) Searchin
Python

Chapter 3

Today’s topics

Norvig’s Python code
What it does
How to use it

A worked example: water jug
program

What about Java?

Overview

To use the AIMA python code for solving the

two water jug problem (WIJP) using search we’ll
need four files

— Wj.py: need to write this to define the problem,
states, goal, successor function, etc.

— search.py: Norvig’s generic search framework,
imported by wj.py

— util.py and agents.py: more generic Norvig code
imported by search.py

Two Water Jugs Problem

* Given two water jugs, J1 and J2, with
capacities C1 and C2 and initial amounts W1
and W2, find actions to end up with W1’ and
W2’ in the jugs

* Example problem:

—We have a 5 gallon and a 2 gallon jug
—Initially both are full

—We want to end up with exactly one gallon
in J2 and don’t care how much isin J1

search.py

* Defines a Problem class for a search problem

* Provides functions to perform various kinds of search
given an instance of a Problem

e.g.: breadth first, depth first, hill climbing, A*, ...

* Has a Problem subclass, InstrumentedProblem, and
function, compare_searchers, for evaluation
experiments

* To use for WJP: (1) decide how to represent the WIP,
(2) define WIJP as a subclass of Problem and (3) provide
methods to (a) create a WIP instance, (b) compute
successors and (c) test for a goal.

Two Water Jugs Problem

Given J1 and J2 with Operator table
capacities C1 and C2
and initial amounts Actions | Cond. Transition Effect
W1 and W2, find
actions to end up with | Empty J1 - (x,y)—=>(0,y) | Empty J1
W1 and W2’ in jugs _

Empty J2 (X,y)—(x,0) | Empty J2

State Representation
State = (x,y), where x & y 2to1 X <3 | (x,2)—(x+2,0) .

are waterinJ1 & J2 :

* Initial state = (5,0) o2 | x22 | (x0)—>(x22) | g0

e Goal state = (*,1) P :
71 our J1 1into
where * is any amount | lto2part | y<2 | (Ly)=>Oyt]) | 5 ey

Pour J2 into

Our WIJ problem class

class WJ(Problem):

def __init_ (self, capacities=(5,2), initial=(5,0), goal=(0,1)):
self.capacities = capacities
self.initial = initial

self.goal = goal

def goal test(self, state): # returns True if state is a goal state
g = self.goal
return (state[0] == g[0] or g[0] =="'*') and \
(state[1] == g[1] or g[1] =="*)

def _repr__ (self): # returns string representing the object

return "WJ(%s,%s,%s)" % (self.capacities, self.initial, self.goal)

Our WIJ problem class

def successor(self, (J1, J2)): # returns list of successors to state
successors = []
(C1, C2) = self.capacities
if J1 > 0: successors.append((‘Dump J1', (O, J2)))
if J2 > 0: successors.append((‘Dump J2', (J1, 0)))
if J2<C2and J1>0:
delta = min(J1, C2 —J2)
successors.append((‘Pour J1 into J2', (J1 - delta, J2 + delta)))
ifJ1<ClandJ2>0:
delta = min(J2, C1 —J1)
successors.append(('pour J2 into J1', (J1 + delta, J2 - delta)))

return successors

Solving a WJP

code> python

>>> from wj import *; from search import * # Import wj.py and search.py
>>>pl =WIJ((5,2), (5,2), ("*', 1)) # Create a problem instance
>>>pl

WI((5, 2),(5, 2),("*', 1))
>>> answer = breadth_first_graph_search(pl) # Used the breadth 1°' search function

>>> answer # Will be None if the search failed or a

<Node (0, 1)> # agoal node in the search graph if successful
>>> answer.path_cost # The cost to get to every node in the search graph
6 # is maintained by the search procedure

>>> path = answer.path() # A node’s path is the best way to get to it from
>>> path # the start node, i.e., a solution

[<Node (0, 1)>, <Node (1, 0)>, <Node (1, 2)>, <Node (3, 0)>, <Node (3, 2)>, <Node (5, 0)>, <Node (5, 2)>]
>>> path.reverse()

>>> path
[<Node (5, 2)>, <Node (5, 0)>, <Node (3, 2)>, <Node (3, 0)>, <Node (1, 2)>, <Node (1, 0)>, <Node (0, 1)>]

Comparing Search Algorithms Results

Uninformed searches: breadth_first_tree_search,
breadth_first_graph_search, depth_first _graph_
search, iterative_deepening_search, depth_limited
search

All but depth_limited_search are sound (solutions
found are correct)

Not all are complete (always find a solution if one
exists)

Not all are optimal (find best possible solution)
Not all are efficient
AIMA code has a comparison function

Comparing Search Algorithms Results

def main():
searchers = [breadth_first_tree_search, breadth_first_graph_search, depth_first_graph_search, ...]
problems = [WJ((5,2), (5,0), (0,1)), WJ((5,2), (5,0), (2,0))]
for p in problems:
for s in searchers:
print ‘Solution to’, p, ‘found by’, s.__name___
path = s(p).path() # call search function with problem
path.reverse()
print path, ‘\n’ # print solution path
print ‘SUMMARY: successors/goal tests/states generated/solution’
Now call the comparison function to show data about the performance of the dearches
compare_searchers(problems=problems,
header=['SEARCHER', 'GOAL:(0,1)', 'GOAL:(2,0)'],
searchers=[breadth_first_tree_search, breadth_first_graph_search, depth_first_graph_search,...])

if called from the command line, call main()

n n”

if _name__ =="_main__": main()

The Output

code> python wj.py
Solution to WJ((5, 2), (5, 0), (0, 1)) found by breadth_first_tree search
[<Node (5, 0)>, <Node (3, 2)>, <Node (3, 0)>, <Node (1, 2)>, ..., <Node (0, 1)>]

Solution to WJ((5, 2), (5, 0), (2, 0)) found by depth_limited_search
[<Node (5, 0)>, <Node (3, 2)>, <Node (0, 2)>, <Node (2, 0)>]

SUMMARY: successors/goal tests/states generated/solution
SEARCHER GOAL:(0,1) GOAL:(2,0)
breadth_first_tree search < 25/ 26/ 37/(0,> < 7/ 8/ 11/(2, >
breadth_first_graph_search < 8/ 17/ 16/(0,> < 5/ 8/ 9/(2,>
depth_first_graph_search < 5/ 8/ 12/(0,> < 8/ 13/ 16/(2, >
iterative_deepening_search < 35/ 61/ 57/(0,> < 8/ 16/ 14/(2, >
depth_limited_search <194/ 199/ 200/(0,> < 5/ 6/ 7/(2,>
code>

