PDDL and the
Blocks World

Knowledge for Planning

e We’ll describe PDDL, a standard for representing
planning problems

e We'll look at the classic blocks world in PDDL via:
— BW: a domain file

— Several problem files

e We'll use planning.domains to demonstrate
solving the problems

e And then show simple extensions to the domain
by adding predicates and constants

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
http://planning.domains/

oL A o B

e Planning Domain Description Language

e Based on STRIPS with various extensions
e First defined by Drew McDermott (Yale) et al.

—Classic spec: PDDL 1.2; good reference guide

e Used in biennial International Planning
Competition (IPC) series (1998-2022)

e Many planners use it as a standard input

e | atest version is 3.1 and newer variants exist

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions
mailto:https://www.icaps-conference.org/competitions/

PDDL is still widely used

e After 24 years, PDDL still used in many
planning systems and domains as a
standard for input and output

e |ts representation was updated, e.g., adding

— fluents (facts that change over time)

— preferences (aka soft constraints)

e New variants support multiple agents,
ontologies, and more

e |t still retains is traditional Lisp syntax

https://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)

PDDL Representation

e Task specified via two files: domain file and
problem file

—Both use a logic-oriented notation with Lisp syntax

e Domain file defines a domain via requirements,
predicates, constants, and actions

— Used for many different problem files

e Problem file: defines problem by describing its
domain, specific objects, initial state, and goal
state

e Planner: domain + problem =2 a plan

| | Blocks Word
(define (domain BW) . .
(:requirements :strips) Domain File

(:constants red green blue yellow small large)

Al
(:predicates (on ?x ?y) (on-table ?x) (color ?x ?y) ... (clear ?x))
(:action pick-up
:parameters (?objl)
:precondition (and (clear ?0bjl1) (on-table ?0bjl)
(arm-empty))
:effect (and (not (on-table ?0bj1))
(not (clear ?0bj1))
(not (arm-empty))
(holding ?0bj1)))
... more actions ...)

(define (problem 00)
(:domain BW)
(:objects A B C)
(:init (arm-empty)

(ontable A)
(on B A)
(on C B)
(clear C))
(:goal (and (on A B)
(on B C)
(ontable C)))

Blocks Word
Problem File

i

@

m’

What’s a Plan?

e For simple planning problems...

e A planner takes a problem that identifies
the problem domain (e.g. BW)

e And produces an ordered set of actions with
references to objects in the problem

e \Which when executed in order achieves the
goal

Planner: Domain + Problem => Plan

(define (problem 00)
(:domain BW)
(:objects A B C)

(:init (arm-empty)
(on B A)
(on CB)
(clear C))
(:goal (and (on A B)
(on B C))))

Al
i

Begin plan

1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)

5 (pick-up a)

6 (stack a b)

domain + problem =» planner 'TEnd plan

bw.pddl 1

(define (domain bw)

‘ Allows basic add and

delete effects in actions
I

(:requirements :strips)

. List all the predicates
(:predicates with their arguments

(on ?x ?y) ; is on ?object ?y

(on-table ?x) ; ?xis directly on the ta % starts a one-

, . line comment
(clear ?x - ?x_has nothing on it
(arm-empty) ; robotisn't holdin Variables begin
(holding ?x)) ; robot is holding ?x i E

;; 4 actions to manipulate objects: pickup, putdown, stack, unstack
... actions in next four slides ...

bw.pddl 2

(:action pick-up ‘ Variable for the argument
of a pick-up action

:parameters (?0b) |

:precondition These three statements
must be True before we

(and (clear ?0b) \ can do a pick-up action

(on-table ?ob)

(arm-empty))

After doing a pick-up
-effect action, these become

 ‘ True

(and (not (on-table ?ob))

(not (clear ?0b)) :
/ Adding (not ?X) removes

(not (arm-empty)) 2X if it's in the KB.
(holding ?0ob)))

(:action put-down

bw.pddl| 3

put-down means put the
thing you’re holding on
the table

:parameters (?0ob)

:precondition (holding ?0ob)
:effect
(and (not (holding ?0ob))
(clear ?0ob)

(arm-empty)
(on-table ?0b)))

/2 stack means put the

thing you are holding on
:parameters (?ob1 ?0b2) another object

(:action stack

:precondition (and (holding ?0ob) (clear ?0b2))
:effect
(and (not (holding ?0b))
(not (clear ?0b2))
(clear ?0ob)
(arm-empty)
(on ?0b ?0b2)))

bw.pddl 5

(:action unstack . unstack means take the
first arg off the second

:parameters (?0b1 ?0b?2)
arg

:precondition

(and (on ?0b1 ?0b2)
First arg can’t have

?
(clear ?ob1) anything on it & the
(arm-empty)) robot can’t be holding

-effect anything

(and (holding ?0b1)
(clear ?0b2)

(not (clear ?0b1)) Updates to KB
i describing new state of
(not (arm-empty)) the world

(not (on ?0b1 ?0b2)))

) ; this closes the domain definition

;; The arm is empty and there is a stack of three blocks: Cis on B which ison A
;; Which is on the table. The goal is to reverse the stack, i.e., have Aon B and B
;; on C. No need to mention Cis on the table, since domain constraints will enforce it.

(define (problem p03)
(:domain bw)

(:objects A B C)
(:init (arm-empty) »
(on-table A)

(on B A)

(on C B)

(clear C))
(:goal (and (on A B)

(onB Q) p03.pddl

http://planning.domains/

C ® © #& planning.domains e @ ¢ | Q Search mn @ @ ® =

API Solver Editor Education About planning.domains

Open the PDDL editor,
upload our domain and
problem files, and run
the solver.

Planning.Domains

A collection of tools for working with plannins

planning.domains . 1) api.planning.domains 2) solver.planning.domains @
4) education.planning.domains &

3) editor.planning.domains &

Planning.domains

e Open source environment for providing
planning services using PDDL (GitHub)

e Default planner is ff (aka, fastForward)

—very successful forward-chaining heuristic
search planner producing sequential plans

—Can be configured to work with other planners
e Use interactively or call via web-based API

e \We've used it for to extend blocks world
domain in homework

https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html

Online Demonstration

Using planning.domains and files in the
planning directory of our 2022 code and data

repo
e bw.pdd
ep01.pddl
e p02.pddl ...
e Air Cargo

—ac_domain.pddl
—Ac_pO0.pddl

http://planning.domains/
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data/tree/main/planning
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data

