
Object Oriented Programming
in Python:

Defining Classes

It’s all objects…
• Everything in Python is really an object.

• We’ve seen hints of this already…
“hello”.upper()
list3.append(‘a’)
dict2.keys()

• These look like Java or C++ method calls.
• New object classes can easily be defined in

addition to these built-in data-types.
• In fact, programming in Python is typically

done in an object oriented fashion.

Defining a Class

• A class is a special data type which defines
how to build a certain kind of object.

• The class also stores some data items that are
shared by all the instances of this class

• Instances are objects that are created which
follow the definition given inside of the class

• Python doesn’t use separate class interface
definitions as in some languages

• You just define the class and then use it

Methods in Classes

• Define a method in a class by including
function definitions within the scope of the
class block

• There must be a special first argument self
in all of method definitions which gets bound
to the calling instance

• There is usually a special method called
__init__ in most classes

• We’ll talk about both later…

A simple class def: student

class student:
“““A class representing a
student ”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Creating and Deleting
Instances

Instantiating Objects
• There is no “new” keyword as in Java.
• Just use the class name with () notation and

assign the result to a variable
• __init__ serves as a constructor for the

class. Usually does some initialization work
• The arguments passed to the class name are

given to its __init__() method
• So, the __init__ method for student is passed
“Bob” and 21 and the new class instance is
bound to b:

b = student(“Bob”, 21)

Constructor: __init__
• An __init__ method can take any number of

arguments.
• Like other functions or methods, the

arguments can be defined with default values,
making them optional to the caller.

• However, the first argument self in the
definition of __init__ is special…

Self

• The first argument of every method is a
reference to the current instance of the class

• By convention, we name this argument self
• In __init__, self refers to the object

currently being created; so, in other class
methods, it refers to the instance whose
method was called

• Similar to the keyword this in Java or C++
• But Python uses self more often than Java

uses this

Self
• Although you must specify self explicitly

when defining the method, you don’t include it
when calling the method.

• Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)
self.age = num

Deleting instances: No Need to “free”

• When you are done with an object, you don’t
have to delete or free it explicitly.

• Python has automatic garbage collection.
• Python will automatically detect when all of the

references to a piece of memory have gone
out of scope. Automatically frees that
memory.

• Generally works well, few memory leaks
• There’s also no “destructor” method for

classes

Access to Attributes
and Methods

Definition of student

class student:
“““A class representing a student
 ”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Traditional Syntax for Access

>>> f = student(“Bob Smith”, 23)

>>> f.full_name # Access attribute

“Bob Smith”

>>> f.get_age() # Access a method

23

Accessing unknown members

• Problem: Occasionally the name of an attribute
or method of a class is only given at run time…

• Solution:
getattr(object_instance, string)

• string is a string which contains the name of
an attribute or method of a class

•  getattr(object_instance, string)
returns a reference to that attribute or method

getattr(object_instance, string)
>>> f = student(“Bob Smith”, 23)
>>> getattr(f, “full_name”)
“Bob Smith”
>>> getattr(f, “get_age”)
 <method get_age of class
studentClass at 010B3C2>

>>> getattr(f, “get_age”)() # call it
23
>>> getattr(f, “get_birthday”)
Raises AttributeError – No method!

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)
>>> hasattr(f, “full_name”)
True
>>> hasattr(f, “get_age”)
True
>>> hasattr(f, “get_birthday”)
False

Attributes

Two Kinds of Attributes
• The non-method data stored by objects are

called attributes
• Data attributes

• Variable owned by a particular instance of a class
• Each instance has its own value for it
• These are the most common kind of attribute

• Class attributes
• Owned by the class as a whole
• All class instances share the same value for it
• Called “static” variables in some languages
• Good for (1) class-wide constants and (2)

building counter of how many instances of the
class have been made

Data Attributes
• Data attributes are created and initialized by

an __init__() method.
•  Simply assigning to a name creates the attribute
•  Inside the class, refer to data attributes using self

— for example, self.full_name
class teacher:
“A class representing teachers.”
def __init__(self,n):
 self.full_name = n
def print_name(self):
 print self.full_name

Class Attributes
• Because all instances of a class share one copy of a

class attribute, when any instance changes it, the value
is changed for all instances

• Class attributes are defined within a class definition and
outside of any method

• Since there is one of these attributes per class and not
one per instance, they’re accessed via a different
notation:
•  Access class attributes using self.__class__.name notation

-- This is just one way to do this & the safest in general.

class sample: >>> a = sample()
 x = 23 >>> a.increment()
 def increment(self): >>> a.__class__.x
 self.__class__.x += 1 24

Data vs. Class Attributes

class counter:
overall_total = 0
 # class attribute
def __init__(self):
 self.my_total = 0
 # data attribute
def increment(self):
 counter.overall_total = \
 counter.overall_total + 1
 self.my_total = \
 self.my_total + 1

>>> a = counter()
>>> b = counter()
>>> a.increment()
>>> b.increment()
>>> b.increment()
>>> a.my_total
1
>>> a.__class__.overall_total
3
>>> b.my_total
2
>>> b.__class__.overall_total
3

Inheritance

Subclasses
• Classes can extend the definition of

other classes
• Allows use (or extension) of methods and

attributes already defined in the previous one
• To define a subclass, put the name of

the superclass in parens after the
subclass’s name on the first line of the
definition
 Class Cs_student(student):
• Python has no ‘extends’ keyword like Java
• Multiple inheritance is supported

Multiple Inheritance
• Python has two kinds of classes: old and new (more

on this later)
• Old style classes use depth-first, left-to-right access
• New classes use a more complex, dynamic approach

class AO(): x = 0
class BO(AO): x = 1
class CO(AO): x = 2
class DO(BO,CO): pass

ao = AO()
bo = BO()
co = CO()
do = DO()

>>> from mi import *
>>> ao.x
0
>>> bo.x
1
>>> co.x
2
>>> do.x
1
>>>

http://cs.umbc.edu/courses/331/current/code/python/mi.py

Redefining Methods
• To redefine a method of the parent class,

include a new definition using the same name
in the subclass
•  The old code won’t get executed

• To execute the method in the parent class in
addition to new code for some method,
explicitly call the parent’s version of method

parentClass.methodName(self,a,b,c)

• The only time you ever explicitly pass ‘self’
as an argument is when calling a method of an
ancestor

Definition of a class extending student
Class Student:
“A class representing a student.”

 def __init__(self,n,a):
 self.full_name = n
 self.age = a

 def get_age(self):
 return self.age

Class Cs_student (student):
“A class extending student.”

def __init__(self,n,a,s):
 student.__init__(self,n,a) #Call __init__ for student
 self.section_num = s

def get_age(): #Redefines get_age method entirely
 print “Age: ” + str(self.age)

Extending __init__

Same as redefining any other method…
• Commonly, the ancestor’s __init__ method is

executed in addition to new commands
• You’ll often see something like this in the
__init__ method of subclasses:

 parentClass.__init__(self, x, y)

 where parentClass is the name of the parent’s
class

Special Built-In
Methods and Attributes

Built-In Members of Classes
• Classes contain many methods and

attributes that are always included
• Most define automatic functionality triggered

by special operators or usage of that class
• Built-in attributes define information that must

be stored for all classes.
• All built-in members have double

underscores around their names:
__init__ __doc__

Special Methods

• E.g., the method __repr__ exists for all
classes, and you can always redefine it
• __repr__ specifies how to turn an instance

of the class into a string
• print f sometimes calls f.__repr__() to

produce a string for object f

• Typing f at the REPL prompt calls
__repr__ to determine what to display as
output

Special Methods – Example

class student:
 ...
 def __repr__(self):
 return “I’m named ” + self.full_name
 ...

>>> f = student(“Bob Smith”, 23)

>>> print f
I’m named Bob Smith

>>> f

“I’m named Bob Smith”

Special Methods

• You can redefine these as well:
__init__ : The constructor for the class
__cmp__ : Define how == works for class
__len__ : Define how len(obj) works
__copy__ : Define how to copy a class

• Other built-in methods allow you to give a
class the ability to use [] notation like an array
or () notation like a function call

Special Data Items
• These attributes exist for all classes.
__doc__ : Variable for documentation string for class
__class__ : Variable which gives you a

reference to the class from any instance of it
__module__ : Variable which gives a reference to

the module in which the particular class is defined
__dict__ :The dictionary that is actually the

namespace for a class (but not its superclasses)
• Useful:
• dir(x) returns a list of all methods and attributes

defined for object x

Special Data Items – Example
>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”,
34)

Private Data and Methods
• Any attribute/method with two leading under-

scores in its name (but none at the end) is
private and can’t be accessed outside of
class

• Note: Names with two underscores at the
beginning and the end are for built-in
methods or attributes for the class

• Note: There is no ‘protected’ status in
Python; so, subclasses would be unable to
access these private data either

