
PDDL and the
Blocks World

Knowledge for Planning

• We’ll describe PDDL, a standard for representing
planning problems

• We’ll look at the classic blocks world in PDDL via:
– BW: a domain file
– Several problem files

• We’ll use planning.domains to demonstrate
solving the problems

• And then show simple extensions to the domain
by adding predicates and constants

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
http://planning.domains/

PDDL

•Planning Domain Description Language
•Based on STRIPS with various extensions
•First defined by Drew McDermott (Yale) et al.

– Classic spec: PDDL 1.2; good reference guide

•Used in biennial International Planning
Competition (IPC) series (1998-2022)

•Many planners use it as a standard input
•Latest version is 3.1 and newer variants exist

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions
mailto:https://www.icaps-conference.org/competitions/

PDDL is still widely used

•After 24 years, PDDL still used in many
planning systems and domains as a
standard for input and output

•Its representation was updated, e.g., adding
– fluents (facts that change over time)
– preferences (aka soft constraints)

•New variants support multiple agents,
ontologies, and more

•It still retains is traditional Lisp syntax

https://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)

PDDL Representation
•Task specified via two files: domain file and

problem file
– Both use a logic-oriented notation with Lisp syntax

•Domain file defines a domain via requirements,
predicates, constants, and actions
– Used for many different problem files

•Problem file: defines problem by describing its
domain, specific objects, initial state, and goal
state

•Planner: domain + problem è a plan

Blocks Word
Domain File

(define (domain BW)
(:requirements :strips)
(:constants red green blue yellow small large)
(:predicates (on ?x ?y) (on-table ?x) (color ?x ?y) … (clear ?x))
(:action pick-up

:parameters (?obj1)
:precondition (and (clear ?obj1) (on-table ?obj1)

(arm-empty))
:effect (and (not (on-table ?obj1))

(not (clear ?obj1))
(not (arm-empty))
(holding ?obj1)))

… more actions ...)

Blocks Word
Problem File(define (problem 00)

(:domain BW)
(:objects A B C)
(:init (arm-empty)

(ontable A)
(on B A)
(on C B)
(clear C))

(:goal (and (on A B)
(on B C)
(ontable C)))

A

C

B

C

A

B

What’s a Plan?

•For simple planning problems…
•A planner takes a problem that identifies

the problem domain (e.g. BW)
•And produces an ordered set of actions with

references to objects in the problem
•Which when executed in order achieves the

goal

Planner: Domain + Problem => Plan
(define (problem 00)

(:domain BW)
(:objects A B C)
(:init (arm-empty)

(on B A)
(on C B)
(clear C))

(:goal (and (on A B)
(on B C))))

A

C

B

C

A

B

Begin plan
1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)
5 (pick-up a)
6 (stack a b)
End plandomain + problem è planner è

bw.pddl 1
(define (domain bw)

(:requirements :strips)

(:predicates
(on ?x ?y) ; object ?x is on ?object ?y
(on-table ?x) ; ?x is directly on the table
(clear ?x) ; ?x has nothing on it
(arm-empty) ; robot isn't holding anything
(holding ?x)) ; robot is holding ?x

;; 4 actions to manipulate objects: pickup, putdown, stack, unstack
… actions in next four slides …

Allows basic add and
delete effects in actions

List all the predicates
with their arguments

Variables begin
with a ?

% starts a one-
line comment

bw.pddl 2
(:action pick-up

:parameters (?ob)

:precondition
(and (clear ?ob)

(on-table ?ob)
(arm-empty))

:effect
(and (not (on-table ?ob))

(not (clear ?ob))
(not (arm-empty))
(holding ?ob)))

Variable for the argument
of a pick-up action

These three statements
must be True before we
can do a pick-up action

After doing a pick-up
action, these become
True

Adding (not ?X) removes
?X if it’s in the KB.

bw.pddl 3(:action put-down
:parameters (?ob)
:precondition (holding ?ob)
:effect

(and (not (holding ?ob))
(clear ?ob)
(arm-empty)
(on-table ?ob)))

(:action stack
:parameters (?ob1 ?ob2)
:precondition (and (holding ?ob) (clear ?ob2))
:effect

(and (not (holding ?ob))
(not (clear ?ob2))
(clear ?ob)
(arm-empty)
(on ?ob ?ob2)))

put-down means put the
thing you’re holding on
the table

stack means put the
thing you are holding on
another object

bw.pddl 5
(:action unstack

:parameters (?ob1 ?ob2)
:precondition

(and (on ?ob1 ?ob2)
(clear ?ob1)
(arm-empty))

:effect
(and (holding ?ob1)

(clear ?ob2)
(not (clear ?ob1))
(not (arm-empty))
(not (on ?ob1 ?ob2)))

) ; this closes the domain definition

First arg can’t have
anything on it & the
robot can’t be holding
anything

unstack means take the
first arg off the second
arg

Updates to KB
describing new state of
the world

p03.pddl

;; The arm is empty and there is a stack of three blocks: C is on B which is on A
;; which is on the table. The goal is to reverse the stack, i.e., have A on B and B
;; on C. No need to mention C is on the table, since domain constraints will enforce it.

(define (problem p03)
(:domain bw)
(:objects A B C)
(:init (arm-empty)

(on-table A)
(on B A)
(on C B)
(clear C))

(:goal (and (on A B)
(on B C))))

A

C

B

C

A

B

http://planning.domains/

Open the PDDL editor,
upload our domain and
problem files, and run
the solver.

Planning.domains

•Open source environment for providing
planning services using PDDL (GitHub)

•Default planner is ff (aka, fastForward)
– very successful forward-chaining heuristic

search planner producing sequential plans
– Can be configured to work with other planners

•Use interactively or call via web-based API
•We’ve used it for to extend blocks world

domain in homework

https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html

Online Demonstration

Using planning.domains and files in the
planning directory of our 2022 code and data
repo

•bw.pddl
•p01.pddl
•p02.pddl …

•Air Cargo
–ac_domain.pddl
–Ac_p0.pddl

http://planning.domains/
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data/tree/main/planning
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data

Fin
18

