
CMSC 471: 
Planning

Slides courtesy Tim Finin, Cynthia Matuszek, Marie DesJardines. Some material adopted from notes by 
Andreas Geyer-Schulz and Chuck Dyer.

1

Spring 2021 (Sections 01 & 03)



Overview
• What is planning?

• Approaches to planning

– GPS / STRIPS

– Situation calculus formalism

– Partial-order planning

2



Planning Problem

• Find a sequence of actions that achieves a 

goal when executed from an initial state.

• That is, given

– A set of  operators (possible actions) 

– An initial state description

– A goal (description or conjunction of  predicates)

• Compute a sequence of  operations: a plan.

3



Planning Problem

• Find a sequence of actions that achieves a 

goal when executed from an initial state.

• That is, given

– A set of  operators (possible actions) 

– An initial state description

– A goal (description or conjunction of  predicates)

• Compute a sequence of  operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt

4



Planning Problem

• Find a sequence of actions that achieves a 

goal when executed from an initial state.

• That is, given

– A set of  operators (possible actions) 

– An initial state description

– A goal (description or conjunction of  predicates)

• Compute a sequence of  operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt

• pants off
• right shoe off
• right sock off
• right shoe off

(etc)

5



Planning Problem

• Find a sequence of actions that achieves a 

goal when executed from an initial state.

• That is, given

– A set of  operators (possible actions) 

– An initial state description

– A goal (description or conjunction of  predicates)

• Compute a sequence of  operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt

• pants off
• right shoe off
• right sock off
• right shoe off

(etc)

• pants on
(etc)

6



Some example domains

• We’ll use some simple problems to illustrate 

planning problems and algorithms 

• Putting on your socks and shoes in the 

morning

– Actions like put-on-left-sock, put-on-right-shoe

• Planning a shopping trip involving buying several 

kinds of items

– Actions like go(X), buy(Y)

7



Typical Assumptions (1)

• Atomic time: Each action is indivisible 

– Can’t be interrupted halfway through putting on 
pants

• No concurrent actions allowed

– Can’t put on socks at the same time

• Deterministic actions

– The result of actions are completely known – no 
uncertainty

8



Typical Assumptions

• Agent is the sole cause of change in the world 

– Nobody else is putting on your socks

• Agent is omniscient:

– Has complete knowledge of the state of the world

• Closed world assumption: 

– Everything known-true about the world is in the 
state description

– Anything not known-true is known-false

9



Blocks World

The blocks world consists of a table, set of blocks, 
and a robot gripper

Some domain constraints:
– Only one block on another block

– Any number of blocks on table

– Hand can only hold one block

Typical representation:
ontable(a)   handempty
ontable(c)   on(b,a)
clear(b) clear(c)

A

B

C

TABLE

10



Blocks world

• A micro-world

• Some domain 

constraints:
– Only one block can be 

on another block

– Any number of blocks 

can be on the table

– The hand can only hold 

one block
Meant to be a simple model!

(Applet demo at:

http://aispace.org/planning/index.shtml)

11



Typical BW planning problem

Initial state:
clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal state:
on(b,c)

on(a,b)

ontable(c)

A BC

A

B

C

12



Typical BW planning problem

Initial state:
clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal state:
on(b,c)

on(a,b)

ontable(c)

Plan:

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

assertions
describing
a state

atomic 
robot 
actions

A BC

A

B

C

13



Major Approaches

• GPS / STRIPS

• Situation calculus

• Partial order planning

• Hierarchical decomposition (HTN planning)

• Planning with constraints (SATplan, Graphplan)

• Reactive planning

14



Planning vs. problem solving

• Planning vs. problem solving: can often solve similar 
problems

• Planning is more powerful and efficient because of the 
representations and methods used

• States, goals, and actions are decomposed into sets of 
sentences (usually in first-order logic)

• Search often proceeds through plan space rather than 
state space (though there are also state-space planners)

• Sub-goals can be planned independently, reducing the 
complexity of the planning problem

15



Another BW planning problem

Initial state:
clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal:
on(a,b)

on(b,c)

ontable(c)

A plan

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

A BC

A

B

C

16



Yet Another BW planning problem

Initial state:

clear(c)

ontable(a)

on(b,a)

on(c,b)

handempty

Goal:

on(a,b)

on(b,c)

ontable(c)

Plan:

unstack(c,b)

putdown(c)

unstack(b,a)

putdown(b)

putdown(b)

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

A BC

A

B

C

backtracking{
17



Planning as Search (?)

• Can think of planning as a search problem
• Actions: generate successor states

• States: completely described & only used for 
successor generation, heuristic fn. evaluation & 
goal testing

• Goals: represented as a goal test and using a 
heuristic function

• Plan representation: unbroken sequences of 
actions forward from initial states or backward 
from goal state

18



“Get a quart of milk, a bunch of bananas

and a variable-speed cordless drill.”

Treating planning as a search 

problem isn’t very efficient!

Slightly more complex KB:

19



General Problem Solver

• The General Problem Solver (GPS) system 

– An early planner (Newell, Shaw, and Simon) 

• Generate actions that reduce difference between current state 
and goal state

• Uses Means-Ends Analysis

– Compare what is given or known with what is desired 

– Select a reasonable thing to do next

– Use a table of differences to identify procedures to reduce 
differences

• GPS is a state space planner

– Operates on state space problems specified by an initial state, 
some goal states, and a set of operations

20



Situation Calculus Planning

• Intuition: Represent the planning problem using 

first-order logic

– Situation calculus lets us reason about changes in the 

world

– Use theorem proving to show (“prove”) that a sequence 

of actions will lead to a desired result, when applied to a 

world state / situation

21



Situation Calculus Planning, cont.

• Initial state: a logical sentence about (situation) S0

• Goal state: usually a conjunction of logical 
sentences

• Operators: descriptions of how the world changes 
as a result of the agent’s actions: 

– Result(a,s) names the situation resulting from executing 
action a in situation s. 

• Action sequences are also useful: 

– Result’(l,s): result of executing list of actions l starting 
in s

22



Situation Calculus Planning, cont.

• Initial state:
At(Home, S0)  Have(Milk, S0)  Have(Bananas, S0)  Have(Drill, S0)

• Goal state: 
(s) At(Home,s)  Have(Milk,s)  Have(Bananas,s)  Have(Drill,s)

• Operators:
(a,s) Have(Milk,Result(a,s)) 

((a=Buy(Milk)  At(Grocery,s))  (Have(Milk, s)  a  Drop(Milk)))

•Result(a,s): situation after executing action a in 
situation s

(s) Result’([ ],s) = s

(a,p,s) Result’([a|p]s) = Result'(p,Result(a,s)) p=plan

23



Situation Calculus, cont.

• Solution: a plan that when applied to the initial 

state gives a situation satisfying the goal query: 
At(Home, Result'(p,S0)) 

 Have(Milk, Result'(p,S0))

 Have(Bananas, Result'(p,S0))

 Have(Drill, Result'(p,S0))

• Thus we would expect a plan (i.e., variable 

assignment through unification) such as: 
p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore),     

Buy(Drill), Go(Home)]

24



Situation Calculus: Blocks World

• Example situation calculus rule for blocks world:

– clear(X, Result(A,S)) 

[clear(X, S) 

((A=Stack(Y,X)  A=Pickup(X))

 (A=Stack(Y,X)  (holding(Y,S))

 (A=Pickup(X)  (handempty(S)  ontable(X,S)  clear(X,S))))]

 [A=Stack(X,Y)  holding(X,S)  clear(Y,S)]

 [A=Unstack(Y,X)  on(Y,X,S)  clear(Y,S)  handempty(S)]

 [A=Putdown(X)  holding(X,S)]

• English translation: a block is clear if 

???
25



Situation Calculus: Blocks World

• Example situation calculus rule for blocks world:
– clear(X, Result(A,S)) 

[clear(X, S) 
((A=Stack(Y,X)  A=Pickup(X))
 (A=Stack(Y,X)  (holding(Y,S))
 (A=Pickup(X)  (handempty(S)  ontable(X,S)  clear(X,S))))]

 [A=Stack(X,Y)  holding(X,S)  clear(Y,S)]
 [A=Unstack(Y,X)  on(Y,X,S)  clear(Y,S)  handempty(S)]
 [A=Putdown(X)  holding(X,S)]

• English translation: a block is clear if

(a) in the previous state it was clear AND we didn’t pick it up or 
stack something on it successfully, or

(b) we stacked it on something else successfully, or 

(c) something was on it that we unstacked successfully, or 

(d) we were holding it and we put it down.
26



Situation Calculus Planning: Analysis

• Fine in theory, but:

– Problem solving (search) is exponential in the 
worst case

– Resolution theorem proving only finds a proof 
(plan), not necessarily a good plan

• So what can we do?

– Restrict the language 

• Blocks world is already pretty small…

– Use a special-purpose planner rather than 
general theorem prover

27



Basic Representations for Planning

• Classic approach first used in the STRIPS planner circa 1970

• States represented as conjunction of ground literals
– at(Home)  have(Milk)  have(bananas) ...

• Goals are conjunctions of literals, but may have variables*
– at(?x)  have(Milk)  have(bananas) ...

• Don’t need to fully specify state 
– Un-specified: either don’t-care or assumed-false 

– Represent many cases in small storage 

– Often only represent changes in state rather than entire situation  

• Unlike theorem prover, not finding whether the goal is true, 
but whether there is a sequence of actions to attain it 

*generally assume 

28



Operator/Action Representation

• Operators contain three components:

– Action description

– Precondition - conjunction of positive literals 

– Effect - conjunction of positive or negative literals which describe how situation 
changes when operator is applied 

• Example:

Op[Action:  Go(there), 

Precond:  At(here)  Path(here,there), 

Effect:  At(there)  At(here)]
Go(there)

At(here) ,Path(here,there)

At(there) , At(here)

29



Operator/Action Representation

• Operators contain three components:

– Action description

– Precondition - conjunction of positive literals 

– Effect - conjunction of positive or negative literals which describe how situation 
changes when operator is applied 

• Example:

Op[Action:  Go(there), 

Precond:  At(here)  Path(here,there), 

Effect:  At(there)  At(here)]

• All variables are universally quantified 

• Situation variables are implicit

– Preconditions must be true in the state immediately before operator is applied

– Effects are true immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , At(here)

30



Blocks World Operators

• Classic basic operations for the blocks world:
– stack(X,Y): put block X on block Y

– unstack(X,Y): remove block X from block Y

– pickup(X): pickup block X

– putdown(X): put block X on the table

• Each will be represented by 
– Preconditions

– New facts to be added (add-effects)

– Facts to be removed (delete-effects)

– A set of (simple) variable constraints (optional!)

31



Blocks World Operators

• So given these operations:

– stack(X,Y), unstack(X,Y), pickup(X), putdown(X)

• Need: 

– Preconditions, facts to be added (add-effects), facts 
to be removed (delete-effects), optional variable 
constraints

Example: stack

preconditions(stack(X,Y), [holding(X), clear(Y)])

deletes(stack(X,Y), [holding(X), clear(Y)]).

adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

constraints(stack(X,Y), [XY, Ytable, Xtable])

32



Blocks World Operators II

operator(stack(X,Y), 

Precond [holding(X), clear(Y)],

Add [handempty, on(X,Y), clear(X)],

Delete [holding(X), clear(Y)],

Constr [XY, Ytable, Xtable]).

operator(pickup(X),

[ontable(X), clear(X), handempty],

[holding(X)],

[ontable(X), clear(X), handempty],

[Xtable]).

operator(unstack(X,Y), 

[on(X,Y), clear(X), handempty],

[holding(X), clear(Y)],

[handempty, clear(X), on(X,Y)],

[XY, Ytable, Xtable]).

operator(putdown(X), 

[holding(X)],

[ontable(X), handempty, clear(X)],

[holding(X)],

[Xtable]).

33



STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.

– Goal Stack - push down stack of goals to be solved, 
with current goal on top

34



STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.

– Goal Stack - push down stack of goals to be solved, 
with current goal on top

• If current goal not satisfied by present state, find 
action that adds it and push action and its 
preconditions (subgoals) on stack

35



STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.

– Goal Stack - push down stack of goals to be solved, 
with current goal on top

• If current goal not satisfied by present state, find 
action that adds it and push action and its 
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack

• When an action is on top stack, record its 
application on plan sequence and use its add and 
delete lists to update  current state

36



Shakey video circa 1969

https://youtu.be/qXdn6ynwpiI or

https://youtu.be/7bsEN8mwUB8 37

https://youtu.be/qXdn6ynwpiI
https://youtu.be/7bsEN8mwUB8


Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A

B

C

A plan:

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

38



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A

B

C

A plan:

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

39



Yet Another BW planning problem

Initial state:
clear(c)

ontable(a)

on(b,a)

on(c,b)

handempty

Goal:
on(a,b)

on(b,c)

ontable(c)

A

B

C

A

B

C

Plan:

unstack(c,b)

putdown(c)

unstack(b,a)

putdown(b)

pickup(b)

stack(b,a)

unstack(b,a)

putdown(b)

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)
40



Yet Another BW planning problem

Initial state:

ontable(a)

ontable(b)

clear(a)

clear(b)

handempty

Goal:

on(a,b)

on(b,a)

A B

Plan:

??

41



Goal Interactions

• Simple planning assumes that goals are independent
– Each can be solved separately and then the solutions concatenated

• Let’s look at when that fails

A B

C

Initial state

A

B

C

Goal state
42



Goal Interactions

• The “Sussman Anomaly”: classic goal interaction problem
– Solving on(A,B) first (by doing unstack(C,A), stack(A,B))

– Solve on(B,C) second (by doing unstack(A,B), stack(B,C)) 

• Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS can’t handle this (minor modifications can do simple cases)

A B

C

Initial state

A

B

C

Goal state
43



Sussman Anomaly

A B

C
Initial state

Goal state

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

||Achieve clear(a) via unstack(_1584,a) with preconds: 

[on(_1584,a),clear(_1584),handempty]

||Applying unstack(c,a) 

||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]

||Applying putdown(c) 

|Applying pickup(a) 

Applying stack(a,b) 

Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]

||Achieve clear(b) via unstack(_5625,b) with preconds: 

[on(_5625,b),clear(_5625),handempty]

||Applying unstack(a,b) 

||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]

||Applying putdown(a) 

|Applying pickup(b) 

Applying stack(b,c) 

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

|Applying pickup(a) 

Applying stack(a,b) 

From 

[clear(b),clear(c),ontable(a),ontable(b),on

(c,a),handempty]

To [on(a,b),on(b,c),ontable(c)]

Do:

unstack(c,a)

putdown(c)

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

A

B

C
44



PDDL

• Planning Domain Description Language

• Based on STRIPS with various extensions

• First defined by Drew McDermott (Yale) et al.

– Classic spec: PDDL 1.2; good reference guide

• Used in biennial International Planning 
Competition (IPC) series (1998-2020)

• Many planners use it as a standard input

45

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions


PDDL Representation

• Task specified via two files: domain file and 
problem file
– Both use a logic-oriented notation with Lisp syntax

• Domain file defines a domain via 
requirements,  predicates, constants, and 
actions
– Used for many different problem files

• Problem file: defines problem by describing its 
domain, objects, initial state and goal state

• Planner: takes a domain and a problem and 
produces a plan

46



Blocks Word
Domain File

(define (domain BW)

(:requirements :strips)

(:constants red green blue yellow small large)

(:predicates (on ?x ?y) (on-table ?x) (color  ?x ?y) … (clear ?x))

(:action pick-up

:parameters (?obj1)

:precondition (and (clear ?obj1) (on-table ?obj1)
(arm-empty))

:effect (and (not (on-table ?obj1))

(not (clear ?obj1))

(not (arm-empty))

(holding ?obj1)))

… more actions ...)
47



Blocks Word
Problem File

(define (problem 00)

(:domain BW)

(:objects A B C)

(:init (arm-empty)

(on B A) 

(on C B)

(clear C))

(:goal (and (on A B) 

(on B C))))

A

C

B

C

A

B

48



Blocks Word
Problem File

(define (problem 00)

(:domain BW)

(:objects A B C)

(:init (arm-empty)

(on B A) 

(on C B)

(clear C))

(:goal (and (on A B) 

(on B C))))

A

C

B

C

A

B

Begin plan
1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)
5 (pick-up a)
6 (stack a b)
End plan 49



http://planning.domains/

50



Planning.domains

• Open source environment for providing 
planning services using PDDL (GitHub)

• Default planner is ff

– very successful forward-chaining heuristic 
search planner producing sequential plans

– Can be configured to work with other planners

• Use interactively or call via web-based API

51

https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html


State-Space Planning

• STRIPS searches thru a space of situations (where 
you are, what you have, etc.)

• Find plan by searching situations to reach goal

• Progression planner: searches forward 
– From initial state to goal state

• Regression planner: searches backward from 
goal
– Works iff operators have enough information to go 

both ways

– Ideally leads to reduced branching: planner is only 
considering things that are relevant to the goal

52



Planning Heuristics

• Need an admissible heuristic to apply to planning states
– Estimate of the distance (number of actions) to the goal

• Planning typically uses relaxation to create heuristics
– Ignore all or some selected preconditions 

– Ignore delete lists: Movement towards goal is never undone)

– Use state abstraction (group together “similar” states and treat 
them as though they are identical) – e.g., ignore fluents*

– Assume subgoal independence (use max cost; or, if subgoals
actually are independent, sum the costs)

– Use pattern databases to store exact solution costs of recurring 
subproblems

* an aspect of the world that changes - R&N 266
53



Plan-Space Planning

• Alternative: search through space of plans, not 
situations

• Start from a partial plan; expand and refine until a 
complete plan that solves the problem is generated

• Refinement operators add constraints to the 
partial plan and modification operators for other 
changes

• We can still use STRIPS-style operators: 
Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)
Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)

54



Partial-Order Planning

55



Partial-Order Planning

• The big idea: Don’t specify the order of steps if 
you don’t have to.

vs.

• Doesn’t matter, but a regular planner has to 
consider and specify all the options.

PutOnRightSock PutOnLeftSock… …

PutOnLeftSock PutOnRightSock… …

56



A simple graphical notation

Start Start

Initial    State

Goal      State

Finish Finish

LeftShoeOn   RightShoeOn

(a) (b)

57



Partial-Order Planning

• A linear planner builds a plan as a totally 

ordered sequence of plan steps

• A non-linear planner (aka partial-order 

planner) builds up a plan as a set of steps with 

some temporal constraints 

– E.g., S1<S2 (step S1 must come before S2) 

PutOnRightSock PutOnRightShoe<

The order here does
matter, so the planner 
has to know that.

58



Partial-Order Planning

• A linear planner builds a plan as a totally 
ordered sequence of plan steps

• A non-linear planner (aka partial-order 
planner) builds up a plan as a set of steps with 
some temporal constraints 
– E.g., S1<S2 (step S1 must come before S2) 

• Partially ordered plan (POP) refined by either:
– adding a new plan step, or

– adding a new constraint to the steps already in the 
plan.

• Linearize a POP by topological sort

59



Linear vs. POP: Shoes

60



Linear vs. POP: Shoes

61



Linear vs. POP: Shoes
Do these 

sequences in 
any order

62



The Initial Plan

Every plan starts the same way

S1:Start

S2:Finish

Initial   State

Goal   State

63



Least Commitment

• Non-linear planners embody the principle of least 

commitment

– Only choose actions, orderings and variable bindings  

absolutely necessary, postponing other decisions

– Avoid early commitment to decisions that don’t really 

matter

• Linear planners always choose to add a plan step in a 

particular place in the sequence 

• Non-linear planners choose to add a step and possibly 

some temporal constraints

64



Non-Linear Plan Components

1) A set of steps {S1, S2, S3, S4…} 
– Each step has an operator description, preconditions and post-

conditions

– ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn

2) A set of causal links { … (Si,C,Sj) …}
– (One) goal of step Si is to achieve precondition C of step Sj

– ⟨PutOnLeftShoe, LeftShoeOn, Finish⟩
• This says: No action that undoes LeftShoeOn is allowed to happen after 

PutOnLeftShoe and before Finish. Any action that undoes LeftShoeOn must either 
be before PutOnLeftShoe or after Finish. 

3) A set of ordering constraints { … Si<Sj … }
– If step Si must come before step Sj

– PutOnSock < Finish

65



Non-Linear Plan: Completeness

• A non-linear plan consists of

(1) A set of steps {S1, S2, S3, S4…} 

(2) A set of causal links { … (Si,C,Sj) …}

(3) A set of ordering constraints { … Si<Sj … }

• A non-linear plan is complete iff

– Every step mentioned in (2) and (3) is in (1)

– If Sj has prerequisite C, then there exists a causal link in (2) 
of the form (Si,C,Sj) for some Si

– If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens 
(Si,C,Sj) (makes C false), then (3) contains either Sk<Si or 
Sj<Sk

66



Trivial Example

Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

Op(ACTION: LeftSock, EFFECT: leftSockOn)

S1:Start

S2:Finish

(RightShoeOn

^ LeftShoeOn)

Steps: {S1:[Op(Action:Start)],

S2:[Op(Action:Finish,

Pre: 

RightShoeOn^LeftShoeOn)]}

Links: {}

Orderings: {S1<S2}

67



Solution

Start

Left
Sock

Right
Sock

Right
Shoe

Left
Shoe

Finish

68



POP Constraints and 

Search Heuristics
• Only add steps that reach a not-yet-achieved 

precondition

• Use a least-commitment approach: 

– Don’t order steps unless they need to be ordered

• Honor causal links S1 → S2 that protect a condition c: 

– Never add an intervening step S3 that violates c

– If a parallel action threatens c (i.e., has the effect of 
negating or clobbering c), resolve that threat by adding 
ordering links:

• Order S3 before S1 (demotion)

• Order S3 after S2 (promotion)

c

69



Partial-Order Planning Example

• Initially: at home; SM sells bananas; SM sells 

milk; HWS sells drills

• Goal:  Be home with milk, bananas, and a drill

S1:Start

S2:Finish

At(Home)   Sells(SM, bananas)        Sells(SM, Milk)  Sells(HWS, Drill)

Have(Drill)   Have(Milk)   Have(Banana)  At(Home)

71



• Add three 
actions to 
achieve basic 
goals

• Use initial state 
to achieve the 
“Sells” 
preconditions

• Bold links are 
causal 
(protected), 
regular are just 
ordering 
constraints

ordering links

protected links

72



Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM)Go(HWS)

At(x) At (x)

73



74



Real-World Planning Domains

• Real-world domains are complex

• Don’t satisfy assumptions of STRIPS or partial-order 
planning methods

• Some of the characteristics we may need to deal with:
– Modeling and reasoning about resources

– Representing and reasoning about time

– Planning at different levels of abstractions

– Conditional outcomes of actions

– Uncertain outcomes of actions

– Exogenous events

– Incremental plan development

– Dynamic real-time replanning

} Scheduling

} HTN planning

} Planning under uncertainty

76



Planning Summary

• Planning representations
– Situation calculus
– STRIPS representation: Preconditions and effects

• Planning approaches
– State-space search (STRIPS, forward chaining, ….)
– Plan-space search (partial-order planning, HTNs, …)
– Constraint-based search (GraphPlan, SATplan, …)

• Search strategies
– Forward planning
– Goal regression 
– Backward planning
– Least-commitment
– Nonlinear planning

90



91

Extended 
PDDL 

Examples



Classic Blocks World

• Starting with

– BW: a domain file

– Several problem files

• Use planning.domains to demonstrate solving the 
problems

92

http://planning.domains/


bw.pddl 1
(define (domain bw)

(:requirements :strips)

(:predicates

(on ?x ?y)         ; object ?x is on ?object ?y

(on-table ?x)   ; ?x is directly on the table

(clear ?x)         ; ?x has nothing on it

(arm-empty)   ; robot isn't holding anything

(holding ?x))   ; robot is holding ?x

;; the four classic actions for manipulating objects

… actions in next four slides …

Allows basic add and

delete effects in actions

List all the predicates with

their arguments

93



bw.pddl 2
(:action pick-up

:parameters (?ob1)

:precondition 
(and (clear ?ob1)

(on-table ?ob1) 
(arm-empty))

:effect
(and (not (on-table ?ob1))

(not (clear ?ob1))
(not (arm-empty))
(holding ?ob1)))

Variable for the argument

of a pick-up action

These three statements

must be True before we

can do a pick-up action

After doing a pick-up 

action, these become

True

94



bw.pddl 3
(:action pick-up

:parameters (?ob1)

:precondition 
(and (clear ?ob1)

(on-table ?ob1) 
(arm-empty))

:effect
(and (not (on-table ?ob1))

(not (clear ?ob1))
(not (arm-empty))
(holding ?ob1)))

Variable for the argument

of a pick-up action

These three statements

must be True before we

can do a pick-up action

After doing a pick-up 

action, these become

True

95



bw.pddl 4(:action put-down

:parameters (?ob)

:precondition (holding ?ob)

:effect

(and (not (holding ?ob))

(clear ?ob)

(arm-empty)

(on-table ?ob)))

(:action stack

:parameters (?ob ?underob)

:precondition (and (holding ?ob) (clear ?underob))

:effect

(and (not (holding ?ob))

(not (clear ?underob))

(clear ?ob)

(arm-empty)

(on ?sob ?underob)))

put-down means put the

think you are holding on

the table

stack means put the

thing you are holding on

another object

96



bw.pddl 5
(:action unstack

:parameters (?sob ?sunderob)

:precondition 

(and (on ?sob ?sunderob) 

(clear ?sob)

(arm-empty))

:effect

(and (holding ?sob)

(clear ?sunderob)

(not (clear ?sob))

(not (arm-empty))

(not (on ?sob ?sunderob)))

) ; this closes the domain definition

First arg can’t have 

anything on it and the

robt cannot be holding

anything

unstack means take the

first arg off the second

arg

Here are the updates

to our knowledge base

describing the state of

the world

97



p03.pddl 

;; The arm is empty and there is a stack of three blocks: C is on B which is on A
;;  which is on the table.  The goal is to reverse the stack, i.e., have A on B and B
;;  on C.  No need to mention C is on the table, since domain constraints will enforce it.

(define (problem p03)

(:domain bw)

(:objects A B C)

(:init (arm-empty)

(on-table A)

(on B A) 

(on C B)

(clear C))

(:goal (and (on A B) 

(on B C))))

A

C

B

C

A

B

98



http://planning.domains/

Open the PDDL editor,

upload our domain and

problem files, and run

the solver.

99


