Neural Networks for

Machine Learning
History and Concepts




Overview

e The neural network computing model has a
long history

e Evolved over 75 years to solve its inherent
problems, becoming the dominant model
for machine learning in the 2010s

e Neural network models often give better
results than earlier ML models

e But they are expensive to train and apply
eThe field is still evolving rapidly
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How do
animal brains
work?

Outputs

Myelin sheat

Myelinated axon

- -

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

Neurons have body, axon and many dendrites

e|n one of two states: firing and rest

eThey fire if total incoming stimulus > threshold
Synapse: thin gap between axon of one neuron
and dendrite of another

eSignal exchange


https://en.wikipedia.org/wiki/Neuron
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e First mathematical model of biological
neurons, 1943

e All Boolean operations can be implemented
by these neuron-like nodes

e Competitor to Von Neumann model for
general purpose computing device

e Origin of automata theory



Artificial neural network

Inputs Summation and Bias Activation Output

* Model still used today!

* Set of nodes with inputs and outputs

* Node performs computation via an activation function

* Weighted connections between nodes

* Connectivity gives network architecture

* NN computations depend on connections, weights, and
activation function



Common Activation Functions

* Define the output of a node given an input
* Very simple functions!

* Choice of activation function depends on
problem and available computational power


https://en.wikipedia.org/wiki/Activation_function

Rosenblatt’s perceptron (1958-60)

e Single layer network of nodes

e Real valued weights +/-

e Supervised learning using a
simple learning rule

— out(t)

in(t) <

. @ wo(t) = 8

e Essentially a linear classifier

e Widrow & Hoff (1960-62)
added better learning rule
using gradient descent

Mark 1 perceptron computer, Cornell
Aeronautical Lab, 1960



https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Gradient_descent

Single Layer Perceptron

NEW NAVY DEVICE LEARNS BY DOING;

Psychologist Shows Embryo of Computer
Designed to Read and Grow Wiser

SPECIAL TO THE NEW YORK TIMES JULY 8, 1958

WASHINGTON, July 7 (UPI) -- The Navy revealed the
embryo of an electronic computer today that it expects will

Ve

be able to walk, talk, see, write, reproduce itself and be
conscious of its existence.

0

e See the full 1958 NYT article above here

e Rosenblatt: it can learn to compute functions
by learning weights on inputs from examples



https://en.wikipedia.org/wiki/Perceptron
https://www.csee.umbc.edu/courses/undergraduate/471/spring18/01/resources/MBC-Rosenblatt-Perceptron-NYT-article.jpg.pdf

Setback in mid 60s — late 70s

e Perceptrons, Minsky and Papert, 1969

e Described serious problems with
perceptron model

— Single-layer perceptrons cannot represent (learn) simple
functions that are not linearly separable, such as XOR

— Multi-layers of non-linear units may have greater power but
there is no learning rule for such nets

— Scaling problem: connection weights may grow infinitely

— First two problems overcame by latter effort in 80s, but
scaling problem persists

e Death of Rosenblatt (1964)

e Al focused on programming intelligent systems
on traditional von Neuman computers


https://en.wikipedia.org/wiki/Perceptrons_(book)

Not with a perceptron ®

Consider Boolean operators (and, or, xor)
with four possible inputs: 00 01 10 11
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Training examples are not linearly separable

for one case: sum=1 iff x1 xor x2




Renewed enthusiasm 1980s

e Use multi-layer perceptron

e Backpropagation for multi-layer feed forward nets,
with non-linear, differentiable node functions

— Rumelhart, Hinton, Williams, Learning representations by
back-propagating errors, Nature, 1986.

e Other ideas:

— Thermodynamic models (Hopfield net, Boltzmann
machine ...)

— Unsupervised learning

e Applications to character recognition, speech
recognition, text-to-speech, etc.



https://en.wikipedia.org/wiki/Backpropagation
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

‘\ MLP:
Multilayer
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'/ - Perceptron
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e >1 “hidden layers” between inputs & output

* Can compute non-linear functions (why?)

* Training: adjust weights slightly to reduce error
between output y and target value t; repeat

* Introduced in 1980s, still used today


https://en.wikipedia.org/wiki/Multilayer_perceptron

Feed Forward Neural Network

Input Layer

Hidden Layer

Output Layer

>
Information flows in forward direction only

© machinelearningknowledge.ai
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Neural Network — Backpropagation %ﬂ%
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Backpropagation Explained

Click on image (or
here) for a simple
interactive demo in
your browser of how
backpropagation
updates weights in a
neural network to
reduce errors when
processing training
data

Simple neural network

On the right, you see a neural network with one input, one
output node and two hidden layers of two nodes each.

Nodes in neighboring layers are connected with weights
w;;, which are the network parameters.



https://www.csee.umbc.edu/courses/undergraduate/471/spring21/02/resources/backprop_explained_scroll.html
https://en.wikipedia.org/wiki/Backpropagation

But problems remained ...

e |t's often the case that solving a problem
just reveals a new one that needs solving

eFor a large MLPs, backpropagation takes
forever to converge!

®* TWO issues:
—Not enough compute power to train the model

—Not enough labeled data to train the neural net

e SVMs may be better, since they converge to
global optimum in O(n”"2)

17



GPUs solve compute -

power problem
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e GPUs (Graphical Processing e
Units) became popularin

the 1990s to handle computing needed for better
computer graphics

e GPUs are SIMD (single instruction, multiple data)
pProcessors

e Cheap, fast, and easy to program

e GPUs can do matrix multiplication and other
matrix computations very fast

18


https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/SIMD

Need lots of data!

¢ 2000s introduced big
data

e Cheaper storage

e Parallel processing
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(e.g., MapReduce, Hadoop, Spark)

e Data sharing via the Web

— Lots of images, many with captions

— Lots of text, some with labels

e Crowdsourcing systems (e.g., Mechanical Turk)
provided a way to get more human annotations



https://en.wikipedia.org/wiki/Amazon_Mechanical_Turk

New problems are surfaced

e 2010s was a decade of domain applications

e These came with new problems, e.g.,
- Images are too highly dimensioned!
- Variable-length problems cause gradient problems
- Training data is rarely labeled
- Neural nets are uninterpretable
- Training complex models required days or weeks

e This led to many new “deep learning” neural
network models

20



Deep Learning

e Deep learning refers to models going beyond
simple feed-forward multi-level perceptron

—Though it was used in a ML context as early as 1986

e “deep” refers to the models having many
layers (e.g., 10-20) that do different things

224x224x3 224x224%x64

112x112x128

56x56x256

ks 14x14x512
/ e 7x7x512
" It S L 1x1x4096 ~ 1x1x1000
I )
22 layel/‘S! @ convolutional + ReLU
1) max pooling

z A

() fully connected + ReLU

The VGG16 CNN model for 1mage processing

softmax
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https://en.wikipedia.org/wiki/Deep_learning
https://neurohive.io/en/popular-networks/vgg16/

Neural Network Architectures

Current focus on large networks with different
“architectures” suited for different kinds of
tasks

e Feedforward Neural Network

e CNN: Convolutional Neural Network

e RNN: Recurrent Neural Network

¢ STM: Long Short Term Memory

* GAN: Generative Adversarial Network

e Transformers: generating output sequence
from input sequence



Feedforward Neural Network

e Connections allowed from a node in layer i
only to nodes in layer i+1

i.e., no cycles or loops

eSimple, widely used architecture, provides a
good baseline

«(‘ downstream nodes
‘\\ tend to successively
. .,. abstract features from

preceding layers

LAYER 0 LAYER 1 LAYER 2 LAYER3

(Input Laver) D 4 (Output Laver)

Hidden Layers


https://en.wikipedia.org/wiki/Feedforward_neural_network
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CNN: Convolutional Neural Network

Convolution
Layer Pooling

1b*d$ /;22522%%222224/ Layer
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( ) 10 filters Max Pooling

L e ~ A
(T \/ A 1 <
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Convolution AAAAAAAAA 10
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Pooling

Max Pooling
(2x2)

Dropout (0.25)

FC*

Lover ¢

/
100

Flatten

Layer

Output

v
10 10

Log Softmax

*FC=Fully Connected

e Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

e Successive convolution layers learn higher-level features

e Classic demo: learn to recognize hand-written digits from
MNIST data with 70K examples

>0

A/



https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/MNIST_database

RNN: Recurrent Neural Networks

* Good for learning over sequences of data,

e.g., a sentence of words

* LSTM (Long Short Term Memory) a popular

architecture

Input:
a Word

—>

Stateful Model

Output:
Most likely next word

Recurrent
Neural Network

—>

an

Memory of previous words
influence next predicition

Output so far:
Machine

gif from Adam Geitgey



https://en.wikipedia.org/wiki/Recurrent_neural_network
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

GAN: Generative Adversarial Network

e System of two neural networks competing
against each other in a zero-sum game
framework

e Provides a kind of unsupervised learning that
improves the network

e Introduced by lan Goodfellow et al. in 2014

e Can learn to draw samples from a model that
is similar to data that we give them

32


https://en.wikipedia.org/wiki/Generative_adversarial_network

Transformer

Output

Probabilities
Linear
e Introduced in 2017 (™
Feed
e Used primarily for natural language e
. “\
processing tasks (G5 Tom) ‘ ) |
Feed Attention
. . Forwar: N x
e NLP applications “transform” an | - =
H H Nx Add & Norm ﬁ
input text into an output text g I
AltennoLn :t‘:;ntf?n
— E.g., translation, text summarization, - T
L J . s
uestion answerin ositiona celtiona
q g E”C([)(“”.(ll ®_€h ¢ En},(‘t)dmg|
e Uses encoder-decoder architecture S B
e Popular pretrainted models available, .,,;I,,s Outputs

e.g. BERT and GPT

(shifted right)
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https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/GPT-3

Deep Learning Frameworks (1)

e Popular open-source deep learning frame-
works use Python at top-level; C++ in backend

—TensorFlow (via Google)

—PyTorch (via Facebook)
—MxNet (Apache)

— Caffe (Berkeley)
—Keras (Open Source)

e TensorFlow and PyTorch now dominate; both
make it easy to specify a complicated network


https://www.tensorflow.org/
https://pytorch.org/
https://en.wikipedia.org/wiki/Apache_MXNet
https://en.wikipedia.org/wiki/Caffe_(software)
https://keras.io/

Deep Learning Frameworks (2)
See this article for a good comparison

PyTorch vs TensorFlow for Your Python Deep Learning Project



https://realpython.com/pytorch-vs-tensorflow/

Keras m

e “Deep learning for humans”

e A popular APl works with TensorFlow 2.0,
provides good support at architecture level

e Keras now (v2.4) on

e Supports CNNs and
layers like dropout,
pooling

y supports TensorFLow
RNNs and common utility

natch normalization and

e Coding neural networks used to be a LOT
harder; Keras makes it easy and accessible!

e Documentation: https://keras.io/
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https://en.wikipedia.org/wiki/Keras
https://keras.io/

Keras: APl works with TensorFlow 2.0

model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),

layers.Dropout(0.5),

layers.Dense(num_classes, activation="softmax"),

RelLU Softmax
32 32 64 64
channels channels channels channels
5
5x5 Conv i 22 i X5 Conv 22 | 7 flatten
55 Input . +RelU Max | 14 . + RelLU L L MaXx POO| s
image layer pooling layer (S=2)
(stride 1) (stride 2) (stride 1) 7
14 14
28 28
Layer 1 Layer 2
Fully Fully
connected connected Output layer
layer 1 layer 2 (10 nodes)
(7x7x64 (1000
= 3164 nodes)

nodes)


https://keras.io/

NNs Good at Transfer Learning

e Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial
model to train on a different task

e Particularly effective for image recognition

TRAINING FROM SCRATCH

CARv
a LEARNED FEATURES 93532" TRUCK X
| FESHER ... | ¢ .
= e o P % REh .
2%
BICYCLE X

TRANSFER LEARNING

( ) T CARv
i =y PRE-TRAINED CNN { NEW TASK {
W Re— ‘ TRUCK X
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https://en.wikipedia.org/wiki/Transfer_learning

Good at Transfer Learning

e For images, the initial stages of a model learn high-
evel visual features (lines, edges) from pixels

e Final stages predict task-specific labels
()l
(())f/f n ()()

Q E> E> ;[> QE(lml.lnlu
3\ >
()11 = label predictor G, (+:6,)
%

| lassifier G 7}
/)/// ()”f ,.g (()lllllll(Al iher Gg(-:04)

+ Y ey, % g
feature extractor Gs(+;0y) 4,,_"/,-,;,’//
oV E> E> @ domain label d
0L
i
) a0, 9L g @
00 4

forwardprop  backprop (and produced derivatives)
source:http://ruder.io/transfer-learning/ s



http://ruder.io/transfer-learning/

Fine Tuning a NN Model / "

_
e Special kind of transfer learning “

— Start with a pre-trained model

— Replace last output layer with a new one

— One option: Fix all but last layer by marking as
trainable:false

e Retraining on new task and data very fast
— Only the weights for the last layer are adjusted

e Example
— Start: NN to classify animal pix with 100s of categories

— Finetune on new task: classify pix of 10 common pets
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Conclusions

e Quick intro to neural networks & deep learning

e|earn more by
—Take UMBC’s CMSC 478 machine learning class

—Try scikit-learn’s neural network models

—Explore Keras as : https://keras.io/

—Explore Google’s Machine Learning Crash Course

—Work through examples

eand then try your own project idea


https://catalog.umbc.edu/preview_course_nopop.php?catoid=15&coid=44919
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://keras.io/
https://developers.google.com/machine-learning/crash-course/

