
Machine Learning:
Decision Trees

Chapter 18.1-18.3

Some material adopted from notes
by Chuck Dyer

What is learning?
• “Learning denotes changes in a system that ...

enable a system to do the same task more
efficiently the next time” – Herbert Simon

• “Learning is constructing or modifying
representations of what is being experienced”
– Ryszard Michalski

• “Learning is making useful changes in our
minds” – Marvin Minsky

Why study learning?
• Understand and improve efficiency of human learning

– Use to improve methods for teaching and tutoring people
(e.g., better computer-aided instruction)

• Discover new things or structure previously unknown
– Examples: data mining, scientific discovery

•  Fill in skeletal or incomplete specifications in a domain
– Large, complex systems can’t be completely built by hand &

require dynamic updating to incorporate new information
– Learning new characteristics expands the domain or

expertise and lessens the “brittleness” of the system
• Build agents that can adapt to users, other agents, and

their environment

AI & Learning Today
• Neural network learning was popular in the 60s
•  In the 70s and 80s it was replaced with a paradigm

based on manually encoding and using knowledge
•  In the 90s, more data and the Web drove interest in

new statistical machine learning (ML) techniques
and new data mining applications

• Today, ML techniques and big data are behind
almost all successful intelligent systems

http://bit.ly/U2ZAC8

Machine Leaning Successes
• Sentiment analysis
• Spam detection
• Machine translation
• Spoken language understanding
• Named entity detection
• Self driving cars
• Motion recognition (Microsoft X-Box)
•  Identifying paces in digital images
• Recommender systems (Netflix, Amazon)
• Credit card fraud detection

A general model of learning agents

Major paradigms of machine learning
•  Rote learning – One-to-one mapping from inputs to stored

representation. “Learning by memorization.” Association-based
storage and retrieval.

•  Induction – Use specific examples to reach general conclusions
•  Clustering – Unsupervised identification of natural groups in data
•  Analogy – Determine correspondence between two different

representations
•  Discovery – Unsupervised, specific goal not given
•  Genetic algorithms – “Evolutionary” search techniques, based

on an analogy to “survival of the fittest”
•  Reinforcement – Feedback (positive or negative reward) given at

the end of a sequence of steps

8

The Classification Problem
•  Extrapolate from set of examples to make

accurate predictions about future ones
•  Supervised versus unsupervised learning
– Learn unknown function f(X)=Y, where X is

an input example and Y is desired output
– Supervised learning implies we’re given a

training set of (X, Y) pairs by a “teacher”
– Unsupervised learning means we are only

given the Xs and some (ultimate) feedback
function on our performance.

•  Concept learning or classification (aka “induction”)
–  Given a set of examples of some concept/class/category, determine if a given

example is an instance of the concept or not
–  If it is an instance, we call it a positive example
–  If it is not, it is called a negative example
–  Or we can make a probabilistic prediction (e.g., using a Bayes net)

9

Supervised Concept Learning

•  Given a training set of positive
and negative examples of a
concept

•  Construct a description that will
accurately classify whether future
examples are positive or negative

•  That is, learn some good estimate
of function f given a training set
{(x1, y1), (x2, y2), ..., (xn, yn)},
where each yi is either + (positive)
or - (negative), or a probability
distribution over +/-

10

Inductive Learning Framework
•  Raw input data from sensors are typically

preprocessed to obtain a feature vector, X,
that adequately describes all of the relevant
features for classifying examples

•  Each x is a list of (attribute, value) pairs. For
example,
X = [Person:Sue, EyeColor:Brown, Age:Young,

Sex:Female]
•  The number of attributes (a.k.a. features) is

fixed (positive, finite)
•  Each attribute has a fixed, finite number of

possible values (or could be continuous)

•  Each example can be interpreted as a point in an
n-dimensional feature space, where n is the number of attributes

Measuring Model Quality
•  How good is a model?

–  Predictive accuracy
–  False positives / false negatives for a given cutoff threshold

•  Loss function (accounts for cost of different types of errors)
–  Area under the (ROC) curve
–  Minimizing loss can lead to problems with overfitting

•  Training error
–  Train on all data; measure error on all data
–  Subject to overfitting (of course we’ll make good predictions on the

data on which we trained!)

•  Regularization
–  Attempt to avoid overfitting
–  Explicitly minimize the complexity of the function while minimizing

loss. Tradeoff is modeled with a regularization parameter

11

Cross-Validation

•  Holdout cross-validation:
–  Divide data into training set and test set
–  Train on training set; measure error on test set
–  Better than training error, since we are measuring generalization to

new data
–  To get a good estimate, we need a reasonably large test set
–  But this gives less data to train on, reducing our model quality!

12

Cross-Validation, cont.

•  k-fold cross-validation:
–  Divide data into k folds
–  Train on k-1 folds, use the kth fold to measure error
–  Repeat k times; use average error to measure generalization accuracy
–  Statistically valid and gives good accuracy estimates

•  Leave-one-out cross-validation (LOOCV)
–  k-fold cross validation where k=N (test data = 1 instance!)
–  Quite accurate, but also quite expensive, since it requires building N

models

13

Inductive learning as search
•  Instance space I defines the language for the training and

test instances
–  Typically, but not always, each instance i∈I is a feature vector
–  Features are sometimes called attributes or variables
–  I: V1 x V2 x … x Vk, i = (v1, v2, …, vk)

•  Class variable C gives an instance’s class (to be predicted)
•  Model space M defines the possible classifiers

–  M: I → C, M = {m1, … mn} (possibly infinite)
–  Model space is sometimes, but not always, defined in terms of the

same features as the instance space
•  Training data can be used to direct the search for a good

(consistent, complete, simple) hypothesis in the model
space

Model spaces
•  Decision trees

–  Partition the instance space into axis-parallel regions, labeled with
class value

•  Version spaces
–  Search for necessary (lower-bound) and sufficient (upper-bound)

partial instance descriptions for an instance to be in the class
•  Nearest-neighbor classifiers

–  Partition the instance space into regions defined by the centroid
instances (or cluster of k instances)

•  Associative rules (feature values → class)
•  First-order logical rules
•  Bayesian networks (probabilistic dependencies of class on

attributes)
•  Neural networks

Model spaces
I

+
+

- -

I

+
+

- -

I

+
+

- -
Nearest
neighbor

Version space

Decision
tree

Learning decision trees
• Goal: Build a decision tree to classify examples as

positive or negative instances of a concept using
supervised learning from a training set

• A decision tree is a tree where
–  each non-leaf node has associated
with it an attribute (feature)

– each leaf node has associated
with it a classification (+ or -)

– each arc has associated with it one
of the possible values of the attribute
at the node from which the arc is directed

• Generalization: allow for >2 classes
– e.g., for stocks, classify into {sell, hold, buy}

Color

Shape Size +

+ - Size

+ -

+
big

big small

small

round square

red green blue

Decision tree-induced partition – example

I

Expressiveness
•  Decision trees can express any function of the input attributes
•  E.g., for Boolean functions, truth table row → path to leaf:

•  Trivially, there’s a consistent decision tree for any training

set with one path to leaf for each example (unless f
nondeterministic in x), but it probably won't generalize to
new examples

•  We prefer to find more compact decision trees

Inductive learning and bias

•  Suppose that we want to learn a function f(x) = y and we
are given some sample (x,y) pairs, as in figure (a)

•  There are several hypotheses we could make about this
function, e.g.: (b), (c) and (d)

•  A preference for one over the others reveals the bias of our
learning technique, e.g.:
–  prefer piece-wise functions
–  prefer a smooth function
–  prefer a simple function and treat outliers as noise

Preference bias: Ockham’s Razor
• AKA Occam’s Razor, Law of Economy, or Law of

Parsimony
• Principle stated by William of Ockham (1285-1347)

– “non sunt multiplicanda entia praeter necessitatem”
– entities are not to be multiplied beyond necessity

• The simplest consistent explanation is the best
• Therefore, the smallest decision tree that correctly

classifies all of the training examples is best
• Finding the provably smallest decision tree is NP-

hard, so instead of constructing the absolute smallest
tree consistent with the training examples, construct
one that is pretty small

Hypothesis spaces
•  How many distinct decision trees with n Boolean

attributes?
–  = number of Boolean functions
–  = number of distinct truth tables with 2n rows = 22n
–  e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees

•  How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?
–  Each attribute can be in (positive), in (negative), or out

⇒ 3n distinct conjunctive hypotheses
–  e.g., with 6 Boolean attributes, 729 trees

•  A more expressive hypothesis space
–  increases chance that target function can be expressed
–  increases number of hypotheses consistent with training set

 ⇒ may get worse predictions in practice

R&N’s restaurant domain
• Develop a decision tree to model decision a patron

makes when deciding whether or not to wait for a
table at a restaurant

• Two classes: wait, leave
• Ten attributes: Alternative available? Bar in

restaurant? Is it Friday? Are we hungry? How full
is the restaurant? How expensive? Is it raining? Do
we have a reservation? What type of restaurant is
it? What’s the purported waiting time?

• Training set of 12 examples
• ~ 7000 possible cases

A decision tree
from introspection

Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous),
e.g., situations where I will/won't wait for a table

• Classification of examples is positive (T) or negative (F)
• Serves as a training set

ID3/C4.5 Algorithm
•  A greedy algorithm for decision tree construction

developed by Ross Quinlan circa 1987
•  Top-down construction of decision tree by recursively

selecting “best attribute” to use at the current node in tree
– Once attribute is selected for current node, generate

child nodes, one for each possible value of selected
attribute

– Partition examples using the possible values of this
attribute, and assign these subsets of the examples to the
appropriate child node

– Repeat for each child node until all examples associated
with a node are either all positive or all negative

Choosing the best attribute
• Key problem: choosing which attribute to split a

given set of examples
• Some possibilities are:

– Random: Select any attribute at random
– Least-Values: Choose the attribute with the smallest

number of possible values
– Most-Values: Choose the attribute with the largest

number of possible values
– Max-Gain: Choose the attribute that has the largest

expected information gain–i.e., attribute that results in
smallest expected size of subtrees rooted at its children

• The ID3 algorithm uses the Max-Gain method of
selecting the best attribute

Choosing an attribute

Idea: a good attribute splits the examples into
subsets that are (ideally) “all positive” or “all
negative”

Which is better: Patrons? or Type?

Restaurant example

French

Italian

Thai

Burger
Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???

Patrons variable

Ty
pe

 v
ar

ia
bl

e

Splitting
examples
by testing
attributes

ID3-induced
decision tree

Compare the two Decision Trees

Information theory 101
•  Information theory sprang almost fully formed from the

seminal work of Claude E. Shannon at Bell Labs
A Mathematical Theory of Communication, Bell System
Technical Journal, 1948.

•  Intuitions
– Common words (a, the, dog) shorter than less common ones

(parlimentarian, foreshadowing)
– Morse code: common (probable) letters have shorter encodings

•  Information is measured in minimum number of bits
needed to store or send some information

• Wikipedia: The measure of data, known as information
entropy, is usually expressed by the average number of
bits needed for storage or communication.

Information theory 101
•  Information is measured in bits
•  Information conveyed by message depends on its probability
•  For n equally probable possible messages, each has prob. 1/n
•  Information conveyed by message is -log(p) = log(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to
identify/send each message

•  Given probability distribution for n messages P = (p1,p2…pn),
the information conveyed by distribution (aka entropy of P) is:
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

info in msg 2 probability of msg 2

Information theory II
•  Information conveyed by distribution (aka entropy of P):

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

•  Examples:
–  If P is (0.5, 0.5) then I(P) = .5*1 + 0.5*1 = 1
–  If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) +

1/3*log(1/3)) = 0.92
–  If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0

•  The more uniform the probability distribution, the greater
its information: more information is conveyed by a
message telling you which event actually occurred

•  Entropy is the average number of bits/message needed to
represent a stream of messages

Example: Huffman code
•  In 1952 MIT student David Huffman devised, in the course

of doing a homework assignment, an elegant coding scheme
which is optimal in the case where all symbols’ probabilities
are integral powers of 1/2.

•  A Huffman code can be built in the following manner:
– Rank all symbols in order of probability of occurrence
– Successively combine the two symbols of the lowest

probability to form a new composite symbol; eventually we
will build a binary tree where each node is the probability
of all nodes beneath it

– Trace a path to each leaf, noticing direction at each node

Huffman code example
M P
A .125
B .125
C .25
D .5

.5 .5

1

.125 .125

.25

A

C

B

D
.25

0 1

0

0 1

1

M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If we use this code to many
messages (A,B,C or D) with this
probability distribution, then, over
time, the average bits/message
should approach 1.75

Information for classification
If a set T of records is partitioned into disjoint exhaustive
classes (C1,C2,..,Ck) on the basis of the value of the class
attribute, then information needed to identify class of an
element of T is:

 Info(T) = I(P)
where P is the probability distribution of partition (C1,C2,..,Ck):

P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)

C1
C2

C3

C1
C2

C3

High information
Low information

Information for classification II

If we partition T w.r.t attribute X into sets {T1,T2, ..,Tn} then
the information needed to identify the class of an element of
T becomes the weighted average of the information needed to
identify the class of an element of Ti, i.e. the weighted
average of Info(Ti):

Info(X,T) = Σ|Ti|/|T| * Info(Ti)

C1
C2

C3
C1

C2

C3

High information Low information

Information gain
•  Consider the quantity Gain(X,T) defined as
 Gain(X,T) = Info(T) - Info(X,T)
•  This represents the difference between

–  info needed to identify element of T and
–  info needed to identify element of T after value of attribute X known

•  This is the gain in information due to attribute X
•  Use to rank attributes and build DT where each node uses

attribute with greatest gain of those not yet considered (in
path from root)

•  The intent of this ordering is to:
–  Create small DTs so records can be identified with few questions
–  Match a hoped-for minimality of the process represented by the

records being considered (Occam’s Razor)

41

Computing Information Gain
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

• I(T) = ?

• I (Pat, T) = ?

• I (Type, T) = ?

Gain (Pat, T) = ?
Gain (Type, T) = ?

Computing information gain
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

I(T) =
 - (.5 log .5 + .5 log .5)
 = .5 + .5 = 1

I (Pat, T) =
 2/12 (0) + 4/12 (0) +
 6/12 (- (4/6 log 4/6 +
 2/6 log 2/6))
 = 1/2 (2/3*.6 +
 1/3*1.6)
 = .47

I (Type, T) =
 2/12 (1) + 2/12 (1) +
 4/12 (1) + 4/12 (1) = 1

Gain (Pat, T) = 1 - .47 = .53
Gain (Type, T) = 1 – 1 = 0

The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..,
Cn, the class attribute C, and a training set T of records

function ID3(R:input attributes, C:class attribute,
S:training set) returns decision tree;

 If S is empty, return single node with value Failure;

 If every example in S has same value for C, return
 single node with that value;

 If R is empty, then return a single node with most
 frequent of the values of C found in examples S;
 # causes errors -- improperly classified record

 Let D be attribute with largest Gain(D,S) among R;

 Let {dj| j=1,2, .., m} be values of attribute D;

 Let {Sj| j=1,2, .., m} be subsets of S consisting of
 records with value dj for attribute D;

 Return tree with root labeled D and arcs labeled
 d1..dm going to the trees ID3(R-{D},C,S1). . .
 ID3(R-{D},C,Sm);

How well does it work?

Many case studies have shown that decision trees are
at least as accurate as human experts.
– A study for diagnosing breast cancer had humans

correctly classifying the examples 65% of the
time; the decision tree classified 72% correct

– British Petroleum designed a decision tree for gas-
oil separation for offshore oil platforms that
replaced an earlier rule-based expert system

– Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Extensions of ID3
• Using gain ratios
• Real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of

performance
• C4.5 is an extension of ID3 that accounts for

unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation,
and so on

Using gain ratios
•  The information gain criterion favors attributes that have a large

number of values
–  If we have an attribute D that has a distinct value for each

record, then Info(D,T) is 0, thus Gain(D,T) is maximal
•  To compensate for this Quinlan suggests using the following

ratio instead of Gain:
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

•  SplitInfo(D,T) is the information due to the split of T on the
basis of value of categorical attribute D

SplitInfo(D,T) = I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)

where {T1, T2, .. Tm} is the partition of T induced by value of D

Computing gain ratio
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

• I(T) = 1

• I (Pat, T) = .47

• I (Type, T) = 1

Gain (Pat, T) =.53
Gain (Type, T) = 0

SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1
 = 1.47

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
 = 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0

Real-valued data
• Select a set of thresholds defining intervals
• Each interval becomes a discrete value of the attribute
• Use some simple heuristics…

– always divide into quartiles
• Use domain knowledge…

– divide age into infant (0-2), toddler (3 - 5), school-aged (5-8)
•  Or treat this as another learning problem

– Try a range of ways to discretize the continuous variable and
see which yield “better results” w.r.t. some metric

– E.g., try midpoint between every pair of values

Noisy data
• Many kinds of “noise” can occur in the examples:
• Two examples have same attribute/value pairs, but

different classifications
• Some values of attributes are incorrect because of

errors in the data acquisition process or the
preprocessing phase

• The classification is wrong (e.g., + instead of -) because
of some error

• Some attributes are irrelevant to the decision-making
process, e.g., color of a die is irrelevant to its outcome

Overfitting

• Irrelevant attributes, can result in overfitting the
training example data

• If hypothesis space has many dimensions (large
number of attributes), we may find meaningless
regularity in the data that is irrelevant to the
true, important, distinguishing features

• If we have too little training data, even a
reasonable hypothesis space will ‘overfit’

Overfitting

• Fix by by removing irrelevant features
–  E.g., remove ‘year observed’, ‘month

observed’, ‘day observed’, ‘observer name’
from feature vector

• Fix by getting more training data
• Fix by pruning lower nodes in the decision tree

–  E.g., if gain of the best attribute at a node is
below a threshold, stop and make this node a
leaf rather than generating children nodes

Pruning decision trees
•  Pruning of the decision tree is done by replacing a whole

subtree by a leaf node
•  The replacement takes place if a decision rule establishes

that the expected error rate in the subtree is greater than in
the single leaf. E.g.,
–  Training: one training red success and two training blue failures
–  Test: three red failures and one blue success
–  Consider replacing this subtree by a single Failure node.

•  After replacement we will have only two errors instead of
five:

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURE Training Test Pruned

Converting decision trees to rules
•  It is easy to derive rules from a decision tree: write a

rule for each path from the root to a leaf
•  In that rule the left-hand side is built from the label

of the nodes and the labels of the arcs
• The resulting rules set can be simplified:

– Let LHS be the left hand side of a rule
– LHS’ obtained from LHS by eliminating some conditions
– Replace LHS by LHS' in this rule if the subsets of the

training set satisfying LHS and LHS' are equal
– A rule may be eliminated by using meta-conditions such as

“if no other rule applies”

http://archive.ics.uci.edu/ml

233 data sets

http://archive.ics.uci.edu/ml/datasets/Zoo

Zoo data
animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean
legs: {0,2,4,5,6,8}
tail: Boolean
domestic: Boolean
catsize: Boolean
type: {mammal, fish,
bird, shellfish, insect,
reptile, amphibian}

101 examples
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish
…

Zoo example
aima-python> python
>>> from learning import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])
'mammal’

Zoo example
>> dt.dt
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1:
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2:
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0:
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1:
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6:
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:
'shellfish'})

Zoo example
>>> dt.dt.display()
Test legs
 legs = 0 ==> Test fins
 fins = 0 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = reptile
 fins = 1 ==> Test eggs
 eggs = 0 ==> RESULT = mammal
 eggs = 1 ==> RESULT = fish
 legs = 2 ==> Test hair
 hair = 0 ==> RESULT = bird
 hair = 1 ==> RESULT = mammal
 legs = 4 ==> Test hair
 hair = 0 ==> Test aquatic
 aquatic = 0 ==> RESULT = reptile
 aquatic = 1 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = amphibian
 hair = 1 ==> RESULT = mammal
 legs = 5 ==> RESULT = shellfish
 legs = 6 ==> Test aquatic
 aquatic = 0 ==> RESULT = insect
 aquatic = 1 ==> RESULT = shellfish
 legs = 8 ==> RESULT = shellfish

Zoo example
>>> dt.dt.display()
Test legs
 legs = 0 ==> Test fins
 fins = 0 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = reptile
 fins = 1 ==> Test milk
 milk = 0 ==> RESULT = fish
 milk = 1 ==> RESULT = mammal
 legs = 2 ==> Test hair
 hair = 0 ==> RESULT = bird
 hair = 1 ==> RESULT = mammal
 legs = 4 ==> Test hair
 hair = 0 ==> Test aquatic
 aquatic = 0 ==> RESULT = reptile
 aquatic = 1 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = amphibian
 hair = 1 ==> RESULT = mammal
 legs = 5 ==> RESULT = shellfish
 legs = 6 ==> Test aquatic
 aquatic = 0 ==> RESULT = insect
 aquatic = 1 ==> RESULT = shellfish
 legs = 8 ==> RESULT = shellfish

Add the shark example
to the training set and
retrain

Summary: Decision tree learning
• Widely used learning methods in practice
• Can out-perform human experts in many problems
• Strengths include

– Fast and simple to implement
– Can convert result to a set of easily interpretable rules
– Empirically valid in many commercial products
– Handles noisy data

• Weaknesses include
– Univariate splits/partitioning using only one attribute at a

time so limits types of possible trees
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors
– Non-incremental (i.e., batch method)

