
CMSC 471:
Reinforcement Learning

Some slides courtesy Cynthia Matuszek, with some material from Marie desJardin, Lise Getoor, Jean-
Claude Latombe, and Daphne Koller

1

Spring 2021 (Sections 01 & 03)

There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html

http://incompleteideas.net/book/the-book-2nd.html

The Big Idea

• “Planning”: Find a sequence of steps to
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts
for probability by carrying it through the plan.

3

Okay, but really?
What is AI?

“Artificial intelligence, or AI, is the field that studies
the synthesis and analysis of computational agents

that act intelligently.” --Poole & Mackworth

• Makes appropriate actions
for circumstances & goals

• Balances short & long-term
appropriately

• Flexible & reactive
• Learns/recognizes patterns

• Aware of
computational/task

budgets & limitations

something that acts in an
environment; it does

something.

Use “computation” to
explain and traceback the

actions

Way back
when…

(0) Table-driven agents

Use percept sequence/action table to find next
action. Implemented by a lookup table

(1) Simple reflex agents

Based on condition-action rules, stateless devices
with no memory of past world states

(2) Agents with memory

have represent states and keep track of past
world states

(3) Agents with goals

Have a state and goal information describing
desirable situations; can take future events into
consideration

(4) Utility-based agents

base decisions on utility theory in order to act
rationally

simple

complex

Adapted from Tim Finin

Way back
when…

https://en.wikipedia.org/wiki/Utility

Review: Formalizing Agents

• Given:

– A state space S

– A set of actions a1, …, ak including their results

– Reward value at the end of each trial (series of
action) (may be positive or negative)

• Output:

– A mapping from states to actions

– Which is a policy, π

6

Reinforcement Learning

• We often have an agent which has a task to
perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did
– The agent performs the same task repeatedly

• This problem is called reinforcement learning:
– The agent gets positive reinforcement for tasks done

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next

time

7

Reinforcement Learning

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Simple Robot Navigation Problem

12

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

13

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

Probabilistic Transition Model

14

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

15

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

Probabilistic Transition Model

16

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

•D, R, and L have similar probabilistic effects

Markov Property

17

The transition properties depend only
on the current state, not on the previous
history (how that state was reached)

Markov assumption generally: current state only ever
depends on previous state (or finite set of previous
states).

Sequence of Actions

18



• Planned sequence of actions: (U, R)

☺

2

3

1

4321

y

x

[3,2]

obstacle →

 goal
 start state

Sequence of Actions

19

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

y

x

Histories

20

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• 9 possible sequences of states – called histories
• 6 possible final states for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

y

x

Probability of Reaching the Goal

21

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Probability of Reaching the Goal

22

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

Probability of Reaching the Goal

23

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

Probability of Reaching the Goal

24

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65

Probability of Reaching the Goal

25

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65

Probability of Reaching the Goal

• Main idea: multiply backward probabilities of each step
taken from end state reached (because of our
Markov/independence assumptions)

• But we still need to consider different ways of reaching
a state
– Going all the way around the obstacle would be “worse”

26

2

3

1

4321

27

But what about the
learning part of

reinforcement learning?

Review: What is ML?

• ML is a way to get a computer (in our parlance, a
system) to do things without having to explicitly
describe what steps to take.

• By giving it examples (training data)

• Or by giving it feedback

• It can then look for patterns which explain or
predict what happens.

• The learned system of beliefs is called a model.

28

RL, in our ML framework

29

Inductive Bias

RL, in our ML framework

30

Inductive Bias

a1

a2

a3

a4

RL, in our ML framework

31

Inductive Bias

Training
Evaluator:

Loss
function

score

Gold/correct
action

a1

a2

a3

a4

give feedback
to the predictor

RL-based
loss

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑝, 𝛾)
Markov Decision

Process:

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑝, 𝛾)
Markov Decision

Process:
set of

possible
states

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑝, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑝, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑝, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]

reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action)
pairs to new states

Slide courtesy Peter Bodík

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

objective: maximize
time-discounted

reward

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

objective: maximize
discounted reward

Reward at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

objective: maximize
discounted reward

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Example of Discounted Reward

• If the discount factor 𝛾 =
0.8 then reward

0.80𝑟0 +

0.81𝑟1 + 0.82𝑟2 +
0.83𝑟3 +⋯+ 0.8𝑛𝑟𝑛 + …

• Allows you to consider all
possible rewards in the
future but preferring
current vs. future self

47

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

“solution”: the policy 𝜋∗ that maximizes the
expected (average) time-discounted reward

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

𝜋∗ = argmax
𝜋

𝔼 ෍

𝑡>0

𝛾𝑡𝑟𝑡 ; 𝜋“solution”

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Expected Value of a Random Variable

𝑋 ~ 𝑝 ⋅

random variable

Expected Value of a Random Variable

𝑋 ~ 𝑝 ⋅

𝔼 𝑋 =෍

𝑥

𝑥 𝑝 𝑥

random variable

expected value
(distribution p is

implicit)

Expected Value: Example

1 2 3 4 5 6

uniform distribution of number of cats I have

1/6 * 1 +
1/6 * 2 +
1/6 * 3 +
1/6 * 4 +
1/6 * 5 +
1/6 * 6

= 3.5

𝔼 𝑋 =෍

𝑥

𝑥 𝑝 𝑥

Expected Value: Example 2

1 2 3 4 5 6

non-uniform distribution of number of cats a normal
cat person has

1/2 * 1 +
1/10 * 2 +
1/10 * 3 +
1/10 * 4 +
1/10 * 5 +
1/10 * 6

= 2.5

𝔼 𝑋 =෍

𝑥

𝑥 𝑝 𝑥

Expected Value of a Function of a
Random Variable

𝑋 ~ 𝑝 ⋅

𝔼 𝑋 =෍

𝑥

𝑥 𝑝(𝑥)

𝔼 𝑓(𝑋) =? ? ?

Expected Value of a Function of a
Random Variable

𝑋 ~ 𝑝 ⋅

𝔼 𝑋 =෍

𝑥

𝑥 𝑝(𝑥)

𝔼 𝑓(𝑋) =෍

𝑥

𝑓(𝑥) 𝑝 𝑥

Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

What if each cat magically becomes two?
𝑓 𝑘 = 2𝑘

𝔼 𝑓(𝑋) =෍

𝑥

𝑓(𝑥) 𝑝 𝑥

Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

1/2 * 21 +
1/10 * 22 +
1/10 * 23 +
1/10 * 24 +
1/10 * 25 +
1/10 * 26

= 13.4

What if each cat magically becomes two?
𝑓 𝑘 = 2𝑘

𝔼 𝑓(𝑋) =෍

𝑥

𝑓(𝑥) 𝑝 𝑥 =෍

𝑥

2𝑥𝑝(𝑥)

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

𝜋∗ = argmax
𝜋

𝔼 ෍

𝑡>0

𝛾𝑡𝑟𝑡 ; 𝜋“solution”

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Here, 𝑟𝑡 is a function of random
variable 𝑠𝑡.

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)
Markov Decision

Process:
set of

possible
states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠0
for t = 1 to …:

choose action 𝑎𝑡
“move” to next state 𝑠𝑡 ∼ 𝜋 ⋅ 𝑠𝑡−1, 𝑎𝑡)
get reward 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡)

𝜋∗ = argmax
𝜋

𝔼 ෍

𝑡>0

𝛾𝑡𝑟𝑡 ; 𝜋“solution”

objective: maximize
discounted reward

max
𝜋

෍

𝑡>0

𝛾𝑡𝑟𝑡

Here, 𝑟𝑡 is a function of random
variable 𝑠𝑡. ➔

The expectation is over the
different states 𝑠𝑡 the agent
could be in at time t (equiv.

actions the agent could take).

Utility Function

60

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

Utility Function

61

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

Utility Function

62

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4321

Utility Function

63

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!

-1

+1

2

3

1

4321

Utility of a History

64

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• Histories have utility!
• The utility of a history is defined by the utility of the last

state (+1 or –1) minus n/25, where n is the number of moves
• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4321

Utility of an Action Sequence

65

-1

+1

2

3

1

4321

• Consider the action sequence (U,R) from [3,2]

Utility of an Action Sequence

66

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

67

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

68

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)
• The optimal sequence is the one with maximal utility

Optimal Action Sequence

69

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to

compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

70

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to

compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

71

State Representation

Task: pole-balancing

state representation?

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

State Representation

Task: pole-balancing

state representation

position and velocity of car

angle and angular velocity of pole

what about Markov property?

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

State Representation

Task: pole-balancing

state representation

position and velocity of car

angle and angular velocity of pole

what about Markov property?

would need more info

noise in sensors, temperature,
bending of pole

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

75

Designing Rewards

robot in a maze
episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing

BAD: +0.25 for taking opponent’s pieces
high reward even when lose

Slide courtesy/adapted: Peter Bodík

Designing Rewards

robot in a maze
episodic task, not discounted, +1 when out, 0 for each
step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

Slide courtesy/adapted: Peter Bodík

Designing Rewards

robot in a maze
episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

shaping
positive reward often very “far away”
rewards for achieving subgoals (domain knowledge)
also: adjust initial policy or initial value function

Slide courtesy/adapted: Peter Bodík

Simple Reinforcement Learning

• Feedback is at the end, on a series of actions.

• Very early concept in Artificial Intelligence!

• Arthur Samuels’ checker
program was a simple
reinforcement based learner,
initially developed in 1956.

• In 1962 it beat a human
checkers master.

www-
03.ibm.com/ibm/history/ibm100/us/en/icons/ibm7
00series/impacts/

Example: Animals Game

– Human: I’m thinking of an animal.

– Computer: Is it a bird?

– Human: No.

– Computer: Is it a frog?

– Human: No.

– Computer: What is it?

– Human: A mouse.

80

Example: Animals Guessing Game
Architecture

• All of the parts of ML Architecture:
– The Representation is a sequence of questions and

pairs of yes/no answers (decision tree).

– The Actor “walks” the tree, interacting with a
human; at each question it chooses whether to
follow the “yes” branch or the “no” branch.

– The Evaluator/loss function is the human player
telling the game whether it has guessed correctly.

– The Learner elicits new questions and adds
questions, guesses and branches to the tree.

81

Reinforcement Learning (cont.)

• Goal: agent acts in the world to maximize its
rewards

• Agent has to figure out what it did that made
it get that reward/punishment

– This is known as the credit assignment problem

82

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
– Computer: Tell me a question that distinguishes a frog from a

mouse.
– Human: Does it have fur?
– Computer: What is the answer for a frog?
– Human: No.

83

Example: Animals Behind the Scene

84

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a question
that distinguishes a frog from
a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

Reinforcement Learning (cont.)

• Goal: agent acts in the world to maximize its
rewards

• Agent has to figure out what it did that made it
get that reward/punishment
– This is known as the credit assignment problem

• RL can be used to train computers to do many
tasks
– Backgammon and chess playing

– Job shop scheduling

– Controlling robot limbs

85

Reactive Agent

• This kind of agent is a reactive agent

• The general algorithm for a reactive agent is:

– Observe some state

– If it is a terminal state, stop

– Otherwise choose an action from the actions
possible in that state

– Perform the action

– Recur.

86

Simple Example

• Learn to play checkers
– Two-person game

– 8x8 boards, 12
checkers/side

– relatively simple set of
rules:
http://www.darkfish.co
m/checkers/rules.html

– Goal is to eliminate all
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

http://www.darkfish.com/checkers/rules.html

Representing Checkers

• First we need to represent the game
• To completely describe one step in the game you

need
– A representation of the game board.
– A representation of the current pieces
– A variable which indicates whose turn it is
– A variable which tells you which side is “black”

• There is no history needed
• A look at the current board setup gives you

a complete picture of the state of the game

88

Representing Checkers

• Second, we need to represent the rules
• Represented as a set of allowable moves given board

state
– If a checker is at row x, column y, and row x+1 column y±1 is

empty, it can move there.
– If a checker is at (x,y), a checker of the opposite color is at

(x+1, y+1), and (x+2,y+2) is empty, the checker must move
there, and remove the “jumped” checker from play.

• There are additional rules, but all can be expressed in
terms of the state of the board and the checkers.

• Each rule includes the outcome of the relevant action in
terms of the state.

• What’s a good reward?

89

A More Complex Example

• Consider an agent which must learn to drive a
car

– State?

– Possible actions?

– Rewards?

90

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

91

What Do We Want to Learn

• Given
– A description of some state of the game
– A list of the moves allowed by the rules
– What move should we make?

• Typically more than one move is possible
– Need strategies, heuristics, or hints about what move

to make
– This is what we are learning

• We learn from whether the game was won or lost
– Information to learn from is sometimes called

“training signal”

92

Simple Checkers Learning

• Can represent some heuristics in the same
formalism as the board and rules
– If there is a legal move that will create a king, take it.

• If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.

– If there are two legal moves, choose the one that
moves a checker farther toward the top row
• If checker(x,y) and checker(p,q) can both move, and x>p,

move checker(x,y).

– But then each of these heuristics needs some kind of
priority or weight.

93

Formalization for RL Agent

• Given:

– A state space S

– A set of actions a1, …, ak including their results

– A set of heuristics for resolving conflict among actions

– Reward value at the end of each trial (series of action)
(may be positive or negative)

• Output:

– A policy (a mapping from states to preferred actions)

94

Learning Agent

• The general algorithm for this learning agent is:

– Observe some state

– If it is a terminal state

• Stop

• If won, increase the weight on all heuristics used

• If lost, decrease the weight on all heuristics used

– Otherwise choose an action from those possible in
that state, using heuristics to select the preferred
action

– Perform the action

95

Policy

• A complete mapping from states to actions
– There must be an action for each state
– There may be more than one action
– Not necessarily optimal

• The goal of a learning agent is to tune the policy
so that the preferred action is optimal, or at least
good.
– analogous to training a classifier

• Checkers
– Trained policy includes all legal actions, with weights
– “Preferred” actions are weighted up

96

Approaches

• Learn policy directly: Discover function mapping
from states to actions
– Could be directly learned values

• Ex: Value of state which removes last opponent checker is
+1.

– Or a heuristic function which has itself been trained

• Learn utility values for states (value function)
– Estimate the value for each state

– Checkers:
• How happy am I with this state that turns a man into a king?

97

Value Function

• The agent knows what state it is in
• It has actions it can perform in each state
• Initially, don’t know the value of any of the

states
• If the outcome of performing an action at a state

is deterministic, then the agent can update the
utility value U() of states:
– U(oldstate) = reward + U(newstate)

• The agent learns the utility values of states as it
works its way through the state space

98

Learning States and Actions

• A typical approach is:

• At state S choose, some action A

• Taking us to new State S1

– If S1 has a positive value: increase value of A at S.

– If S1has a negative value: decrease value of A at S.

– If S1 is new, initial value is unknown: value of A unchanged.

• One complete learning pass or trial eventually gets to a
terminal, deterministic state. (E.g., “win” or “lose”)

• Repeat until? Convergence? Some performance level?

99

Selecting an Action

• Simply choose action with highest (current)
expected utility?

• Problem: each action has two effects
– Yields a reward on current sequence

– Gives information for learning future sequences

• Trade-off: immediate good for long-term well-
being
– Like trying a shortcut: might get lost, might find

quicker path

100

Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
– What action to take?

– Best apparent action, based
on learning to date
• Greedy strategy

• Often prematurely converges to a suboptimal policy!

– Random (or unknown) action
• Will cover entire state space

• Very expensive and slow to learn!

• When to stop being random?

– Balance exploration (try random actions) with
exploitation (use best action so far)

} Exploitation

} Exploration

More on Exploration

• Agent may sometimes choose to explore suboptimal
moves in hopes of finding better outcomes
– Only by visiting all states frequently enough can we

guarantee learning the true values of all the states

• When the agent is learning, ideal would be to get
accurate values for all states
– Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get
optimal outcome

• A learning agent should have an exploration policy

102

Exploration Policy

• Wacky approach (exploration): act randomly in hopes
of eventually exploring entire environment
– Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility
using current estimate
– Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory)
when agent has little idea of environment; more
greedy when the model is close to correct
– Suppose you know no checkers strategy?

– What’s the best way to get better?

103

Example: N-Armed Bandits

• A row of slot machines

• Which to play and how often?

• State Space is a set of machines
– Each has cost, payout, and percentage values

• Action is pull a lever.

• Each action has a positive or negative result
– …which then adjusts the utility of that action

(pulling that lever)

104

¢25
$100
0.1%

¢95
$200
0.6%

$10
$900
10%

N-Armed Bandits Example

• Each action initialized to a standard payout
• Result is either some cash (a win) or none (a lose)
• Exploration: Try things until we have estimates for

payouts
• Exploitation: When we have some idea of the

value of each action, choose the best.
• Clearly this is a heuristic.
• No proof we ever find the best lever to pull!

– The more exploration we can do the better our model
– But the higher the cost over multiple trials

105

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

use value functions to structure the search for good
policies

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute V from 

policy improvement: improve  based on V

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute V from 

policy improvement: improve  based on V

start with an arbitrary policy

repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík

Accessible or
observable state

Repeat:

 s  sensed state

 If s is a terminal state then exit

 a  choose action (given s)

 Perform a

Reactive Agent Algorithm

110

Policy (Reactive/Closed-Loop Strategy)

111

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from
states to actions
• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

Repeat:

 s  sensed state

 If s is terminal then exit

 a  P(s)

 Perform a

Reactive Agent Algorithm

112

Optimal Policy

113

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history (sequence of steps ending at a terminal state)
with maximal expected utility

2

3

1

4321

Optimal Policy

114

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?

Defining State Utility

• Problem:
– When making a decision, we only know the

reward so far, and the possible actions

– We’ve defined utility retroactively (i.e., the
utility of a history is known once we finish it)

– What is the utility of a particular state in the
middle of decision making?

– Need to compute expected utility of
possible future histories

115

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0 } or some uniform or uniformly distributed value

• For t = 0, 1, 2, …, do:

Ut+1(i) R(i) + maxa SkP(k | a.i) Ut(k)

116

-1

+1

2

3

1

4321

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i) R(i) + maxa SkP(k | a.i) Ut(k)

117

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 ???

0.660

EXERCISE: What is U*([3,3]) (assuming that the other U* are as shown)?

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:

Ut+1(i) R(i) + maxa SkP(k | a.i) Ut(k)

118

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

U*3,3 =

R3,3 +

[P3,2 U*3,2 + P3,3 U*3,3 + P4,3 U*4,3]

Policy Iteration

• Pick a policy P at random

119

Policy Iteration

• Pick a policy P at random

• Repeat:

– Compute the utility of each state for P

Ut+1(i) R(i) + SkP(k | P(i).i) Ut(k)

120

Policy Iteration

• Pick a policy P at random

• Repeat:

– Compute the utility of each state for P

Ut+1(i) R(i) + SkP(k | P(i).i) Ut(k)

– Compute the policy P’ given these utilities

P’ (i) = arg maxa SkP(k | a.i) U(k)

121

Policy Iteration

• Pick a policy P at random

• Repeat:

– Compute the utility of each state for P

Ut+1(i) R(i) + SkP(k | P(i).i) Ut(k)

– Compute the policy P’ given these utilities

P’ (i) = arg maxa SkP(k | a.i) U(k)

– If P’ = P then return P

122

Policy Iteration

• Pick a policy P at random

• Repeat:

– Compute the utility of each state for P

Ut+1(i) R(i) + SkP(k | P(i).i) Ut(k)

– Compute the policy P’ given these utilities

P’ (i) = arg maxa SkP(k | a.i) U(k)

– If P’ = P then return P

123

Or solve the set of linear equations:

U(i) =R(i) + SkP(k | P(i).i) U(k)

(often a sparse system)

Infinite Horizon

124

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

One trick:
Use discounting to make an infinite
horizon problem mathematically
tractable

What if the robot lives forever?

Advanced
topic

Value Iteration: Summary

– Initialize state values (expected utilities)
randomly

– Repeatedly update state values using best
action, according to current approximation of
state values

– Terminate when state values stabilize

– Resulting policy will be the best policy because
it’s based on accurate state value estimation

125

Policy Iteration: Summary

– Initialize policy randomly
– Repeatedly update state values using best action,
according to current approximation of state values
– Then update policy based on new state values
– Terminate when policy stabilizes
– Resulting policy is the best policy, but state values
may not be accurate (may not have converged yet)
– Policy iteration is often faster (because we don’t
have to get the state values right)

• Both methods have a major weakness: They require us to
know the transition function exactly in advance!

126

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Q-learning

𝑄: 𝑠, 𝑎 → ℝ

Goal: learn a function that
computes a “goodness” score
for taking a particular action 𝑎

in state 𝑠

Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve

converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)

independent of the policy being followed

only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve

converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)

independent of the policy being followed

only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Learn weights
(parameters) 𝜃 of our

neural network

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Monte Carlo policy evaluation

want to estimate V(s)don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

Monte Carlo policy evaluation

want to estimate V(s)
expected return starting from s

and following 
estimate as average of
observed returns in state s

s0

s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

V(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

Maintaining exploration

key ingredient of RL

deterministic/greedy policy won’t explore all actions
don’t know anything about the environment at the beginning
need to try all actions to find the optimal one

maintain exploration
use soft policies instead: (s,a)>0 (for all s,a)

ε-greedy policy
with probability 1-ε perform the optimal/greedy action
with probability ε perform a random action

will keep exploring the environment
slowly move it towards greedy policy: ε -> 0

Slide courtesy/adapted: Peter Bodík

RL Summary 1:

• Reinforcement learning systems

– Learn series of actions or decisions, rather than a
single decision

– Based on feedback given at the end of the series

• A reinforcement learner has

– A goal

– Carries out trial-and-error search

– Finds the best paths toward that goal

147

RL Summary 2:

• A typical reinforcement learning system is an
active agent, interacting with its environment.

• It must balance:

– Exploration: trying different actions and sequences of
actions to discover which ones work best

– Exploitation (achievement): using sequences which
have worked well so far

• Must learn successful sequences of actions in an
uncertain environment

148

RL Summary 3

• Very hot area of research at the moment

• There are many more sophisticated RL
algorithms

– Most notably: probabilistic approaches

• Applicable to game-playing, search, finance,
robot control, driving, scheduling, diagnosis, …

149

