

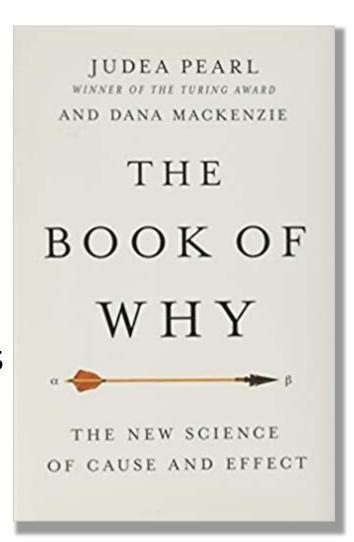
Reasoning with Bayesian Belief Networks

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- BBNs encode causal associations between facts and events the propositions represent
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

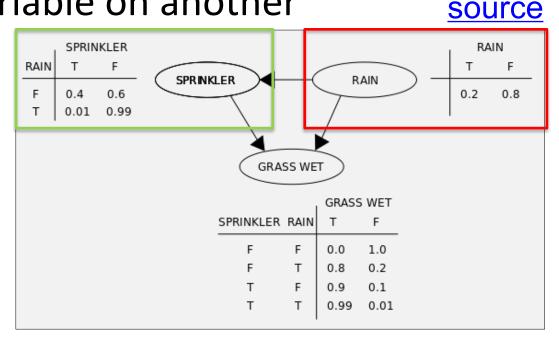
Judea Pearl

- UCLA CS professor
- Introduced <u>Bayesian</u>
 <u>networks</u> in the 1980s
- Pioneer of probabilistic approach to Al reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular 2018 <u>Book of Why</u>



BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a <u>DAG</u>) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
- Nodes have prior probabilities or conditional probability tables (CPTs)



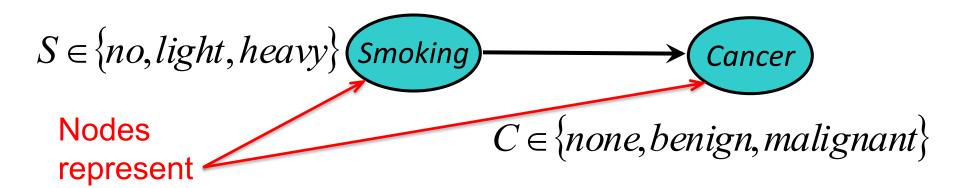
Recall Bayes Rule

$$P(H,E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H|E) = \frac{P(E|H) * P(H)}{P(E)}$$
 $P(E|H) = \frac{P(H|E) * P(E)}{P(H)}$

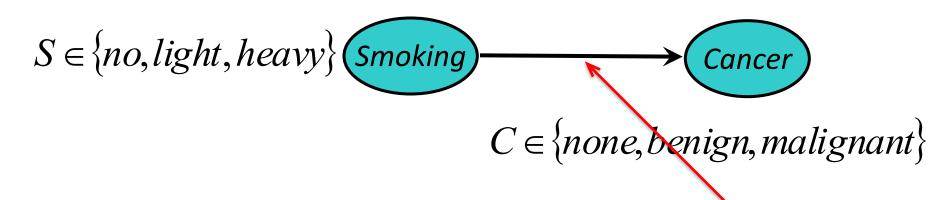
Note symmetry: we can compute probability of a *hypothesis given its evidence* as well as probability of *evidence given hypothesis*

 $C \in \{none, benign, malignant\}$



variables

- Smoking variable represents person's degree of smoking and has three possible values (no, light, heavy)
- Cancer variable represents person's cancer diagnosis and has three possible values (none, benign, malignant)



- tl;dr: smoking effects cancer
- Smoking behavior effects the probability of cancer outcome
- Smoking behavior considered evidence for whether a person is likely to have cancer or not

Directed links represent "causal" relations

Prior probability of S

P(S=no)	0.80
P(S=light)	0.15
P(S=heavy)	0.05

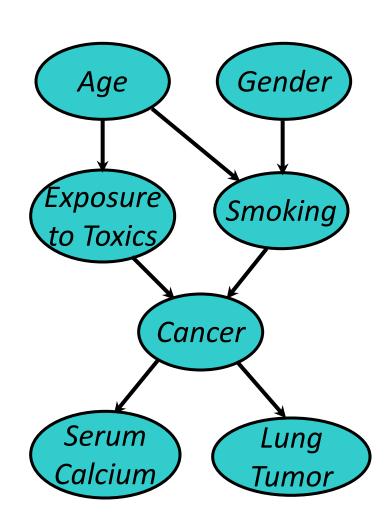
 $C \in \{none, benign, malignant\}$

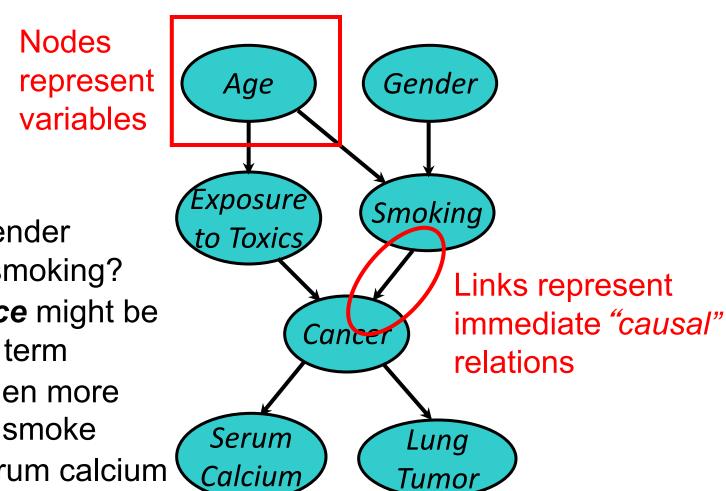
Nodes without in-links have prior probabilities

Joint distribution of S and C

Nodes with in-links have joint probability distributions

Smoking=	no	light	heavy
C=none	0.96	0.88	0.60
C=benign	0.03	0.08	0.25
C=malignant	0.01	0.04	0.15





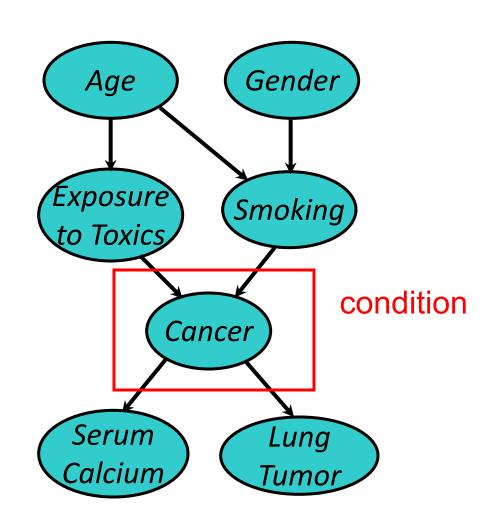
 Does gender cause smoking?

• *Influence* might be a better term

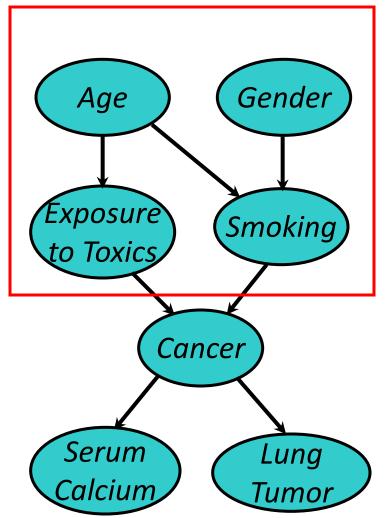
 In US men more likely to smoke

 High serum calcium level can be due to cancer

 Condition: the thing we want to predict

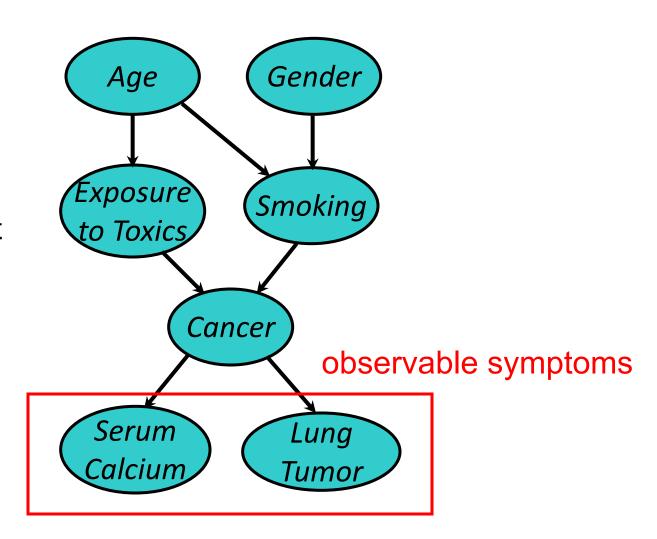


- Condition: the thing we want to predict
- Predisposition: things that effect condition's likelihood
- Symptom:
 observations
 suggesting the
 condition holds
 or not

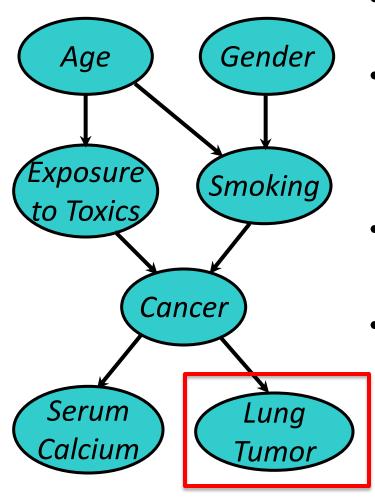


predispositions

- Condition: the thing we want to predict
- Predisposition: things that effect condition's likelihood
- Symptom:
 observations
 suggesting the
 condition holds
 or not



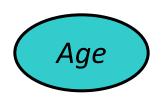
Can we predict likelihood of lung tumor given values of other six variables?



- Model has 7 variables
- Complete joint probability distribution has 7 dimensions!
- Too much data required ⊗
- BBN simplifies:
 nodes have a
 CPT with data on
 itself & parents in
 graph

CPT = conditional probability table

Independence



Age and Gender are independent*

No path between them in the graph

$$P(A,G) = P(G) * P(A)$$

$$P(A \mid G) = P(A)$$

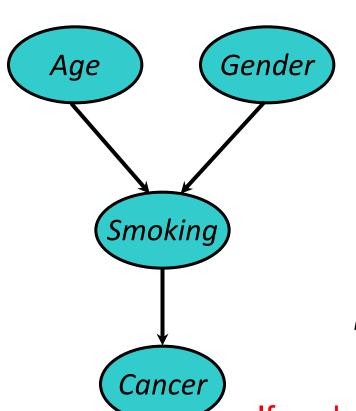
 $P(G \mid A) = P(G)$

$$P(A,G) = P(G|A) P(A) = P(G)P(A)$$

$$P(A,G) = P(A|G) P(G) = P(A)P(G)$$

* Not strictly true, but a reasonable approximation

Conditional Independence

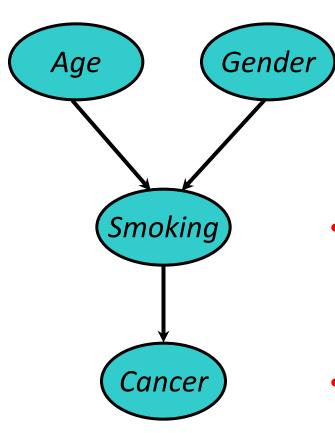


Cancer is independent of Age and Gender given Smoking

 $P(C \mid A,G,S) = P(C \mid S)$

If we know value of smoking, there is no need to know values of age or gender

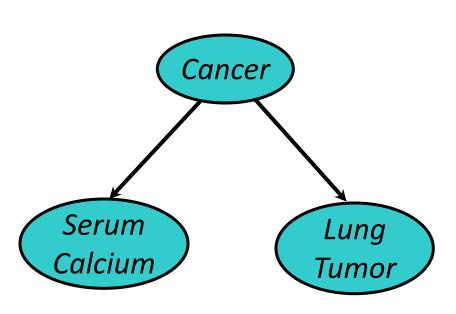
Conditional Independence



Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models (2³ +2²) rather than 16 (2⁴)

Conditional Independence: Naïve Bayes



Serum Calcium and Lung
Tumor are dependent (their presence is correlated)

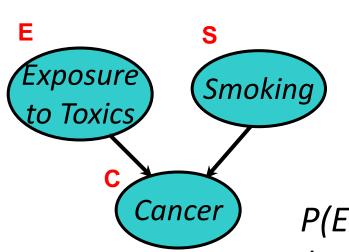
Serum Calcium is independent of Lung Tumor given Cancer

$$P(L \mid SC,C) = P(L \mid C)$$

 $P(SC \mid L,C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away



Exposure to Toxics and Smoking are independent

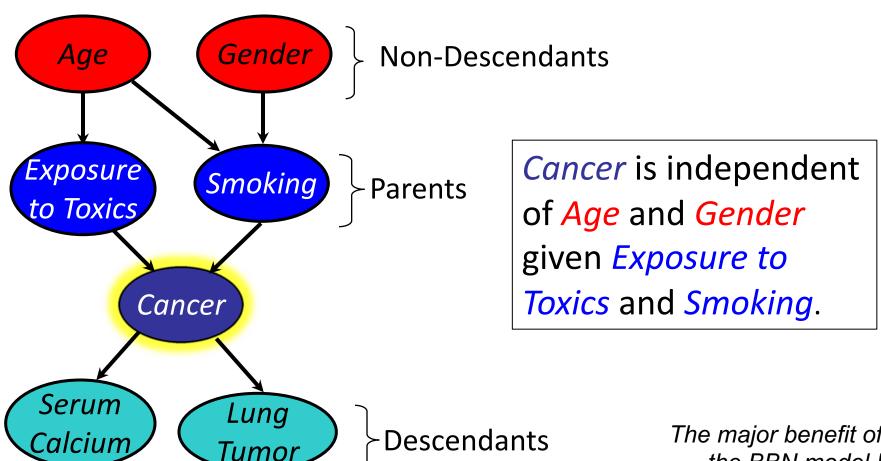
Exposure to Toxics is dependent on Smoking, given Cancer

P(E=heavy | C=malignant) > P(E=heavy | C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of <u>Occam's Razor</u> (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

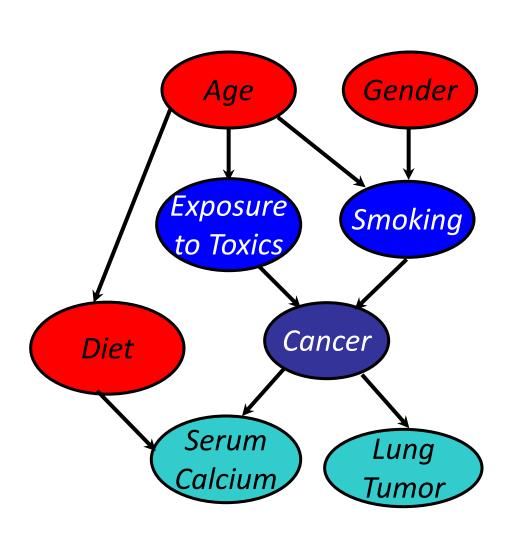
Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents



The major benefit of the BBN model !

Another non-descendant



A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of *Diet* given *Exposure* to *Toxics* and *Smoking*

BBN Construction

The knowledge acquisition process for a BBN involves three steps

KA1: Choosing appropriate variables

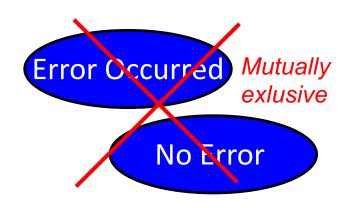
KA2: Deciding on the network structure

KA3: Obtaining the conditional probability table data

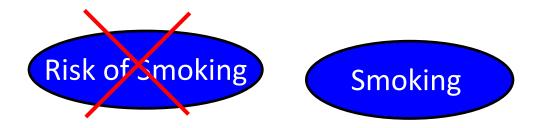
KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively exhaustive, mutually exclusive values

$$X_1 \lor X_2 \lor X_3 \lor X_4$$
$$\neg (X_i \land X_j) \quad i \neq j$$



They should be values, not probabilities

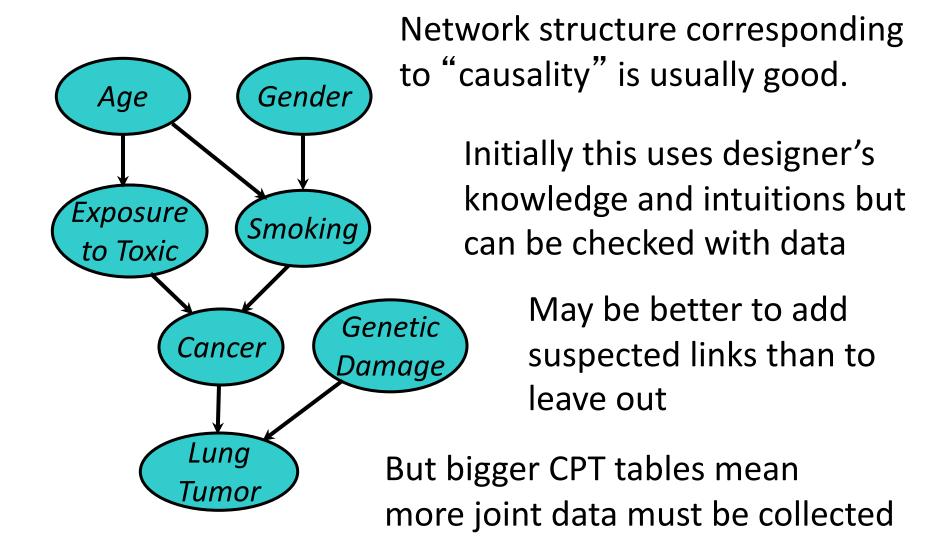


Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: \$ per gallon {<2, 2-3, 3-4, >4}
- Temperature: { ≥ 100 F , < 100 F}</p>
- User needs help on Excel Charts: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring



KA3: The Numbers

- For each variable we have a table of probability of its value for values of its parents
- For variables w/o parents, we have prior probabilities

$$S \in \{no, light, heavy\}$$

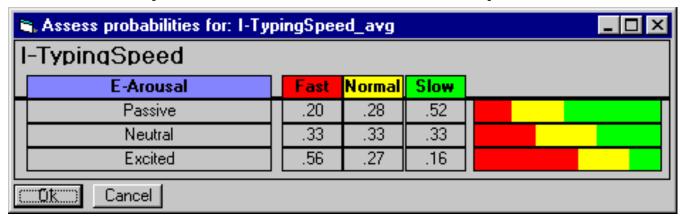
 $C \in \{none, benign, malignant\}$

smoking priors			
no	0.80		
light	0.15		
heavy	0.05		

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.15

KA3: The numbers

- Second decimal usually doesn't matter
- Relative probabilities are important



- Zeros and ones are often enough
- Order of magnitude is typical: 10⁻⁹ vs 10⁻⁶
- Sensitivity analysis can be used to decide accuracy needed

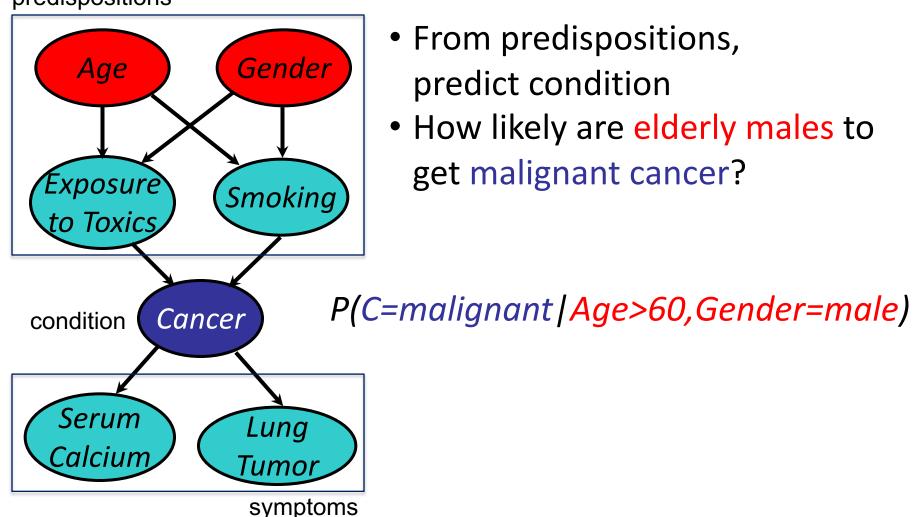
Three kinds of reasoning

BBNs support three main kinds of reasoning:

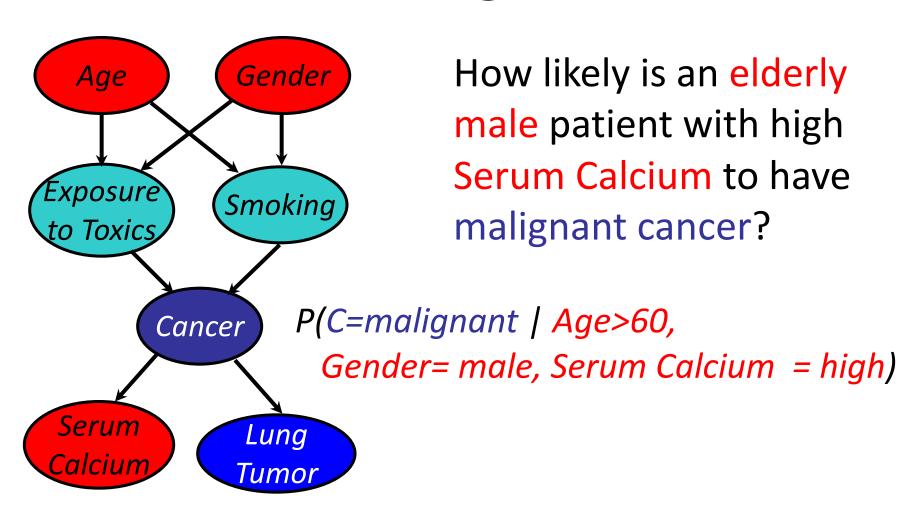
- Predicting conditions given predispositions
 "You are likely to get cancer since you are a heavy smoker"
- **Diagnosing** conditions given symptoms "You're likely to have cancer given your high serum calcium level"
- Explaining a condition by predispositions
 "Your cancer was probably caused by your exposure to lead"
 To which we can add a fourth:
- Deciding on an action based on condition probabilities
 "We should remove the lung tumor which might be cancerous"

Predictive Inference

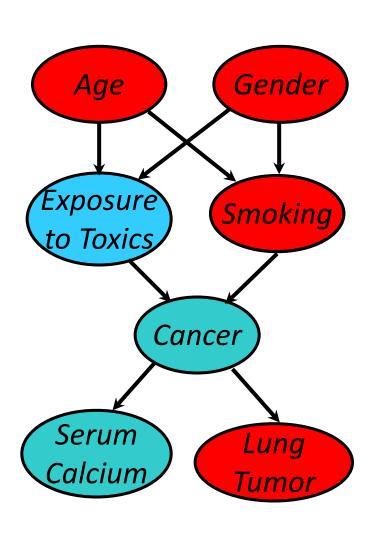
predispositions



Predictive and diagnostic combined



Explaining away

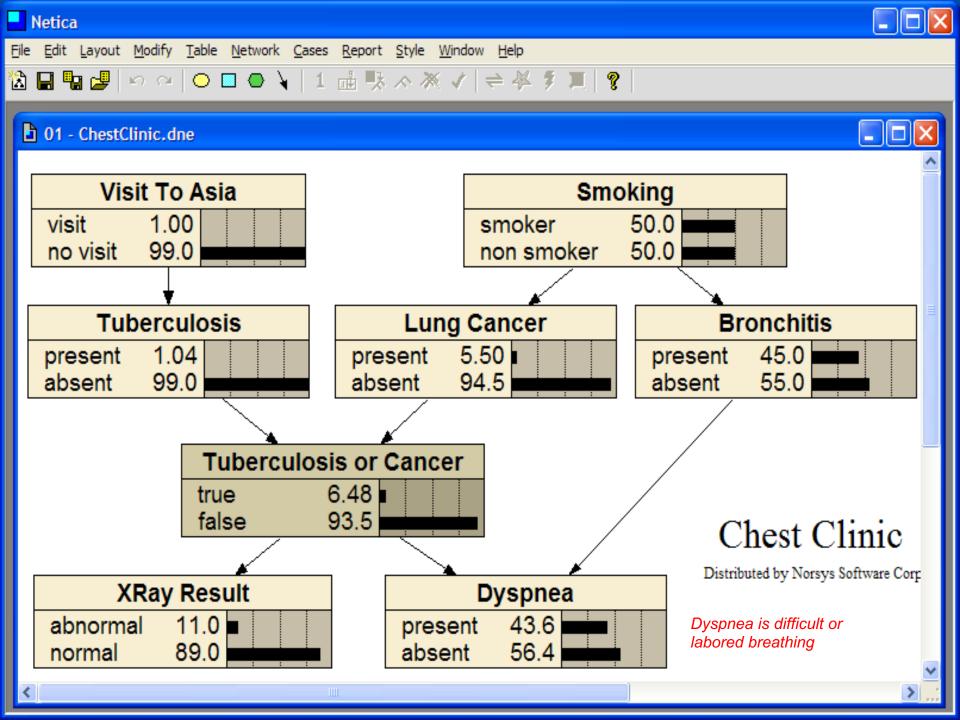


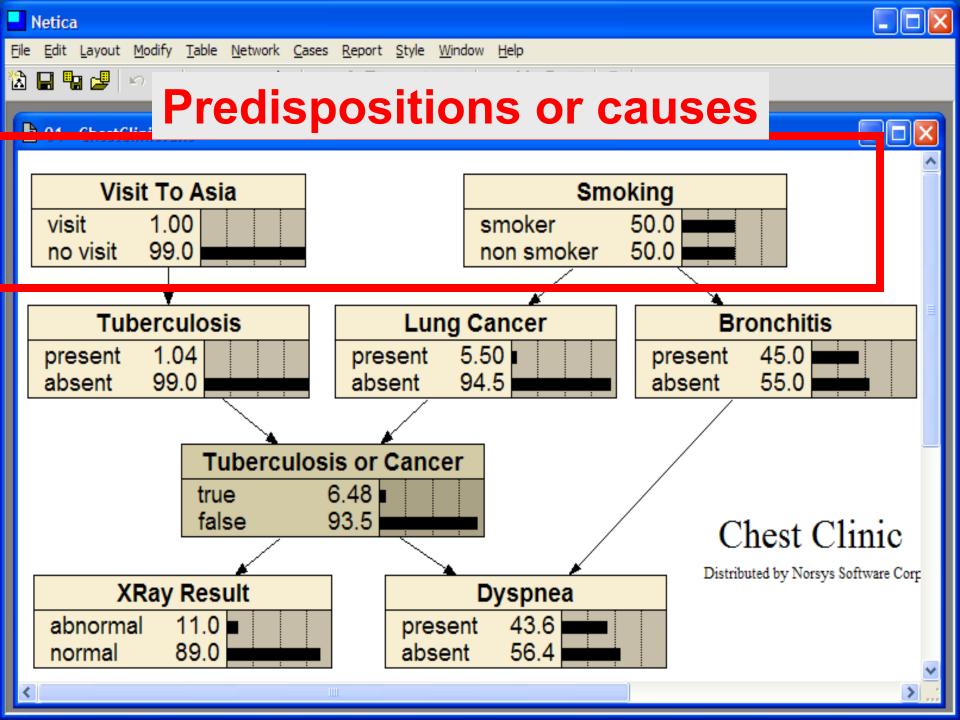
 If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up

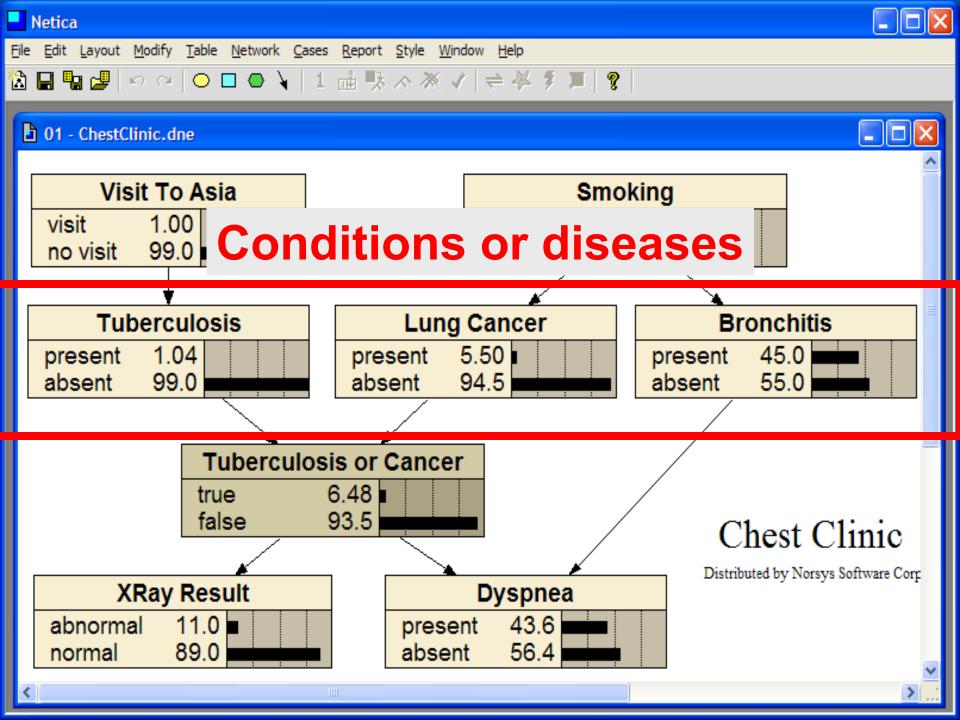
 If we then observe heavy smoking, the probability of exposure to toxics goes back down

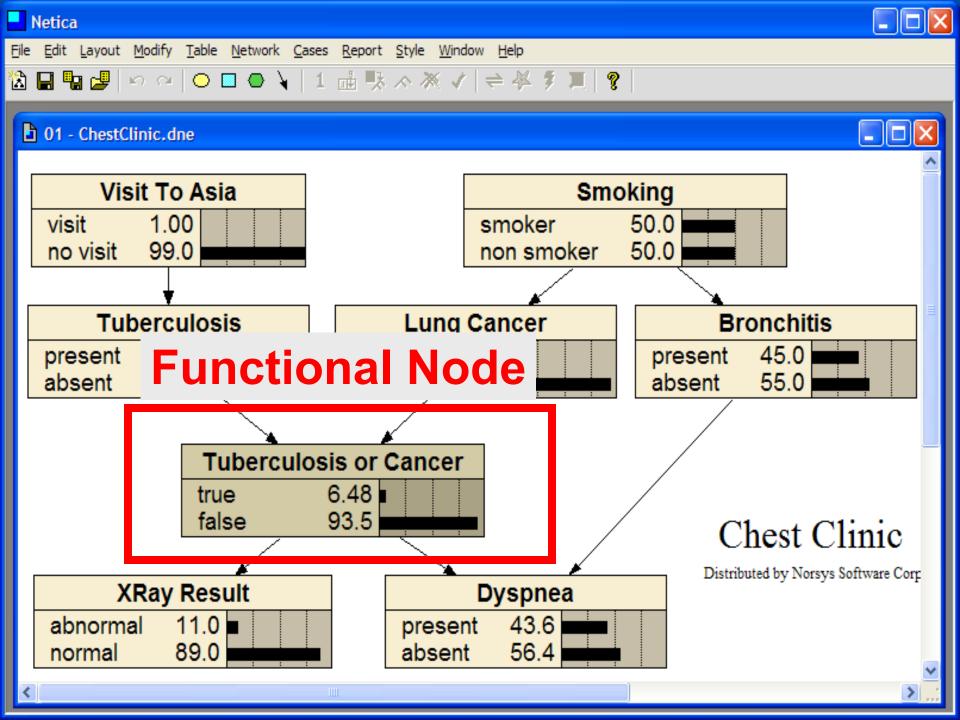
Some software tools

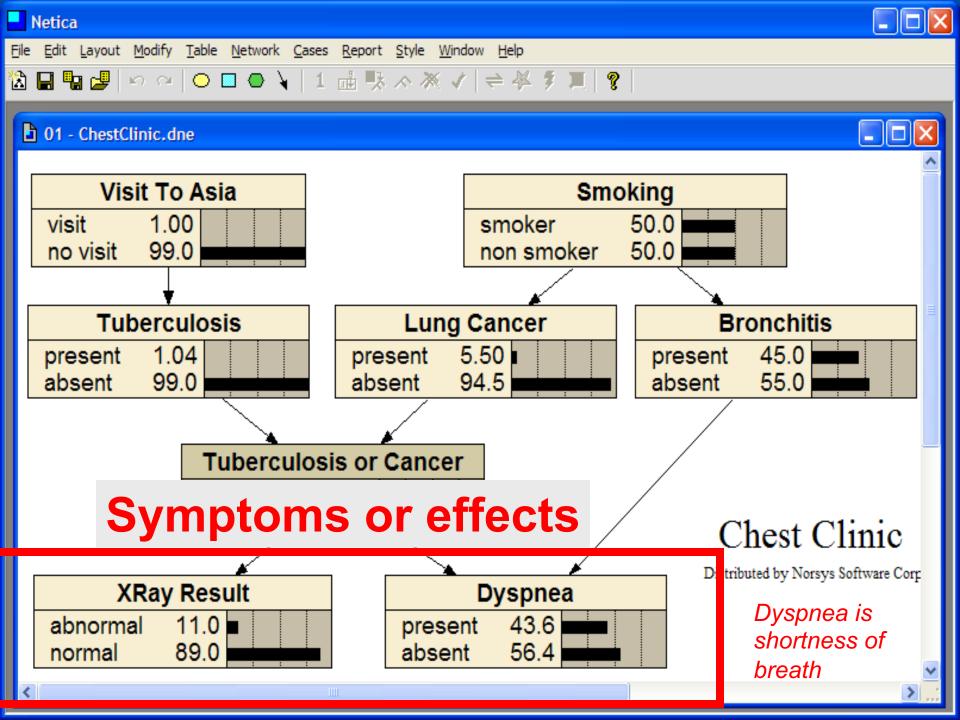
- Netica: Windows app for working with Bayesian belief networks and influence diagrams
 - Commercial product, free for small networks
 - Includes graphical editor, compiler, inference engine, etc.
 - -To run in OS X or Linus you need Wire or Crossover
- Hugin: free demo versions for Linux, Mac, and Windows are available
- BBN.ipynb based on an AIMA notebook



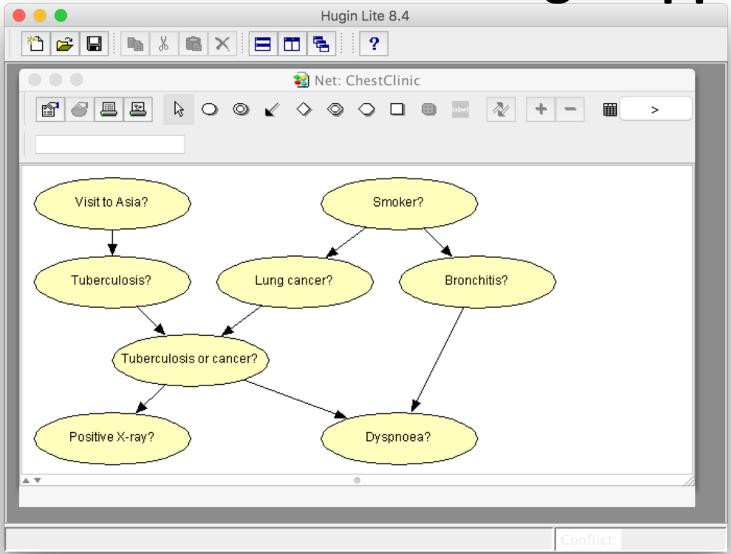








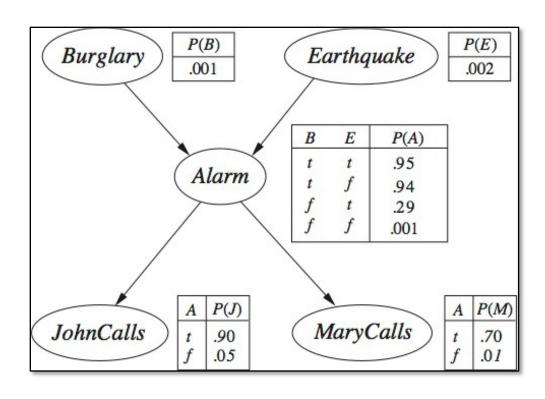
Same BBN model in Hugin app



See the 4-minute HUGIN Tutorial on YouTube

Python Code

See this <u>AIMA notebook</u> on colab showing how to construct this BBN Network in Python



Judea Pearl example

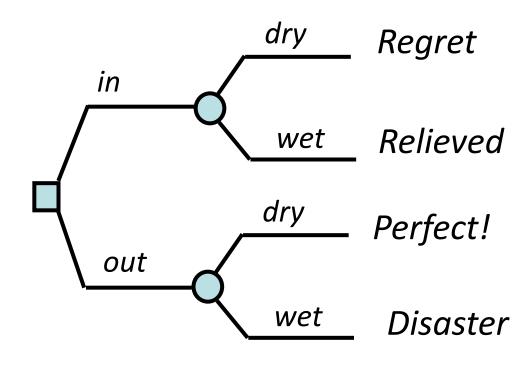
There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John & Mary, might call the owner to say the alarm is sounding.

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

Decision Problem

Should I have my party inside or outside?



Value Function

A numerical score over all possible states allows a BBN to be used to make decisions

Location?	Weather?	Value
in	dry	\$50
in	wet	\$60
out	dry	\$100
out	wet	\$0

Using \$ for the value helps our intuition

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast
 - -Forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign utility measure to each of four situations:(rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- **Utility** node computes utility value given its parents, e.g., a decision and weather
 - Assign utility to each situations: (rain|no rain) x (umbrella, no umbrella)
 - Utility value assigned to each is probably subjective

