatic
aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian
hair = 1 ==> RESULT = mammal
legs =5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic
aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish
legs = 8 ==> RESULT = shellfish

>>> dt.dt.display()

Testlgs Z.00 example

legs = 0 ==> Test fins
fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile
fins = 1 ==> Test milk
milk = 0 ==> RESULT = fish
milk = 1 ==> RESULT = mammal
legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal
legs =4 ==> Test hair
hair = 0 ==> Test aquatic
aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian
hair = 1 ==> RESULT = mammal
legs =5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic
aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish
legs = 8 ==> RESULT = shellfish

Add the shark example
to the training set and
retrain

Summary: Decision tree learning

* Widely used learning methods 1n practice
 Can out-perform human experts in many problems

 Strengths include

— Fast and simple to implement

— Can convert result to a set of easily interpretable rules
— Empirically valid in many commercial products

— Handles noisy data

e Weaknesses include

— Univariate splits/partitioning using only one attribute at a
time so limits types of possible trees

— Large decision trees may be hard to understand
— Requires fixed-length feature vectors
— Non-incremental (1.e., batch method)

