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Overview

•There are many ways to approach reasoning 
with propositional logic

•We’ll look at one, resolution refutation, 
that can be extended to first order logic

•Later, we will look other approaches that 
are special to propositional logic
– Some of there are more efficient

https://en.wikipedia.org/wiki/Resolution_(logic)


Reasoning / Inference
•Logical inference creates new sentences that 

logically follow from a set of sentences, i.e.,
those in the KB

•It can also detect if a KB is inconsistent, i.e., has 
sentences that entail a contradiction

•An inference rule is sound if every sentence it 
produces from a KB logically follows from the KB
–i.e., inference rule creates no contradictions

•An inference rule is complete if it can produce 
every expression that logically follows from (is 
entailed by) the KB



Sound rules of inference
Examples of sound rules of inference
Each can be shown to be sound using a truth table

RULE PREMISE CONCLUSION

Modus Ponens A, A ® B B
And Introduction A, B A Ù B
And Elimination A Ù B A
Double Negation ¬¬A A
Unit Resolution A Ú B, ¬B A
Resolution A Ú B, ¬B Ú C A Ú C



Resolution
•Resolution is a valid inference rule producing a

new clause implied by two clauses containing 
complementary literals

Literal: atomic symbol or its negation, i.e., P, ~P
complementary literals: any variable and its negation

•Amazingly, this is the only interference rule needed 
to build a sound & complete theorem prover
– Based on proof by contradiction, usually called 

resolution refutation
•This property of the resolution rule was found by 

Alan Robinson (CS, U. of Syracuse) in the mid 1960s

https://en.wikipedia.org/wiki/Resolution_(logic)
https://en.wikipedia.org/wiki/Proof_by_contradiction
http://en.wikipedia.org/wiki/John_Alan_Robinson


Resolution

•A KB is a set of sentences all of which are true, 
i.e., a conjunction of sentences

•To use resolution, put KB into conjunctive 
normal form (CNF) 
– Each sentence is a disjunction of one or more 

literals (positive or negative atoms)

•Every KB can be put into CNF, by rewriting its 
sentences using standard tautologies, e.g.:
– P ® Q ≡  ~P Ú Q
– P Ú (Q Ù R)   ≡   (P Ú Q) Ù (P Ú R)   ≡   (P Ú Q) , (P Ú R) 

https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form


Resolution Example

• KB: [P®Q , Q®RÙS]
• KB: [P®Q , Q®R, Q®S ]
• KB in CNF: [~PÚQ , ~QÚR , ~QÚS]
• Resolve KB[0] & KB[1] producing 

KB[4]: ~PÚR   (i.e., P®R)
• Resolve KB[0] & KB[2] producing 

KB[5]: ~PÚS   (i.e., P®S)
• New KB: 

[~PÚQ , ~QÚR, ~QÚS, ~PÚR, ~PÚS]

Tautologies
(A®B) ↔ (~A Ú B)

(AÚ (B Ù C)) ↔ (AÚB)Ù(AÚC) 

0: ~PÚQ
1: ~QÚR
2: ~QÚS
3: ~PÚR
4: ~PÚS

https://en.wikipedia.org/wiki/Conjunctive_normal_form


Proving it’s raining with rules
• A proof is a sequence of sentences, where each is a 

premise (i.e., a given) or is derived from earlier 
sentences in the proof by an inference rule

• Last sentence is the theorem (also called goal or query) 
that we want to prove

• The weather problem using traditional reasoning
1 Hu premise “It's humid”
2 Hu®Ho premise “If it's humid, it's hot”
3 Ho modus ponens(1,2) “It's hot”
4 (HoÙHu)®R premise “If it's hot & humid, it's raining”
5 HoÙHu and introduction(1,3) “It's hot and humid”
6 R modus ponens(4,5) “It's raining”



Proving it’s raining with resolution
Hu =>  Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Ho

~Hu∨R

R

Hu =>  R

A Resolution proof of R 



A simple proof procedure
This procedure generates new sentences in a KB
1. Convert all sentences in the KB to CNF1

2. Find all pairs of sentences with complementary 
literals2 that have not yet been resolved

3. If there are no pairs stop else resolve each pair, 
adding the result to the KB and go to 2

•Is it sound?, complete? always terminate?

1: a KB in conjunctive normal form 
is a set of disjunctive sentences 

2: a literal is a variable or its 
negation



Propositional Resolution

•It is sound!
•It’s not generatively complete in that it can’t 

derive all clauses that follow from the KB
– The issues are not serious limitations, though
– Example: if the KB includes P and includes Q we 

won’t derive P ^ Q

•It will always terminate
•But generating all clauses that follow can 

take a long time and many may be useless



Refutation proofs
•Common use case: we have a question/goal (e.g, P) 

and want to know if it’s true given our KB
•We assume every sentence in our initial KB is true
•A refutation proof is a common approach:

– We start with a KB with all true facts
– Add negation of what we want to prove (e.g., ~P)
– Try to find a contradiction
– If our proof ever produces one, it must be due to 

adding ~P, so goal is proven
•Procedure easy to focus & control, so is tends to be 

more efficient



Resolution refutation proof of P
1.Add negation of goal to the KB, ~P
2.Convert all sentences in KB to CNF
3.Find pairs of sentences with complementary 

literals that have not yet been resolved
4.If there are no pairs stop else resolve each 

pair, adding the result to the KB and go to 2
•If we get an empty clause (i.e., contradiction) 

then P follows from the KB
– e.g., resolving X with ~X results in an empty clause

•If not, conclusion can’t be proved from the KB



Proving it’s raining with refutation resolution                                                                     

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu =>  Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu =>  R

~R

negation
of goal

empty
clause

A Resolution proof of R 



Propositional Reasoning

•Many other reasoning tasks with propositions
•Boolean Satisfiability (SAT) involves finding a set 

of values that will make a KB true
– While NP complete, heuristic SAT-algorithms can 

solve problems with 10s of thousands of variables
•There are many efficient and scalable proof 

procedures for sets of propositions 
•Reducing a problem to a set of propositions and 

using an efficient proof technique is often a good 
way to solve a problem

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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